1
|
Haj-Khlifa A, Aziz F, Tastift MA, Sellami S, Rais H, Hammoud M, Fdil N, Kissani N, Gamrani H, Bouyatas MM. Ameliorative effect of Ononis natrix against chronic lead poisoning in mice: neurobehavioral, biochemical, and histological study. Biol Trace Elem Res 2024:10.1007/s12011-024-04142-3. [PMID: 38472511 DOI: 10.1007/s12011-024-04142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Lead (Pb) is one of the most common heavy metals with toxicological effects on many tissues in humans as well as animals. In order to counteract the toxic effects of this metal, the administration of synthetic or natural antioxidants is thus required. The aim of this study was to examine the beneficial effect of the aqueous extract of Ononis natrix (AEON) against lead acetate-induced damage from a behavioral, biochemical, and histological point of view. Forty-eight male mice were divided into four equal groups: Ctr (control); Pb (lead acetate 1g/l); Pb + On 100 mg/kg (lead acetate 1 g/l + AEON 100 mg/kg); Pb + On 500 mg/kg (lead acetate 1 g/l + AEON 500 mg/kg). AEON was administered orally from day 21 after the start of lead exposure up to the end of the experiment. The results revealed that lead induced behavioral disorders, increased serum levels of liver markers (AST, ALT, and bilirubin), as well as kidney markers (urea and creatinine). At the same time, levels of thiobarbituric acid reactive substances (TBARS) and glutathione peroxidase (GPx) increased significantly. Moreover, Pb caused structural changes in the liver and kidneys of Pb-exposed mice. However, AEON administration significantly improved all lead-induced brain, liver, and kidney dysfunctions. Our results suggest that AEON could be a source of molecules with therapeutic potential against brain, liver, and kidney abnormalities caused by lead exposure.
Collapse
Affiliation(s)
- Asmaa Haj-Khlifa
- Neuroscience, Pharmacology and Environment Unit (ENPE), Departement of Biology, Faculty of Sciences Semlalia,, Cadi Ayyad University, 40000, Marrakech, Morocco
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, 2390, 40000, Marrakech, BP, Morocco
| | - Maroua Ait Tastift
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources, Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince Moulay Abdellah, 40000, Marrakech, BP 2390, Morocco
| | | | - Hanane Rais
- Mohammed VI University Hospital, Marrakech, Morocco
- Laboratory of Immunohistochemistry, Anatomic Pathology Department, University Hospital Center (CHU) Mohammed VI, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Miloud Hammoud
- Metabolics Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayyad University, Sidi Abbad, 40000, Marrakech, BP, Morocco
| | - Naima Fdil
- Metabolics Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayyad University, Sidi Abbad, 40000, Marrakech, BP, Morocco
| | - Najib Kissani
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Halima Gamrani
- Neuroscience, Pharmacology and Environment Unit (ENPE), Departement of Biology, Faculty of Sciences Semlalia,, Cadi Ayyad University, 40000, Marrakech, Morocco.
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
| | - Moulay Mustapha Bouyatas
- Neuroscience, Pharmacology and Environment Unit (ENPE), Departement of Biology, Faculty of Sciences Semlalia,, Cadi Ayyad University, 40000, Marrakech, Morocco.
- Department of Biology, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco.
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
2
|
Ko CM, Then CK, Kuo YM, Lin YK, Shen SC. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int J Mol Sci 2023; 24:15828. [PMID: 37958813 PMCID: PMC10649088 DOI: 10.3390/ijms242115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 μm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 μg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.
