1
|
Flores-Valdez MA, Peterson EJR, Aceves-Sánchez MDJ, Baliga NS, Morita YS, Sparks IL, Saini DK, Yadav R, Lang R, Mata-Espinosa D, León-Contreras JC, Hernández-Pando R. Comparison of the transcriptome, lipidome, and c-di-GMP production between BCGΔBCG1419c and BCG, with Mincle- and Myd88-dependent induction of proinflammatory cytokines in murine macrophages. Sci Rep 2024; 14:11898. [PMID: 38789479 PMCID: PMC11126594 DOI: 10.1038/s41598-024-61815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.
Collapse
Affiliation(s)
- Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico.
| | | | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico
| | | | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 N Pleasant St, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 N Pleasant St, Amherst, MA, 01003, USA
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Rahul Yadav
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dulce Mata-Espinosa
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City, Mexico
| | - Juan Carlos León-Contreras
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City, Mexico
| |
Collapse
|
2
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
3
|
Hendricksen AT, Ezzatpour S, Pulukuri AJ, Ryan AT, Flanagan TJ, Frantz W, Buchholz DW, Ortega V, Monreal IA, Sahler JM, Nielsen AE, Aguilar HC, Mancini RJ. Thermophobic Trehalose Glycopolymers as Smart C-Type Lectin Receptor Vaccine Adjuvants. Adv Healthc Mater 2023; 12:e2202918. [PMID: 37002787 PMCID: PMC11212414 DOI: 10.1002/adhm.202202918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Indexed: 04/04/2023]
Abstract
Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1-2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly-N-isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self-assembled into nanoparticles with temperature-dependent sizes (90-270 nm). Thermophobic adjuvants activate HEK-mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid-NIPAM shielding interactions are observed by NOESY-NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+ /44+ /62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.
Collapse
Affiliation(s)
- Aaron T. Hendricksen
- Department of ChemistryWashington State University1470 NE College AvePullmanWA99164USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and ImmunologyCornell University618 Tower RoadIthacaNY14850USA
| | - Anunay J. Pulukuri
- Department of ChemistryWashington State University1470 NE College AvePullmanWA99164USA
| | - Austin T. Ryan
- Department of ChemistryWashington State University1470 NE College AvePullmanWA99164USA
| | - Tatum J. Flanagan
- Department of ChemistryWashington State University1470 NE College AvePullmanWA99164USA
| | - William Frantz
- Department of ChemistryWashington State University1470 NE College AvePullmanWA99164USA
| | - David W. Buchholz
- Department of Microbiology and ImmunologyCornell University618 Tower RoadIthacaNY14850USA
| | - Victoria Ortega
- Department of Microbiology and ImmunologyCornell University618 Tower RoadIthacaNY14850USA
| | - Isaac A. Monreal
- Department of Microbiology and ImmunologyCornell University618 Tower RoadIthacaNY14850USA
| | - Julie M. Sahler
- Department of Microbiology and ImmunologyCornell University618 Tower RoadIthacaNY14850USA
| | - Amy E. Nielsen
- Astante Therapeutics Inc.120 N Pine Street, Suite 270ASpokaneWA99202USA
| | - Hector C. Aguilar
- Department of Microbiology and ImmunologyCornell University618 Tower RoadIthacaNY14850USA
| | - Rock J. Mancini
- Department of ChemistryWashington State University1470 NE College AvePullmanWA99164USA
- Department of Chemistry and BiochemistryMiami University651 E. High StreetOxfordOH45056USA
| |
Collapse
|
4
|
Kodar K, Dangerfield EM, Foster AJ, Forsythe D, Ishizuka S, McConnell MJ, Yamasaki S, Timmer MSM, Stocker BL. Aryl-functionalised α,α'-Trehalose 6,6'-Glycolipid Induces Mincle-independent Pyroptotic Cell Death. Inflammation 2023:10.1007/s10753-023-01814-5. [PMID: 37140682 PMCID: PMC10359228 DOI: 10.1007/s10753-023-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
