1
|
Chen H, He X, Jiang HW, Zheng YX, Zhang HN, Wu FL, Xu ZW, Guo SJ, Tao SC. Elucidating the network interactions between 21 secreted Mycobacterium tuberculosis proteins and host proteins: the role of DnaK in enhancing Mtb survival via LDHB. Acta Biochim Biophys Sin (Shanghai) 2024; 56:819-823. [PMID: 38545657 PMCID: PMC11177104 DOI: 10.3724/abbs.2024041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Hong Chen
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Xiang He
- College of Basic Medical Science in Shanghai Jiao Tong UniversityShanghai Jiao Tong UniversityShanghai200025China
| | | | - Yun-Xiao Zheng
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Hai-Nan Zhang
- Institute of NeuroscienceChinese Academy of SciencesShanghai200031China
| | - Fan-Lin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of ShandongSchool of AgricultureLudong UniversityYantai264025China
| | - Zhao-Wei Xu
- School of Basic Medical Sciences in Fujian Medical UniversityFujian Medical UniversityFuzhou350112China
| | - Shu-Juan Guo
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
2
|
Chen L, Liu C, Liang T, Ye Z, Huang S, Chen J, Sun X, Yi M, Zhou C, Jiang J, Chen T, Li H, Chen W, Guo H, Chen W, Yao Y, Liao S, Yu C, Wu S, Fan B, Gan Z, Zhan X. Mechanism of COVID-19-Related Proteins in Spinal Tuberculosis: Immune Dysregulation. Front Immunol 2022; 13:882651. [PMID: 35720320 PMCID: PMC9202521 DOI: 10.3389/fimmu.2022.882651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this article was to investigate the mechanism of immune dysregulation of COVID-19-related proteins in spinal tuberculosis (STB). Methods Clinical data were collected to construct a nomogram model. C-index, calibration curve, ROC curve, and DCA curve were used to assess the predictive ability and accuracy of the model. Additionally, 10 intervertebral disc samples were collected for protein identification. Bioinformatics was used to analyze differentially expressed proteins (DEPs), including immune cells analysis, Gene Ontology (GO) and KEGG pathway enrichment analysis, and protein-protein interaction networks (PPI). Results The nomogram predicted risk of STB ranging from 0.01 to 0.994. The C-index and AUC in the training set were 0.872 and 0.862, respectively. The results in the external validation set were consistent with the training set. Immune cells scores indicated that B cells naive in STB tissues were significantly lower than non-TB spinal tissues. Hub proteins were calculated by Degree, Closeness, and MCC methods. The main KEGG pathway included Coronavirus disease-COVID-19. There were 9 key proteins in the intersection of COVID-19-related proteins and hub proteins. There was a negative correlation between B cells naive and RPL19. COVID-19-related proteins were associated with immune genes. Conclusion Lymphocytes were predictive factors for the diagnosis of STB. Immune cells showed low expression in STB. Nine COVID-19-related proteins were involved in STB mechanisms. These nine key proteins may suppress the immune mechanism of STB by regulating the expression of immune genes.
Collapse
Affiliation(s)
- Liyi Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chong Liu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Tuo Liang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Zhen Ye
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shengsheng Huang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jiarui Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Xuhua Sun
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Ming Yi
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chenxing Zhou
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jie Jiang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Tianyou Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Hao Li
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Wuhua Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Hao Guo
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Wenkang Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yuanlin Yao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shian Liao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chaojie Yu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shaofeng Wu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Binguang Fan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Zhaoping Gan
- Department of Hematology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Xinli Zhan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| |
Collapse
|
3
|
PRRSV Induces HMGB1 Phosphorylation at Threonine-51 Residue to Enhance Its Secretion. Viruses 2022; 14:v14051002. [PMID: 35632744 PMCID: PMC9144045 DOI: 10.3390/v14051002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces secretion of high mobility group box 1 (HMGB1) to mediate inflammatory response that is involved in the pulmonary injury of infected pigs. Our previous study indicates that protein kinase C-delta (PKC-delta) is essential for HMGB1 secretion in PRRSV-infected cells. However, the underlying mechanism in HMGB1 secretion induced by PRRSV infection is still unclear. Here, we discovered that the phosphorylation level of HMGB1 in threonine residues increased in PRRSV-infected cells. A site-directed mutagenesis study showed that HMGB1 phosphorylation at threonine-51 was associated with HMGB1 secretion induced by PRRSV infection. Co-immunoprecipitation (co-IP) of HMGB1 failed to precipitate PKC-delta, but interestingly, mass spectrometry analysis of the HMGB1 co-IP product showed that PRRSV infection enhanced HMGB1 binding to ribosomal protein S3 (RPS3), which has various extra-ribosomal functions. The silencing of RPS3 by siRNA blocked HMGB1 secretion induced by PRRSV infection. Moreover, the phosphorylation of HMGB1 at threonine-51 was correlated with the interaction between HMGB1 and RPS3. In vivo, PRRSV infection also increased RPS3 levels and nuclear accumulation in pulmonary alveolar macrophages. These results demonstrate that PRRSV may induce HMGB1 phosphorylation at threonine-51 and increase its interaction with RPS3 to enhance HMGB1 secretion. This finding provides insights into the pathogenesis of PRRSV infection.