Collapse
Affiliation(s)
- Chin-Meng Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Chee-Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ming Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
- Department of Dermatology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master and Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Melebary SJ, Elnaggar MH. Impact of Moringa oleifera leaf extract in reducing the effect of lead acetate toxicity in mice. Saudi J Biol Sci 2023; 30:103507. [PMID: 36458096 PMCID: PMC9706165 DOI: 10.1016/j.sjbs.2022.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to assess the impact of Moringa oleifera (M. oleifera) leaf extract against the poisoning of lead acetate; therefore, sixty mice were allocated into 4 groups with 15 in each, as G1) blank control, G2) supplied with 300 mg/kg body weight (BWT). M. oleifera extract, G3) supplied with 60 mg/kg BWT of lead acetate [Pb(C2H3O2)2], and G4) supplied with extract of M. oleifera + lead acetate. The liver enzymes were elevated post-treatment with Pb(C2H3O2)2, which then lowered to almost the normal level when M. oleifera was supplied to mice previously treated with Pb(C2H3O2)2. The values in (G3) decreased when compared with G1 (92.33 ± 12.99, 21.67 ± 2.91 and 98.00 ± 13.20 U/L, respectively. Also, the cholesterol and low-density lipoprotein levels were elevated post-supplementation with M. oleifera and Pb(C2H3O2)2. Pb(C2H3O2)2 improves the lipid profile, whereas M. oleifera pretreatment reduced cholesterol (CHOL), high density low cholesterol (HDL-c), and low-density low cholesterol (LDL-c) levels in animals fed Pb(C2H3O2)2. Pb(C2H3O2)2 elevates the total protein but lowers the total bilirubin and triglycerides post M. oleifera treatment and Pb(C2H3O2)2 when contrasted with G1. The protective effect of M. oleifera was caused by the fact that it lowered triglycerides (TG) and total bilirubin (TBIL) and raised total protein (TP). After administration of Pb(C2H3O2)2, the histological examination revealed alterations in the hepatocytes and kidneys of G3. Also, the liver and kidney cells in mice supplied with M. oleifera after Pb(C2H3O2)2 poisoning recovered. In conclusion, Pb is toxic, and the usage of M. oleifera partially enhances the negative impacts induced by Pb(C2H3O2)2.
Collapse
Affiliation(s)
- Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Moustafa H.R. Elnaggar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Kolawole TA, Asiwe JN, Buduburisi BR, Akintade VA, Adebayo OG, Ojetola AA, Dapper DV. Cabbage (Brassica oleracea) mitigates lead (II) acetate-induced testicular dysfunction in Wistar rats via up-regulation of Bcl-2 protein expression, pituitary-testicular hormonal axis and down-regulation of oxido-inflammatory reactions. Andrologia 2022; 54:e14476. [PMID: 35598098 DOI: 10.1111/and.14476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Oxido-inflammatory stress has been involved in lead-induced testicular dysfunction and plants rich in anti-oxidants has been reported to be beneficial in combating heavy metal poisonings in animal studies. However, cabbage juice protective effect on lead-induced testicular dysfunction was investigated in this study. Twenty male Wistar rats were selected into four (n = 5) groups and given distilled water (1 ml/100 g body weight), lead acetate (25 mg/kg body weight), cabbage juice (1 ml/100 g body weight), and lead acetate with cabbage juice, respectively. All treatments were administered orally for 28 days. Sperm count, motility, viability, testosterone, luteinising hormone and follicle-stimulating hormone, testicular Bcl-2 expression, and enzymatic anti-oxidant capabilities were considerably (p < 0.05) decrease in lead-treated animals. However, cabbage juice significantly (p < 0.05) elevated these parameters. Testicular malondialdehyde, tumour necrosis factor-α, nitric oxide and interleukin-6 was elevated by lead acetate. When comparing cabbage juice-treated animals to lead-treated animals, all of these parameters were considerably (p < 0.05) downregulated in cabbage juice-treated animals. Following lead administration, the testes' histomorphological alterations were not totally recovered despite therapy with cabbage juice. Conclusively, this study suggest that cabbage juice mitigates testicular dysfunction associated with lead exposure via its anti-oxidant, anti-inflammatory, anti-apoptotic and androgenic properties.
Collapse
Affiliation(s)
| | - Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | | | | | - Olusegun Gafar Adebayo
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
5
|
Gluhcheva Y, Pashkunova-Martic I, Schaier M, Vladov I, Stoykova S, Petrova E, Pavlova E, Dorkov P, Helbich TH, Keppler B, Ivanova J. Comparative Effects of Deferiprone and Salinomycin on Lead-Induced Disturbance in the Homeostasis of Intrarenal Essential Elements in Mice. Int J Mol Sci 2022; 23:ijms23084368. [PMID: 35457186 PMCID: PMC9027580 DOI: 10.3390/ijms23084368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)—untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)—mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group—Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group—Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone.