α,α'-Trehalose 6,6'-glycolipids have long been known for their immunostimulatory properties. The adjuvanticity of α,α'-trehalose 6,6'-glycolipids is mediated by signalling through the macrophage inducible C-type lectin (Mincle) and the induction of an inflammatory response. Herein, we present an aryl-functionalised trehalose glycolipid, AF-2, that leads to the release of cytokines and chemokines, including IL-6, MIP-2 and TNF-α, in a Mincle-dependent manner. Furthermore, plate-coated AF-2 also leads to the Mincle-independent production of IL-1β, which is unprecedented for this class of glycolipid. Upon investigation into the mode of action of plate-coated AF-2, it was observed that the treatment of WT and Mincle-/- bone marrow derived macrophages (BMDM), murine RAW264.7 cells, and human monocytes with AF-2 led to lytic cell death, as evidenced using Sytox Green and lactate dehydrogenase assays, and confocal and scanning electron microscopy. The requirement for functional Gasdermin D and Caspase-1 for IL-1β production and cell death by AF-2 confirmed pyroptosis as the mode of action of AF-2. The inhibition of NLRP3 and K+ efflux reduced AF-2 mediated IL-1β production and cell death, and allowed us to conclude that AF-2 leads to Capase-1 dependent NLRP3 inflammasome-mediated cell death. The unique mode of action of plate-coated AF-2 was surprising and highlights how the physical presentation of Mincle ligands can lead to dramatically different immunological outcomes.
Collapse
Affiliation(s)
- Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Amy J Foster
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Devlin Forsythe
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- School of Biological Sciences, PO Box 600, Wellington, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Melanie J McConnell
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- School of Biological Sciences, PO Box 600, Wellington, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
5
|
Manthrirathna MATP, Dangerfield EM, Ishizuka S, Woods A, Luong BS, Yamasaki S, Timmer MSM, Stocker BL. Water-soluble trehalose glycolipids show superior Mincle binding and signaling but impaired phagocytosis and IL-1β production. Front Mol Biosci 2022; 9:1015210. [PMID: 36504717 PMCID: PMC9729344 DOI: 10.3389/fmolb.2022.1015210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
The tremendous potential of trehalose glycolipids as vaccine adjuvants has incentivized the study of how the structures of these ligands relate to their Mincle-mediated agonist activities. Despite this, structure-activity work in the field has been largely empirical, and less is known about how Mincle-independent pathways might be affected by different trehalose glycolipids, and whether Mincle binding by itself can serve as a proxy for adjuvanticity. There is also much demand for more water-soluble Mincle ligands. To address this need, we prepared polyethylene glycol modified trehalose glycolipids (PEG-TGLs) with enhanced water solubility and strong murine Mincle (mMincle) binding and signaling. However, only modest cytokine and chemokine responses were observed upon the treatment of GM-CSF treated bone-marrow cells with the PEG-TGLs. Notability, no IL-1β was observed. Using RNA-Seq analysis and a representative PEG-TGL, we determined that the more water-soluble adducts were less able to activate phagocytic pathways, and hence, failed to induce IL-1β production. Taken together, our data suggests that in addition to strong Mincle binding, which is a pre-requisite for Mincle-mediated cellular responses, the physical presentation of trehalose glycolipids in colloidal form is required for inflammasome activation, and hence, a strong inflammatory immune response.