Collapse
|
4
|
Shaikh A, Sriraman K, Vaswani S, Oswal V, Rao S, Mistry N. Early phase of effective treatment induces distinct transcriptional changes in Mycobacterium tuberculosis expelled by pulmonary tuberculosis patients. Sci Rep 2021; 11:17812. [PMID: 34497280 PMCID: PMC8426492 DOI: 10.1038/s41598-021-96902-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
Effective treatment reduces a tuberculosis patient's ability to infect others even before they test negative in sputum or culture. Currently, the basis of reduced infectiousness of the Mycobacterium tuberculosis (Mtb) with effective treatment is unclear. We evaluated changes in aerosolized bacteria expelled by patients through a transcriptomic approach before and after treatment initiation (up to 14 days) by RNA sequencing. A distinct change in the overall transcriptional profile was seen post-treatment initiation compared to pretreatment, only when patients received effective treatment. This also led to the downregulation of genes associated with cellular activities, cell wall assembly, virulence factors indicating loss of pathogenicity, and a diminished ability to infect and survive in new host cells. Based on this, we identified genes whose expression levels changed with effective treatment. The observations of the study open up avenues for further evaluating the changes in bacterial gene expression during the early phase of treatment as biomarkers for monitoring response to tuberculosis treatment regimens and provide means of identifying better correlates of Mtb transmission.
Collapse
Affiliation(s)
- Ambreen Shaikh
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra, 400018, India
| | - Kalpana Sriraman
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra, 400018, India
| | - Smriti Vaswani
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra, 400018, India
| | - Vikas Oswal
- Vikas Nursing Home, Shivaji Nagar, Govandi, Mumbai, India
| | - Sudha Rao
- Genotypic Technology Pvt Ltd, RMV Second Stage, Bangalore, India
| | - Nerges Mistry
- The Foundation for Medical Research, Dr. Kantilal J. Sheth Memorial Building, 84-A, RG Thadani Marg, Worli, Mumbai, Maharashtra, 400018, India.
| |
Collapse
|
5
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
6
|
Qi N, She GL, Du W, Ye BC. Mycobacterium smegmatis GlnR Regulates the Glyoxylate Cycle and the Methylcitrate Cycle on Fatty Acid Metabolism by Repressing icl Transcription. Front Microbiol 2021; 12:603835. [PMID: 33613477 PMCID: PMC7886694 DOI: 10.3389/fmicb.2021.603835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium smegmatis (Msm), along with its pathogenic counterpart Mycobacterium tuberculosis (Mtb), utilizes fatty acids and cholesterol as important carbon and energy sources during the persistence within host cells. As a dual-functional enzyme in the glyoxylate cycle and the methylcitrate cycle, isocitrate lyase (ICL, encoded by icl or MSMEG_0911) is indispensable for the growth of Msm and Mtb on short-chain fatty acids. However, regulation of icl in mycobacteria in response to nutrient availability remains largely unknown. Here, we report that the global nitrogen metabolism regulator GlnR represses icl expression by binding to an atypical binding motif in the icl promoter region under nitrogen-limiting conditions. We further show that GlnR competes with PrpR, a transcriptional activator of icl, and dominantly occupies the co-binding motif in the icl promoter region. In the absence of GlnR or in response to the excess nitrogen condition, Msm cells elongate and exhibit robust growth on short-chain fatty acids due to the PrpR-mediated activation of icl, thereby inducing enhanced apoptosis in infected macrophages. Taken together, our findings reveal the GlnR-mediated repression of icl on fatty acid metabolism, which might be a general strategy of nutrient sensing and environmental adaptation employed by mycobacteria.