Collapse
Affiliation(s)
- Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Waehringer Guertel, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, University of Vienna, 38 Waehringer Strasse, 1090 Vienna, Austria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Peter Dorkov
- Chemistry Department, Research and Development, BIOVET JSC, 39 Peter Rakov Street, 4550 Peshtera, Bulgaria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Waehringer Guertel, 1090 Vienna, Austria
| | - Bernhard Keppler
- Institute of Inorganic Chemistry, University of Vienna, 42 Waehringer Strasse, 1090 Vienna, Austria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1 Kozjak Street, 1407 Sofia, Bulgaria
| |
Collapse
|
6
|
Tamegart L, Abbaoui A, Oukhrib M, Bouyatas MM, Gamrani H. Physiological Alterations of Subchronic Lead Exposure Induced Degeneration of Epithelial Cells in Proximal Tubules and the Remedial Effect of Curcumin-III in Meriones shawi: a Possible Link with Vasopressin Release. Biol Trace Elem Res 2022; 200:1303-1311. [PMID: 34176078 DOI: 10.1007/s12011-021-02751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouly Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
- Neurosciences, Pharmacology and Environment Unit, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Avenue My Abdellah, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
7
|
Asiwe JN, Kolawole TA, Anachuna KK, Ebuwa EI, Nwogueze BC, Eruotor H, Igbokwe V. Cabbage juice protect against lead-induced liver and kidney damage in male Wistar rat. Biomarkers 2022; 27:151-158. [PMID: 34974788 DOI: 10.1080/1354750x.2021.2022210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIM Liver and kidney has been implicated in Lead toxicity and this has been linked to oxidative damage. On the other hand, cabbage is one of the widely consumed vegetables with a plethora of health benefits. This present study investigated the protective effect of cabbage juice on lead-induced toxicity in male Wistar rats. METHODS Twenty male Wistar rats were randomly divided into four groups (n = 5) and were treated with distilled water (1 ml/100 g b.wt), Lead acetate (25 mg/kg b.wt), cabbage juice (1 ml/100 g b.wt) and Lead acetate plus cabbage juice respectively. All treatments were administered orally for 28 days. Following euthanasia, blood was collected and serum decanted for biochemical assay and liver and kidney tissues were harvested, prepared for antioxidant activity and histological study. RESULT Cabbage juice significantly attenuated Lead-induced liver and kidney dysfunction by lowering serum concentrations of urea, creatinine, ALP, AST and ALT. Antioxidants (SOD, CAT, GSH) were also upregulated in liver and kidney tissues. Cabbage juice restored the histoarchitectural changes caused by lead intoxication. CONCLUSION Cabbage juice consumption protected the liver and kidney against lead-induced toxicity by enhancing in vivo anti-oxidant defense system.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | - Harrison Eruotor
- Department of Biochemistry, University of Port-Harcourt, Port-Harcourt, Nigeria
| | - Vincent Igbokwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
8
|
Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su14010161] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heavy metals play an important role in the homeostasis of living cells. However, these elements induce several adverse environmental effects and toxicities, and therefore seriously affect living cells and organisms. In recent years, some heavy metal pollutants have been reported to cause harmful effects on crop quality, and thus affect both food security and human health. For example, chromium, cadmium, copper, lead, and mercury were detected in natural foods. Evidence suggests that these elements are environmental contaminants in natural foods. Consequently, this review highlights the risks of heavy metal contamination of the soil and food crops, and their impact on human health. The data were retrieved from different databases such as Science Direct, PubMed, Google scholar, and the Directory of Open Access Journals. Results show that vegetable and fruit crops grown in polluted soil accumulate higher levels of heavy metals than crops grown in unpolluted soil. Moreover, heavy metals in water, air, and soil can reduce the benefits of eating fruits and vegetables. A healthy diet requires a rational consumption of foods. Physical, chemical, and biological processes have been developed to reduce heavy metal concentration and bioavailability to reduce heavy metal aggregation in the ecosystem. However, mechanisms by which these heavy metals exhibit their action on human health are not well elucidated. In addition, the positive and negative effects of heavy metals are not very well established, suggesting the need for further investigation.