Collapse
Affiliation(s)
| | - Emma M. Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Aodhamair Woods
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Brenda S. Luong
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan,Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Bridget L. Stocker, ; Mattie S. M. Timmer,
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Bridget L. Stocker, ; Mattie S. M. Timmer,
| |
Collapse
|
6
|
Li YY, Liu HM, Wang D, Lu Y, Ding C, Zhou LS, Wu XY, Zhou ZW, Xu SQ, Lin C, Qin LH, Li Y, Liu J, Liu HP, Zhang L. Arabinogalactan enhances Mycobacterium marinum virulence by suppressing host innate immune responses. Front Immunol 2022; 13:879775. [PMID: 36090984 PMCID: PMC9459032 DOI: 10.3389/fimmu.2022.879775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Arabinogalactan (AG) participates in forming the cell wall core of mycobacteria, a structure known as the mAGP complex. Few studies have reported the virulence of inartificial AG or its interaction with the host immune system. Using clustered regularly interspaced short palindromic repeats interference gene editing technology, conditional Mycobacterium marinum mutants were constructed with a low expression of embA or glfT2 (EmbA_KD or GlfT2_KD), which are separately involved in the biosynthesis of AG arabinose and galactose domains. High-performance gel permeation chromatography and high-performance liquid chromatography assays confirmed that the EmbA_KD strain showed a remarkable decrease in AG content with fragmentary arabinose chains, and the GlfT2_KD strain displayed less reduction in content with cut-down galactose chains. Based on transmission and scanning electron microscopy observations, the cell walls of the two mutants were found to be dramatically thickened, and the boundaries of different layers were more distinct. Phenotypes including the over-secretion of extracellular substances and enhanced spreading motility with a concomitant decreased resistance to ethambutol appeared in the EmbA_KD strain. The EmbA_KD and GlfT2_KD strains displayed limited intracellular proliferation after infecting murine J774A.1 macrophages. The disease progression infected with the EmbA_KD or GlfT2_KD strain significantly slowed down in zebrafish/murine tail infection models as well. Through transcriptome profiling, macrophages infected by EmbA_KD/GlfT2_KD strains showed enhanced oxidative metabolism. The cell survival measured using the CCK8 assay of macrophages exposed to the EmbA_KD strain was upregulated and consistent with the pathway enrichment analysis of differentially expressed genes in terms of cell cycle/apoptosis. The overexpression of C/EBPβ and the increasing secretion of proinflammatory cytokines were validated in the macrophages infected by the EmbA_KD mutant. In conclusion, the AG of Mycobacterium appears to restrain the host innate immune responses to enhance intracellular proliferation by interfering with oxidative metabolism and causing macrophage death. The arabinose chains of AG influence the Mycobacterium virulence and pathogenicity to a greater extent.
Collapse
Affiliation(s)
- Ye-yu Li
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Han-Mei Liu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Decheng Wang
- School of Medicine, China Three Gorges University, Yichang, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Cairong Ding
- School of Medicine, China Three Gorges University, Yichang, China
| | - Li-Shuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang-Yang Wu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Wei Zhou
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Shu-qin Xu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Lian-Hua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Hai-Peng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| |
Collapse
|
7
|
A mechanism of self-lipid endocytosis mediated by the receptor Mincle. Proc Natl Acad Sci U S A 2022; 119:e2120489119. [PMID: 35867828 PMCID: PMC9335232 DOI: 10.1073/pnas.2120489119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of lipid endocytosis, a normal physiological process of cellular lipid uptake, often underlies the pathogenesis of some widespread diseases such as atherosclerosis, obesity, and diabetes. However, the mechanisms of lipid endocytosis are incompletely understood, and only a few such mechanisms have been discovered, limiting the available therapeutic strategies and targets in these diseases. Here we found that the receptor Mincle, previously known as a pattern recognition receptor of the innate immune system, plays a significant role in endocytosis. The results have revealed a fundamental pathway of lipid endocytosis, which we call Mincle-mediated endocytosis. Cellular lipid uptake (through endocytosis) is a basic physiological process. Dysregulation of this process underlies the pathogenesis of diseases such as atherosclerosis, obesity, diabetes, and cancer. However, to date, only some mechanisms of lipid endocytosis have been discovered. Here, we show a previously unknown mechanism of lipid cargo uptake into cells mediated by the receptor Mincle. We found that the receptor Mincle, previously shown to be a pattern recognition receptor of the innate immune system, tightly binds a range of self-lipids. Moreover, we revealed the minimal molecular motif in lipids that is sufficient for Mincle recognition. Superresolution microscopy showed that Mincle forms vesicles in cytoplasm and colocalizes with added fluorescent lipids in endothelial cells but does not colocalize with either clathrin or caveolin-1, and the added lipids were predominantly incorporated in vesicles that expressed Mincle. Using a model of ganglioside GM3 uptake in brain vessel endothelial cells, we show that the knockout of Mincle led to a dramatic decrease in lipid endocytosis. Taken together, our results have revealed a fundamental lipid endocytosis pathway, which we call Mincle-mediated endocytosis (MiME), and indicate a prospective target for the treatment of disorders of lipid metabolism, which are rapidly increasing in prevalence.