Collapse
Affiliation(s)
- Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Guo-Lan She
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Institute of Engineering Biology and Health, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun 2020; 11:3581. [PMID: 32665645 PMCID: PMC7360742 DOI: 10.1038/s41467-020-17488-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/30/2020] [Indexed: 01/13/2023] Open
Abstract
We still know very little about how the human immune system responds to SARS-CoV-2. Here we construct a SARS-CoV-2 proteome microarray containing 18 out of the 28 predicted proteins and apply it to the characterization of the IgG and IgM antibodies responses in the sera from 29 convalescent patients. We find that all these patients had IgG and IgM antibodies that specifically bind SARS-CoV-2 proteins, particularly the N protein and S1 protein. Besides these proteins, significant antibody responses to ORF9b and NSP5 are also identified. We show that the S1 specific IgG signal positively correlates with age and the level of lactate dehydrogenase (LDH) and negatively correlates with lymphocyte percentage. Overall, this study presents a systemic view of the SARS-CoV-2 specific IgG and IgM responses and provides insights to aid the development of effective diagnostic, therapeutic and vaccination strategies. Currently very little is known about how our immune system responds to SARS-CoV-2 infection. Here the authors generate a SARS-CoV-2 proteome microarray for profiling of IgG and IgM responses to COVID-19 in patients and find significant responses to ORF9b and NSP5, as well as the S1 and N proteins.
Collapse
|
8
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
9
|
Qi H, Wang F, Tao SC. Proteome microarray technology and application: higher, wider, and deeper. Expert Rev Proteomics 2019; 16:815-827. [PMID: 31469014 DOI: 10.1080/14789450.2019.1662303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray. Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology. Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| | - Fei Wang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
10
|
Wei S, Wang D, Li H, Bi L, Deng J, Zhu G, Zhang J, Li C, Li M, Fang Y, Zhang G, Chen J, Tao S, Zhang XE. Fatty acylCoA synthetase FadD13 regulates proinflammatory cytokine secretion dependent on the NF-κB signalling pathway by binding to eEF1A1. Cell Microbiol 2019; 21:e13090. [PMID: 31364251 PMCID: PMC6899955 DOI: 10.1111/cmi.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) manipulates multiple host defence pathways to survive and persist in host cells. Understanding Mtb–host cell interaction is crucial to develop an efficient means to control the disease. Here, we applied the Mtb proteome chip, through separately interacting with H37Ra and H37Rv stimulated macrophage lysates, screened 283 Mtb differential proteins. Through primary screening, we focused on fatty acylCoA synthetase FadD13. Mtb FadD13 is a potential drug target, but its role in infection remains unclear. Deletion of FadD13 in Mtb reduced the production of proinflammatory cytokines IL‐1β, IL‐18, and IL‐6. Bimolecular fluorescence complementation and colocalization showed that the binding partner of FadD13 in macrophage was eEF1A1 (a translation elongation factor). Knockdown eEF1A1 expression in macrophage abrogated the promotion of proinflammatory cytokines induced by FadD13. In addition, ΔfadD13 mutant decreased the expression of the NF‐κB signalling pathway related proteins p50 and p65, so did the eEF1A1 knockdown macrophage infected with H37Rv. Meanwhile, we found that deletion of FadD13 reduced Mtb survival in macrophages during Mtb infection, and purified FadD13 proteins induced broken of macrophage membrane. Taken together, FadD13 is crucial for Mtb proliferation in macrophages, and it plays a key role in the production of proinflammatory cytokines during Mtb infection.