Collapse
|
9
|
Majumder AK, Al Nayeem A, Islam M, Akter MM, Carter WS. Critical Review of Lead Pollution in Bangladesh. J Health Pollut 2021; 11:210902. [PMID: 34434594 PMCID: PMC8383795 DOI: 10.5696/2156-9614-11.31.210902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Lead (Pb) poses a severe threat to human health and the environment. Worldwide Pb production and consumption have significantly increased along with unplanned industrialization and urbanization, lead smelting, and lead-acid battery processing. The improper management of Pb-containing elements is responsible for Pb pollution. Lead's persistence in nature and bioaccumulation in the food chain can lead to adverse health impacts. OBJECTIVES The present study aims to describe Pb contaminated sites in Bangladesh and Pb concentration in the atmosphere, water, sediments, soil, vegetables, fish, and other foods in Bangladesh. METHODS The present study searched a total of 128 peer-reviewed articles based on a predefined set of criteria (keywords, peer-reviewed journals, and indexing in Scopus, Science Direct, Web of Science, Springer, PubMed, Directory of Open Access Journals (DOAJ), and Bangladesh Journals Online (BanglaJOL) and exclusion criteria (predatory journal and absence of full text in English) and finally selected 63 articles (58 research articles and five (5) reports). The relevant findings on Pb exposure, sources, routes, diet, and impacts in Bangladesh were combined and presented. RESULTS The reviewed studies identified 175 Pb contaminated sites through soil sample assessment in Bangladesh. The study determined Pb concentrations in air (0.09-376.58 μg/m3, mean 21.31 μg/m3), river water (0.0009-18.7 mg/l, mean 1.07 mg/l), river sediments (4.9-69.75 mg/kg, mean 32.08 mg/kg), fish (0.018-30.8 mg/kg, mean 5.01 mg/kg), soil (7.3-445 mg/kg, mean 90.34 mg/kg), vegetables (0.2-22.09 mg/kg, mean 4.33 mg/kg) and diet items (0.001-413.9 mg/kg, mean 43.22 mg/kg) of which 38.8%, 27.8%, 54.5%, 68.8%, 9.7% and 100% of samples, respectively, exceeded related World Health Organization (WHO), Food and Agriculture Organization (FAO), United States Environmental Protection Agency (USEPA) and Bangladesh Standard Testing Institution (BSTI) guidelines. The present study found that industrial soils are severely polluted with Pb (7.3-445 mg/kg) in Bangladesh. A high Pb concentration has been found in fish muscle and foods, including leafy and non-leafy vegetables collected from different places in Bangladesh. CONCLUSIONS Lead-contaminated foods can enter the human body through dietary intake and consequently lead to long-term adverse health effects. This study may help policymakers to formulate national policies with effective mitigation plans to combat the adverse health impacts of Pb in Bangladesh. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Ahmad Kamruzzaman Majumder
- Center for Atmospheric Pollution Studies (CAPS), Department of Environmental Science, Stamford University Bangladesh
| | - Abdullah Al Nayeem
- Center for Atmospheric Pollution Studies (CAPS), Department of Environmental Science, Stamford University Bangladesh
| | - Mahmuda Islam
- Center for Atmospheric Pollution Studies (CAPS), Department of Environmental Science, Stamford University Bangladesh
| | - Mohammed Mahadi Akter
- Center for Atmospheric Pollution Studies (CAPS), Department of Environmental Science, Stamford University Bangladesh
| | - William S. Carter
- Center for Atmospheric Pollution Studies (CAPS), Department of Environmental Science, Stamford University Bangladesh
| |
Collapse
|
10
|
Ajarem JS, Hegazy AK, Allam GA, Allam AA, Maodaa SN, Mahmoud AM. Effect of Visnagin on Altered Steroidogenesis and Spermatogenesis, and Testicular Injury Induced by the Heavy Metal Lead. Comb Chem High Throughput Screen 2021; 24:758-766. [PMID: 32957877 DOI: 10.2174/1386207323999200918124639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lead (Pb) is an environmental pollutant causing serious health problems, including impairment of reproduction. Visnagin (VIS) is a furanochromone with promising antioxidant and anti-inflammatory effects; however, its protective efficacy against Pb toxicity has not been investigated. OBJECTIVE This study evaluated the protective effect of VIS on Pb reproductive toxicity, impaired steroidogenesis and spermatogenesis, oxidative stress and inflammation. METHODS Rats received VIS (30 or 60 mg/kg) and 50 mg/kg lead acetate for 3 weeks and blood and testes samples were collected. RESULTS Pb intoxication impaired the pituitary-testicular axis (PTA) manifested by the decreased serum levels of gonadotropins and testosterone. Pb decreased sperm count, motility and viability, increased sperm abnormalities, and downregulated the steroidogenesis markers StAR, CYP17A1, 3β-HSD and 17β-HSD in the testis of rats. VIS significantly increased serum gonadotropins and testosterone, alleviated sperm parameters and upregulated steroidogenesis. In addition, VIS decreased pro-inflammatory cytokines, testicular lipid peroxidation and DNA fragmentation, downregulated Bax, and enhanced antioxidants and Bcl-2. CONCLUSION These results demonstrate the protective effect of VIS against Pb reproductive toxicity in rats. VIS improved serum gonadotropins and testosterone, enhanced steroidogenesis and spermatogenesis, and attenuated oxidative injury, inflammation and apoptosis. Therefore, VIS is a promising candidate for the protection against Pb-induced reproduction impairment.