Collapse
|
8
|
Orientia tsutsugamushi selectively stimulates the C-type lectin receptor Mincle and type 1-skewed proinflammatory immune responses. PLoS Pathog 2021; 17:e1009782. [PMID: 34320039 PMCID: PMC8351992 DOI: 10.1371/journal.ppat.1009782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium and the etiological agent of scrub typhus. The lung is a major target organ of infection, displaying type 1-skewed proinflammatory responses. Lung injury and acute respiratory distress syndrome are common complications of severe scrub typhus; yet, their underlying mechanisms remain unclear. In this study, we investigated whether the C-type lectin receptor (CLR) Mincle contributes to immune recognition and dysregulation. Following lethal infection in mice, we performed pulmonary differential expression analysis with NanoString. Of 671 genes examined, we found 312 significantly expressed genes at the terminal phase of disease. Mincle (Clec4e) was among the top 5 greatest up-regulated genes, accompanied with its signaling partners, type 1-skewing chemokines (Cxcr3, Ccr5, and their ligands), as well as Il27. To validate the role of Mincle in scrub typhus, we exposed murine bone marrow-derived macrophages (MΦ) to live or inactivated O. tsutsugamushi and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that while heat-killed bacteria stimulated transitory Mincle expression, live bacteria generated a robust response in MΦ, which was validated by indirect immunofluorescence and western blot. Notably, infection had limited impact on other tested CLRs or TLRs. Sustained proinflammatory gene expression in MΦ (Cxcl9, Ccl2, Ccl5, Nos2, Il27) was induced by live, but not inactivated, bacteria; infected Mincle-/- MΦ significantly reduced proinflammatory responses compared with WT cells. Together, this study provides the first evidence for a selective expression of Mincle in sensing O. tsutsugamushi and suggests a potential role of Mincle- and IL-27-related pathways in host responses to severe infection. Additionally, it provides novel insight into innate immune recognition of this poorly studied bacterium.
Collapse
|
9
|
Killy B, Bodendorfer B, Mages J, Ritter K, Schreiber J, Hölscher C, Pracht K, Ekici A, Jäck HM, Lang R. DGCR8 deficiency impairs macrophage growth and unleashes the interferon response to mycobacteria. Life Sci Alliance 2021; 4:4/6/e202000810. [PMID: 33771876 PMCID: PMC8008949 DOI: 10.26508/lsa.202000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
The mycobacterial cell wall glycolipid trehalose-6,6-dimycolate (TDM) activates macrophages through the C-type lectin receptor MINCLE. Regulation of innate immune cells relies on miRNAs, which may be exploited by mycobacteria to survive and replicate in macrophages. Here, we have used macrophages deficient in the microprocessor component DGCR8 to investigate the impact of miRNA on the response to TDM. Deletion of DGCR8 in bone marrow progenitors reduced macrophage yield, but did not block macrophage differentiation. DGCR8-deficient macrophages showed reduced constitutive and TDM-inducible miRNA expression. RNAseq analysis revealed that they accumulated primary miRNA transcripts and displayed a modest type I IFN signature at baseline. Stimulation with TDM in the absence of DGCR8 induced overshooting expression of IFNβ and IFN-induced genes, which was blocked by antibodies to type I IFN. In contrast, signaling and transcriptional responses to recombinant IFNβ were unaltered. Infection with live Mycobacterium bovis Bacille Calmette-Guerin replicated the enhanced IFN response. Together, our results reveal an essential role for DGCR8 in curbing IFNβ expression macrophage reprogramming by mycobacteria.