Collapse
Affiliation(s)
- Sha Wei
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hua Li
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijun Bi
- Key Laboratory of Non-Coding RNA and State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Guofeng Zhu
- Key Laboratory of Non-Coding RNA and State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jibin Zhang
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Fang
- College of Life Science, Hubei University, Wuhan, China
| | - Guimin Zhang
- College of Life Science, Hubei University, Wuhan, China
| | - Jian Chen
- College of Life Science, Hubei University, Wuhan, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
11
|
Cao T, Lyu L, Jia H, Wang J, Du F, Pan L, Li Z, Xing A, Xiao J, Ma Y, Zhang Z. A Two-Way Proteome Microarray Strategy to Identify Novel Mycobacterium tuberculosis-Human Interactors. Front Cell Infect Microbiol 2019; 9:65. [PMID: 30984625 PMCID: PMC6448480 DOI: 10.3389/fcimb.2019.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a serious threat to human health which is caused by mycobacterium tuberculosis (Mtb). The main reason for failure to eliminate TB is lack of clearly understanding the molecular mechanism of Mtb pathogenesis. Determining human Mtb-interacting proteins enables us to characterize the mechanism and identify potential molecular targets for TB diagnosis and treatment. However, experimentally systematic Mtb interactors are not readily available. In this study, we performed an unbiased, comprehensive two-way proteome microarray based approach to systematically screen global human Mtb interactors and determine the binding partners of Mtb effectors. Our results, for the first time, screened 84 potential human Mtb interactors. Bioinformatic analysis further highlighted these protein candidates might engage in a wide range of cellular functions such as activation of DNA endogenous promoters, transcription of DNA/RNA and necrosis, as well as immune-related signaling pathways. Then, using Mtb proteome microarray followed His tagged pull-down assay and Co-IP, we identified one interacting partner (Rv0577) for the protein candidate NRF1 and three binding partners (Rv0577, Rv2117, Rv2423) for SMAD2, respectively. This study gives new insights into the profile of global Mtb interactors potentially involved in Mtb pathogenesis and demonstrates a powerful strategy in the discovery of Mtb effectors.
Collapse
Affiliation(s)
- Tingming Cao
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lingna Lyu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fengjiao Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jing Xiao
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yu Ma
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
The Nitrogen Regulator GlnR Directly Controls Transcription of the prpDBC Operon Involved in Methylcitrate Cycle in Mycobacterium smegmatis. J Bacteriol 2019; 201:JB.00099-19. [PMID: 30745367 DOI: 10.1128/jb.00099-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis utilizes fatty acids of the host as the carbon source. Metabolism of odd-chain fatty acids by Mycobacterium tuberculosis produces propionyl coenzyme A (propionyl-CoA). The methylcitrate cycle is essential for mycobacteria to utilize the propionyl-CoA to persist and grow on these fatty acids. In M. smegmatis, methylcitrate synthase, methylcitrate dehydratase, and methylisocitrate lyase involved in the methylcitrate cycle are encoded by prpC, prpD, and prpB, respectively, in operon prpDBC In this study, we found that the nitrogen regulator GlnR directly binds to the promoter region of the prpDBC operon and inhibits its transcription. The binding motif of GlnR was identified by bioinformatic analysis and validated using DNase I footprinting and electrophoretic mobility shift assays. The GlnR-binding motif is separated by a 164-bp sequence from the binding site of PrpR, a pathway-specific transcriptional activator of methylcitrate cycle, but the binding affinity of GlnR to prpDBC is much stronger than that of PrpR. Deletion of glnR resulted in faster growth in propionate or cholesterol medium compared with the wild-type strain. The ΔglnR mutant strain also showed a higher survival rate in macrophages. These results illustrated that the nitrogen regulator GlnR regulates the methylcitrate cycle through direct repression of the transcription of the prpDBC operon. This finding not only suggests an unprecedented link between nitrogen metabolism and the methylcitrate pathway but also reveals a potential target for controlling the growth of pathogenic mycobacteria.IMPORTANCE The success of mycobacteria survival in macrophage depends on its ability to assimilate fatty acids and cholesterol from the host. The cholesterol and fatty acids are catabolized via β-oxidation to generate propionyl coenzyme A (propionyl-CoA), which is then primarily metabolized via the methylcitrate cycle. Here, we found a typical GlnR binding box in the prp operon, and the affinity is much stronger than that of PrpR, a transcriptional activator of methylcitrate cycle. Furthermore, GlnR repressed the transcription of the prp operon. Deletion of glnR significantly enhanced the growth of Mycobacterium tuberculosis in propionate or cholesterol medium, as well as viability in macrophages. These findings provide new insights into the regulatory mechanisms underlying the cross talk of nitrogen and carbon metabolisms in mycobacteria.
Collapse
|
13
|
Wu FL, Liu Y, Zhang HN, Jiang HW, Cheng L, Guo SJ, Deng JY, Bi LJ, Zhang XE, Gao HF, Tao SC. Global Profiling of PknG Interactions Using a Human Proteome Microarray Reveals Novel Connections with CypA. Proteomics 2018; 18:e1800265. [PMID: 30281201 DOI: 10.1002/pmic.201800265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.