Collapse
Affiliation(s)
- Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad K Hegazy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Gamal A Allam
- Immunology Section, Department of Microbiology, College of Medicine, Taif University, Taif 21974, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
11
|
Tamegart L, Abbaoui A, El Khiat A, Bouyatas MM, Gamrani H. Lead (Pb) exposure induces physiological alterations in the serotoninergic and vasopressin systems causing anxiogenic-like behavior in Meriones shawi: Assessment of BDMC as a neuroprotective compound for Pb-neurotoxicity and kidney damages. J Trace Elem Med Biol 2021; 65:126722. [PMID: 33524682 DOI: 10.1016/j.jtemb.2021.126722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have shown that lead (Pb) is one of hazardous heavy metals with various adverse effects on human health including mental health; Pb can induce psychiatric disorders like anxiety. In the present work, we examined the potential of bisdemethoxycurcumin (BDMC) as a neuroprotective agent against lead induced anxiety inMeriones shawi (M. shawi). METHODS We asses, the potential of three consecutive day exposure to Pb (25 mg/kg body weight) in inducing anxiogenic effect, serotoninergic and vasopressinergic disruptions inM. shawi. This was done using neurobehavioral tests (open field, elevated plus maze), immunohistochemestry by anti-serotonin (5-HT), and anti-vasopressin (AVP) antibodies. We also measured the possible restorative potential of BDMC (30 mg/kg body weight), delivered by oral gavage. After that, a biochemical and histopathological studies were done. RESULTS Our results showed that lead exposure for three consecutive days increases significantly the 5-HT-immunoreactivity in dorsal raphe nucleus (DRN) accompanied with a significant enhancement of AVP-immunoreactivity in the cell bodies and fibers in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus. In the collecting tube, AVP binds to the V2 receptor of the epithelial cells and increases the water permeability. Our results showed clearly the epithelial cells degeneration after lead exposure, then we suggest that the increased AVP could be a response to the hydric balance disrupted after degenerative effect of lead exposure on epithelial cells. BDMC produced an anxiolytic effect in meriones. Moreover, it restored 5-HT and AVP immunoreactivity within studying nuclei. The biochemical and histopathological studies showed that Pb induced renal damages. In addition, BDMC restored the renal alterations. CONCLUSION According to the obtained results, we suggest new pharmacological effects of BDMC; while it has an anxiolytic effect against Pb-induced anxiety by working on serotoninergic and vasopressinergic systems with an obvious restoration of the renal injuries induced by lead exposure.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdelaati El Khiat
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Moulay Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco; Cadi Ayyad University, Multidisciplinary Faculty of Safi, Department of Biology, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
12
|
Alotaibi MF, Al-Joufi F, Abou Seif HS, Alzoghaibi MA, Djouhri L, Ahmeda AF, Mahmoud AM. Umbelliferone Inhibits Spermatogenic Defects and Testicular Injury in Lead-Intoxicated Rats by Suppressing Oxidative Stress and Inflammation, and Improving Nrf2/HO-1 Signaling. Drug Des Devel Ther 2020; 14:4003-4019. [PMID: 33061305 PMCID: PMC7532898 DOI: 10.2147/dddt.s265636] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Lead (Pb) is an environmental toxic metal that threatens human health. Umbelliferone (UMB) is a coumarin with known medicinal and protective properties against cytotoxicity. This study explored the ameliorative effect of UMB against Pb-induced testicular toxicity in rats, focusing on steroidogenesis, oxidative stress and inflammation. MATERIALS AND METHODS Rats received lead acetate (50 mg/kg) and UMB (25, 50 or 100 mg/kg) via oral gavage for 4 weeks. RESULTS Pb-intoxicated rats exhibited testicular tissue injury and decreased serum levels of LH, FSH and testosterone. The count, viability, motility and normal morphology of the sperms were decreased accompanied with downregulated steroidogenesis markers in Pb-induced group. UMB prevented testicular injury, increased serum levels of LH, FSH and testosterone, upregulated steroidogenesis markers and improved the semen quality. In addition, UMB attenuated oxidative stress and oxidative DNA damage, downregulated the expression of pro-inflammatory mediators and Bax, boosted antioxidant defenses and Bcl-2, and upregulated Nrf2/HO-1 signaling in Pb-intoxicated rats. CONCLUSION UMB prevents Pb-induced testicular injury by suppressing oxidative damage, inflammation and cell death, and boosting antioxidant defenses, Nrf2/HO-1 signaling and pituitary-gonadal axis. Thus, UMB may represent a protective and cost-effective agent against Pb testicular toxicity, pending further investigations to elucidate other underlying mechanisms.