Collapse
Affiliation(s)
- Barbara Killy
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Bodendorfer
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kristina Ritter
- Infection Immunology, Forschungszentrum Borstel, Borstel, Germany
| | - Jonathan Schreiber
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Hölscher
- Infection Immunology, Forschungszentrum Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel, Borstel, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Li Z, Huang B, Yi W, Wang F, Wei S, Yan H, Qin P, Zou D, Wei R, Chen N. Identification of Potential Early Diagnostic Biomarkers of Sepsis. J Inflamm Res 2021; 14:621-631. [PMID: 33688234 PMCID: PMC7937397 DOI: 10.2147/jir.s298604] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objective The goal of this article was to identify potential biomarkers for early diagnosis of sepsis in order to improve their survival. Methods We analyzed differential gene expression between adult sepsis patients and controls in the GSE54514 dataset. Coexpression analysis was used to cluster coexpression modules, and enrichment analysis was performed on module genes. We also analyzed differential gene expression between neonatal sepsis patients and controls in the GSE25504 dataset, and we identified the subset of differentially expressed genes (DEGs) common to neonates and adults. All samples in the GSE54514 dataset were randomly divided into training and validation sets, and diagnostic signatures were constructed using least absolute shrink and selection operator (LASSO) regression. The key gene signature was screened for diagnostic value based on area under the receiver operating characteristic curve (AUC). STEM software identified dysregulated genes associated with sepsis-associated mortality. The ssGSEA method was used to quantify differences in immune cell infiltration between sepsis and control samples. Results A total of 6316 DEGs in GSE54514 were obtained spanning 10 modules. Module genes were mainly enriched in immune and metabolic responses. Screening 51 genes from among common genes based on AUC > 0.7 led to a LASSO model for the training set. We obtained a 25-gene signature, which we validated in the validation set and in the GSE25504 dataset. Among the signature genes, SLC2A6, C1ORF55, DUSP5 and RHOB were recognized as key genes (AUC > 0.75) in both the GSE54514 and GSE25504 datasets. SLC2A6 was identified by STEM as associated with sepsis-associated mortality and showed the strongest positive correlation with infiltration levels of Th1 cells. Conclusion In summary, our four key genes may have important implications for the early diagnosis of sepsis patients. In particular, SLC2A6 may be a critical biomarker for predicting survival in sepsis.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China.,Intensive Care Unit, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Bin Huang
- Intensive Care Unit, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Wenfeng Yi
- Intensive Care Unit, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Fei Wang
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Shizhuang Wei
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Huaixing Yan
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Pan Qin
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Donghua Zou
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Rongguo Wei
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Nian Chen
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| |
Collapse
|
11
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
12
|
Sukumaran A, Woroszchuk E, Ross T, Geddes-McAlister J. Proteomics of host-bacterial interactions: new insights from dual perspectives. Can J Microbiol 2020; 67:213-225. [PMID: 33027598 DOI: 10.1139/cjm-2020-0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass-spectrometry (MS)-based proteomics is a powerful and robust platform for studying the interactions between biological systems during health and disease. Bacterial infections represent a significant threat to global health and drive the pursuit of novel therapeutic strategies to combat emerging and resistant pathogens. During infection, the interplay between a host and pathogen determines the ability of the microbe to survive in a hostile environment and promotes an immune response by the host as a protective measure. It is the protein-level changes from either biological system that define the outcome of infection, and MS-based proteomics provides a rapid and effective platform to identify such changes. In particular, proteomics detects alterations in protein abundance, quantifies protein secretion and (or) release, measures an array of post-translational modifications that influence signaling cascades, and profiles protein-protein interactions through protein complex and (or) network formation. Such information provides new insight into the role of known and novel bacterial effectors, as well as the outcome of host cell activation. In this Review, we highlight the diverse applications of MS-based proteomics in profiling the relationship between bacterial pathogens and the host. Our work identifies a plethora of strategies for exploring mechanisms of infection from dual perspectives (i.e., host and pathogen), and we suggest opportunities to extrapolate the current knowledgebase to other biological systems for applications in therapeutic discovery.