Collapse
Affiliation(s)
- Fan-Lin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Yin Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Hai-Nan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - He-Wei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Li Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Shu-Juan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Jiao-Yu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Li-Jun Bi
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China.,School of Stomatology and Medicine, Foshan University, Foshan, 528000, Guangdong Province, P. R. China.,TB Healthcare Biotechnology Co., Ltd., Foshan, 528000, Guangdong Province, P. R. China.,Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, 528000, Guangdong Province, P. R. China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Hua-Fang Gao
- National Research Institute for Health and Family Planning, 100081, Beijing, P. R. China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
14
|
Wang X, Wang B, Zou M, Li J, Lü G, Zhang Q, Liu F, Lu C. CircSEMA4B targets miR-431 modulating IL-1β-induced degradative changes in nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3754-3768. [PMID: 30251693 DOI: 10.1016/j.bbadis.2018.08.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD), characterized by elevated levels of proinflammatory mediators, increased Aggrecan and collagen degradation, and increased degradation of extracellular matrix (ECM), has been widely regarded as a significant contributor to low back pain. Genetics are significant factors contribute to IDD. Based on previous data, circular RNA SEMA4B (circSEMA4B) is down-regulated in IDD specimens; herein, we demonstrated circSEMA4B overexpression could attenuate the effect of IL-1β on nucleus pulposus cell (NPC) proliferation, senescence, and ECM and Aggrecan degradation in IDD via Wnt signaling. Moreover, miR-431, a direct target of circSEMA4B, could bind to the 3'UTR of SFRP1 or GSK-3β, two inhibitory regulators of Wnt signaling, to inhibit their expression thus playing a role similar to the activator of Wnt signaling in NPCs. The effect of circSEMA4B knockdown on NPCs was partially reversed by miR-431 inhibition; circSEMA4B serves as a miR-431 sponge to compete with SFRP1 or GSK-3β for miR-431 binding, thus inhibiting IL-1β-induced degenerative process in NPCs through Wnt signaling. Rescuing circSEMA4B expression in NPCs in IDD might present a potential strategy for IDD improvement.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Mingxiang Zou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Guohua Lü
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Fubin Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Chang Lu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| |
Collapse
|
15
|
Feng Y, Chen CS, Ho J, Pearce D, Hu S, Wang B, Desai P, Kim KS, Zhu H. High-Throughput Chip Assay for Investigating Escherichia coli Interaction with the Blood-Brain Barrier Using Microbial and Human Proteome Microarrays (Dual-Microarray Technology). Anal Chem 2018; 90:10958-10966. [PMID: 30106562 DOI: 10.1021/acs.analchem.8b02513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial meningitis in neonates and infants is an acute lethal disease and occurs in response to microbial exploitation of the blood-brain barrier (BBB), resulting in the intracranial inflammation. Several pathogens, such as Escherichia coli ( E. coli), can cause this devastating disease; however, the underlying molecular mechanisms by which these pathogens exploit the BBB remain incompletely understood. To identify important players on both the pathogen and host sides that govern the E. coli-BBB cell interactions, we took advantage of the E. coli and human proteome microarrays (i.e., HuProt) as an unbiased, proteome-wide tool for identification of important players on both sides. Using the E. coli proteome microarrays, we developed a unique high throughput chip-based cell probing assay to probe with fluorescent live human brain microvascular endothelial cells (HBMEC, which constitute the BBB). We identified several transmembrane proteins, which effectively bound to live HBMEC. We focused on YojI protein for further study. By probing the HuProt arrays with YojI, interferon-alpha receptor (IFNAR2) was identified as one of its binding proteins. The importance of YojI and IFNAR2 involved in E. coli-HBMEC interactions was characterized using the YojI knockout bacteria and IFNAR2-knock down HBMEC and further confirmed by E. coli binding assay in HBMEC. This study represents a new paradigm (dual-microarray technology) that enables rapid, unbiased discovery of both pathogen and host players that are involved in pathogen-host interactions for human infectious diseases in a high throughput manner.
Collapse
Affiliation(s)
- Yingzhu Feng
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , PR China.,Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States.,School of Life Sciences , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management , Tainan City 701 , Taiwan.,Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States.,Department of Biomedical Science and Engineering , National Central University , Taoyuan City 32001 , Taiwan
| | - Jessica Ho
- Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Donna Pearce
- Division of Pediatric Infectious Diseases, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21287 , United States
| | - Shaohui Hu
- Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Bochu Wang
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , PR China
| | - Prashant Desai
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21231 , United States
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21287 , United States
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| |
Collapse
|