Collapse
Affiliation(s)
- Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Fakhria Al-Joufi
- Department of Pharmacology, Faculty of Pharmacy, Jouf University, Sakaka 2014, Saudi Arabia
| | - Howida S Abou Seif
- Medical Physiology Department, Medical Research Branch, National Research Centre, Giza 12622, Egypt
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Laiche Djouhri
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha 2713, Qatar
| | - Ahmad F Ahmeda
- College of Medicine, Ajman University, Ajman 346, United Arab Emirates
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
13
|
Mani MS, Joshi MB, Shetty RR, DSouza VL, Swathi M, Kabekkodu SP, Dsouza HS. Lead exposure induces metabolic reprogramming in rat models. Toxicol Lett 2020; 335:11-27. [PMID: 32949623 DOI: 10.1016/j.toxlet.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022]
Abstract
Lead is a toxin of great public health concern affecting the young and aging population. Several factors such as age, gender, lifestyle, dose, and genetic makeup result in interindividual variations to lead toxicity mainly due to variations in metabolic consequences. Hence, the present study aimed to examine dose-dependent lead-induced systemic changes in metabolism using rat model by administering specific doses of lead such as 10 (low lead; L-Pb), 50 (moderate lead; M-Pb), and 100 mg/kg (high lead; H-Pb) body weight for a period of one month. Biochemical and haematological analysis revealed that H-Pb was associated with low body weight and feed efficiency, low total protein levels (p ≤ 0.05), high blood lead (Pb-B) levels (p ≤ 0.001), low ALAD (δ-aminolevulinate dehydratase) activity (p ≤ 0.0001), high creatinine (p ≤ 0.0001) and blood urea nitrogen (BUN) (p ≤ 0.01) levels, elevated RBC and WBC counts, reduced haemoglobin and blood cell indices compared to control. Spatial learning and memory test revealed that H-Pb exposed animals presented high latency to the target quadrant and escape platform compared to other groups indicating H-Pb alters cognition function in rats. Histopathological changes were observed in liver and kidney as they are the main target organs of lead toxicity. LC-MS analysis further revealed that Butyryl-L-carnitine (p ≤ 0.01) and Ganglioside GD2 (d18:0/20:0) (p ≤ 0.05) levels were significantly reduced in H-Pb group compared to all groups. Further, pathway enrichment analysis revealed abundance and significantly modulated metabolites associated with oxidative stress pathways. The present study is the first in vivo model of dose-dependent lead exposure for serum metabolite profiling.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Manjunath B Joshi
- Department of Ageing, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Rashmi R Shetty
- Department of Pathology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Venzil Lavie DSouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - M Swathi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Shama Prasada Kabekkodu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
14
|
Udefa AL, Amama EA, Archibong EA, Nwangwa JN, Adama S, Inyang VU, Inyaka GUU, Aju GJ, Okpa S, Inah IO. Antioxidant, anti-inflammatory and anti-apoptotic effects of hydro-ethanolic extract of Cyperus esculentus L. (tigernut) on lead acetate-induced testicular dysfunction in Wistar rats. Biomed Pharmacother 2020; 129:110491. [PMID: 32768970 DOI: 10.1016/j.biopha.2020.110491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
AIM Lead acetate impairs testicular function by enhancing testicular oxidative stress and apoptosis. Cyperus esculentus possesses antioxidants and has shown great improvement of testicular function. This study investigated the protective effect of hydro-ethanolic extract of Cyperus esculentus on lead acetate-induced testicular dysfunction in Wistar rats. MATERIALS AND METHODS Twenty-five male Wistar rats (180-195 g) were randomly divided into 5 groups (n = 5) namely: Normal control (NC), Lead control (PbC) (20 mg/kg b.w. i.p.), C. esculentus-treated (CE) (500 mg/kg b.w p.o.), Pb + CE(500) (20 mg/kg of lead and 500 mg/kg of extract) and Pb + CE(1000) (20 