Collapse
Affiliation(s)
- Arjun Sukumaran
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elizabeth Woroszchuk
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Taylor Ross
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
13
|
Huber A, Killy B, Grummel N, Bodendorfer B, Paul S, Wiesmann V, Naschberger E, Zimmer J, Wirtz S, Schleicher U, Vera J, Ekici AB, Dalpke A, Lang R. Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN-γ towards Enhanced Inflammation yet Impaired Antigen Presentation and Expression of GBP1. THE JOURNAL OF IMMUNOLOGY 2020; 205:1580-1592. [PMID: 32796022 DOI: 10.4049/jimmunol.2000337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Mycobacteria survive in macrophages despite triggering pattern recognition receptors and T cell-derived IFN-γ production. Mycobacterial cord factor trehalose-6,6-dimycolate (TDM) binds the C-type lectin receptor MINCLE and induces inflammatory gene expression. However, the impact of TDM on IFN-γ-induced macrophage activation is not known. In this study, we have investigated the cross-regulation of the mouse macrophage transcriptome by IFN-γ and by TDM or its synthetic analogue trehalose-6,6-dibehenate (TDB). As expected, IFN-γ induced genes involved in Ag presentation and antimicrobial defense. Transcriptional programs induced by TDM and TDB were highly similar but clearly distinct from the response to IFN-γ. The glycolipids enhanced expression of a subset of IFN-γ-induced genes associated with inflammation. In contrast, TDM/TDB exerted delayed inhibition of IFN-γ-induced genes, including pattern recognition receptors, MHC class II genes, and IFN-γ-induced GTPases, with antimicrobial function. TDM downregulated MHC class II cell surface expression and impaired T cell activation by peptide-pulsed macrophages. Inhibition of the IFN-γ-induced GTPase GBP1 occurred at the level of transcription by a partially MINCLE-dependent mechanism that may target IRF1 activity. Although activation of STAT1 was unaltered, deletion of Socs1 relieved inhibition of GBP1 expression by TDM. Nonnuclear Socs1 was sufficient for inhibition, suggesting a noncanonical, cytoplasmic mechanism. Taken together, unbiased analysis of transcriptional reprogramming revealed a significant degree of negative regulation of IFN-γ-induced Ag presentation and antimicrobial gene expression by the mycobacterial cord factor that may contribute to mycobacterial persistence.
Collapse
Affiliation(s)
- Alexandra Huber
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Barbara Killy
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Nadine Grummel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sushmita Paul
- Laboratory of Systems Tumor Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Veit Wiesmann
- Fraunhofer-Institut für Integrierte Schaltungen, D-91058 Erlangen, Germany
| | - Elisabeth Naschberger
- Molekulare und Experimentelle Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Jana Zimmer
- Department of Infectious Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Arif Bülent Ekici
- Institut für Humangenetik, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; and
| | - Alexander Dalpke
- Department of Infectious Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany;
| |
Collapse
|
14
|
Phosphoproteomics reveals that the hVPS34 regulated SGK3 kinase specifically phosphorylates endosomal proteins including Syntaxin-7, Syntaxin-12, RFIP4 and WDR44. Biochem J 2020; 476:3081-3107. [PMID: 31665227 PMCID: PMC6824681 DOI: 10.1042/bcj20190608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/04/2023]
Abstract
The serum- and glucocorticoid-regulated kinase (SGK) isoforms contribute resistance to cancer therapies targeting the PI3K pathway. SGKs are homologous to Akt and these kinases display overlapping specificity and phosphorylate several substrates at the same residues, such as TSC2 to promote tumor growth by switching on the mTORC1 pathway. The SGK3 isoform is up-regulated in breast cancer cells treated with PI3K or Akt inhibitors and recruited and activated at endosomes, through its phox homology domain binding to PtdIns(3)P. We undertook genetic and pharmacological phosphoproteomic screens to uncover novel SGK3 substrates. We identified 40 potential novel SGK3 substrates, including four endosomal proteins STX7 (Ser126) and STX12 (Ser139), RFIP4 (Ser527) and WDR44 (Ser346) that were efficiently phosphorylated in vitro by SGK3 at the sites identified in vivo, but poorly by Akt. We demonstrate that these substrates are inefficiently phosphorylated by Akt as they possess an n + 1 residue from the phosphorylation site that is unfavorable for Akt phosphorylation. Phos-tag analysis revealed that stimulation of HEK293 cells with IGF1 to activate SGK3, promoted phosphorylation of a significant fraction of endogenous STX7 and STX12, in a manner that was blocked by knock-out of SGK3 or treatment with a pan SGK inhibitor (14H). SGK3 phosphorylation of STX12 enhanced interaction with the VAMP4/VTI1A/STX6 containing the SNARE complex and promoted plasma membrane localization. Our data reveal novel substrates for SGK3 and suggest a mechanism by which STX7 and STX12 SNARE complexes are regulated by SGK3. They reveal new biomarkers for monitoring SGK3 pathway activity.