mg/kg of lead and 1000 mg/kg of extract). Administration lasted for 21 days. RESULTS Sperm count, motility, viability, serum testosterone and follicle stimulating hormone, Johnsen's score, Leydig cell count, Sertoli cell count, testicular testosterone, B-cell lymphoma protein-2 (Bcl-2), steroidogenic acute regulatory protein, cytochrome P450 A1, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, enzymatic antioxidant activities and total antioxidant capacity were significantly (p < 0.05) decreased in PbC compared with NC. These parameters however increased significantly (p < 0.05) in Pb + CE(500) and Pb + CE(1000) compared with PbC. Lead acetate upregulated (p < 0.05) testicular malondialdehyde, nitric oxide, glucose, lactate, lactate dehydrogenase, C-reactive protein, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, Bcl-2 associated X (Bax), Bax/Bcl-2 and cleaved caspase-3 levels. All these parameters were downregulated (p < 0.05) in Pb + CE(500) and Pb + CE(1000) in comparison with PbC. CONCLUSION C. esculentus exhibited a dose-dependent mitigation of lead acetate-induced testicular dysfunction in Wistar rats via its antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Augustine Lishilinimye Udefa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria.
| | - Ernest Atelhe Amama
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Efiok Aniekan Archibong
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Justina Nwandimma Nwangwa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Sebastian Adama
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Vincent Ukam Inyang
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Gladys Unye-Uti Inyaka
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Glory Jean Aju
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Sunday Okpa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Inah Onete Inah
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
15
|
Cid FD, Fernández NC, Pérez-Chaca MV, Pardo R, Caviedes-Vidal E, Chediack JG. House sparrow biomarkers as lead pollution bioindicators. Evaluation of dose and exposition length on hematological and oxidative stress parameters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:154-161. [PMID: 29459165 DOI: 10.1016/j.ecoenv.2018.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
House sparrows (Passer domesticus) have been proposed as a key ecological indicator of urban pollution. Remarkably, we lack knowledge about the physiological effects of lead on this bird species. Therefore, this study was aimed to evaluate the effect of Pb on several physiological parameters in house sparrows exposed to environmental Pb concentrations. In a first experiment, birds were exposed to Pb sub-lethal doses (from 1.3 to 14.0 µg of Pb/g animal/day) during 5 days, which resulted in a dose response increase of blood Pb levels and decrease of blood ALAD activity. However, at the higher doses tested (> 7 μg of Pb/g animal/day) the blood ALAD activity inhibition (~82%) remained constant. Hematocrit and hemoglobin were significantly reduced only at the highest-doses, and the stress indicator, heterophils to lymphocyte (H/L) ratio, did not show apparent changes. In a second experiment, house sparrows were exposed to Pb in drinking water (12.3 ppm) during either 15 or 30 days. Pb concentration used in this study was enough to produce blood lead levels equivalents to those found recently in house sparrows inhabiting urban areas, reduced blood ALAD activity and inversion of the H/L ratio. Decreasing blood ALAD activities were correlated with increasing blood Pb levels. In addition, Pb exposure produced modification in the levels of hepatic antioxidant enzymes, increased GST activity and decreased CAT activity, without lipid peroxidation. In conclusion, our results suggest that blood ALAD activity is a reliable and sensitive biomarker for environmental Pb exposure in house sparrows, additionally chronic exposure produce physiological stress (H/L inversion) and small changes in antioxidant enzyme activity. Finally, this specie could be considered a bioindicator for monitoring the urban Pb contamination.