Collapse
|
15
|
Choudhary E, Bullen CK, Goel R, Singh AK, Praharaj M, Thakur P, Dhiman R, Bishai WR, Agarwal N. Relative and Quantitative Phosphoproteome Analysis of Macrophages in Response to Infection by Virulent and Avirulent Mycobacteria Reveals a Distinct Role of the Cytosolic RNA Sensor RIG-I in Mycobacterium tuberculosis Pathogenesis. J Proteome Res 2020; 19:2316-2336. [PMID: 32407090 DOI: 10.1021/acs.jproteome.9b00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Comparative phosphoproteomics of Mycobacterium tuberculosis (Mtb)- and Mycobacterium bovis BCG (BCG)-infected macrophages could be instrumental in understanding the characteristic post-translational modifications of host proteins and their subsequent involvement in determining Mtb pathogenesis. To identify proteins acquiring a distinct phosphorylation status, herein, we compared the phosphorylation profile of macrophages upon exposure to Mtb and BCG. We observed a significant dephosphorylation of proteins following Mtb infection relative to those with uninfected or BCG-infected cells. A comprehensive tandem mass tag mass spectrometry (MS) approach detected ∼10% phosphosites on a variety of host proteins that are modulated in response to infection. Interestingly, the innate immune-enhancing interferon (IFN)-stimulated genes were identified as a class of proteins differentially phosphorylated during infection, including the cytosolic RNA sensor RIG-I, which has been implicated in the immune response to bacterial infection. We show that Mtb infection results in the activation of RIG-I in primary human macrophages. Studies using RIG-I knockout macrophages reveal that the Mtb-mediated activation of RIG-I promotes IFN-β, IL-1α, and IL-1β levels, dampens autophagy, and facilitates intracellular Mtb survival. To our knowledge, this is the first study providing exhaustive information on relative and quantitative changes in the global phosphoproteome profile of host macrophages that can be further explored in designing novel anti-TB drug targets. The peptide identification and MS/MS spectra have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013171.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory of Mycobacterial Genetics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.,Symbiosis School of Biomedical Sciences, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
| | - C Korin Bullen
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Renu Goel
- Laboratory of Mycobacterial Genetics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Alok Kumar Singh
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Monali Praharaj
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Preeti Thakur
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Nisheeth Agarwal
- Laboratory of Mycobacterial Genetics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
16
|
Bacterial glycans and their interactions with lectins in the innate immune system. Biochem Soc Trans 2020; 47:1569-1579. [PMID: 31724699 DOI: 10.1042/bst20170410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Bacterial surfaces are rich in glycoconjugates that are mainly present in their outer layers and are of great importance for their interaction with the host innate immune system. The innate immune system is the first barrier against infection and recognizes pathogens via conserved pattern recognition receptors (PRRs). Lectins expressed by innate immune cells represent an important class of PRRs characterized by their ability to recognize carbohydrates. Among lectins in innate immunity, there are three major classes including the galectins, siglecs, and C-type lectin receptors. These lectins may contribute to initial recognition of bacterial glycans, thus providing an early defence mechanism against bacterial infections, but they may also be exploited by bacteria to escape immune responses. In this review, we will first exemplify bacterial glycosylation systems; we will then describe modes of recognition of bacterial glycans by lectins in innate immunity and, finally, we will briefly highlight how bacteria have found ways to exploit these interactions to evade immune recognition.
Collapse
|
17
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|