Collapse
Affiliation(s)
- Fabricio D Cid
- Laboratory of Biology "Prof. E. Caviedes Codelia", Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina; Laboratory of Integrative Biology, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Centro Científico Tecnológico San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; Department of Biochemistry and Biological Sciences, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Noelia C Fernández
- Laboratory of Biology "Prof. E. Caviedes Codelia", Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina
| | - María V Pérez-Chaca
- Department of Biochemistry and Biological Sciences, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Laboratory of Morphophysiology, IMIBIO-SL, CONICET, Argentina
| | - Rafael Pardo
- Department of Analytical Chemistry, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain
| | - Enrique Caviedes-Vidal
- Laboratory of Biology "Prof. E. Caviedes Codelia", Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina; Laboratory of Integrative Biology, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Centro Científico Tecnológico San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; Department of Biochemistry and Biological Sciences, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina; Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Juan G Chediack
- Laboratory of Biology "Prof. E. Caviedes Codelia", Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina; Laboratory of Integrative Biology, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Centro Científico Tecnológico San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; Department of Biochemistry and Biological Sciences, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
16
|
Lead Affects Vitamin D Metabolism in Rats. Nutrients 2018; 10:nu10030264. [PMID: 29495376 PMCID: PMC5872682 DOI: 10.3390/nu10030264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/23/2022] Open
Abstract
A negative association between blood lead and vitamin D concentrations has been reported, however, experimental data on the effect of lead (Pb) on vitamin D metabolism is scarce. We investigated the effects of Pb on serum vitamin D metabolites, vitamin D activating enzymes and vitamin D receptor (VDR) in rats. Newborn Wistar rat pups were exposed to 0.2% Pb-acetate via their dams’ drinking water from post-natal day (PND) 1 to 21 and directly in drinking water until PND30. Serum 25-hydroxyvitamin D was analyzed with LC-MS/MS and 1,25-dihydroxyvitamin D with an immunoassay. Tissue expression of vitamin D activating enzymes and VDR were measured by Western blot and immunohistochemistry. Serum 25-hydroxyvitamin D was significantly decreased at both PND21 and PND30, whereas 1,25-dihydroxyvitamin D was decreased (p < 0.05) only at PND21 in the Pb-exposed rats. Expression of renal 1-α-hydroxylase was decreased by Pb only at PND21 (p < 0.05) but the brain 1-α-hydroxylase was not affected. Hepatic 25-hydroxylase expression was significantly decreased at PND21 but significantly increased at PND30 by Pb exposure. VDR expression in the brain was increased at both PND21 and PND30 (p < 0.05). These results suggest that Pb interferes with vitamin D metabolism by affecting the expression of its metabolizing enzymes.
Collapse
|
17
|
Ozkaya A, Sahin Z, Kuzu M, Saglam YS, Ozkaraca M, Uckun M, Yologlu E, Comakli V, Demirdag R, Yologlu S. Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats. Arch Physiol Biochem 2018; 124:80-87. [PMID: 28817314 DOI: 10.1080/13813455.2017.1364772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the effect of geraniol (50 mg/kg for 30 d), a natural antioxidant and repellent/antifeedant monoterpene, in a rat model of lead acetate-induced (500 ppm for 30 d) liver damage was evaluated. Hepatic malondialdehyde increased in the lead acetate group. Reduced glutathione unchanged, but glutathione S-transferase, glutathione reductase, as well as carboxylesterase activities decreased in geraniol, lead acetate and geraniol + lead acetate groups. 8-OhDG immunoreactivity, mononuclear cell infiltrations and hepatic lead concentration were lower in the geraniol + lead acetate group than the lead acetate group. Serum aspartate aminotransferase and alanine aminotransferase activities increased in the Pb acetate group. In conclusion, lead acetate causes oxidative and toxic damage in the liver and this effect can reduce with geraniol treatment. However, we first observed that lead acetate, as well as geraniol, can affect liver carboxylesterase activity.
Collapse
Affiliation(s)
- Ahmet Ozkaya
- a Department of Chemistry, Faculty of Science and Art , Adiyaman University , Adiyaman , Turkey
| | - Zafer Sahin
- b Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences , Necmettin Erbakan University , Konya , Turkey
| | - Muslum Kuzu
- c Faculty of Pharmacy , Agri Ibrahim Cecen University , Agri , Turkey
| | - Yavuz Selim Saglam
- d Department of Pathology, Faculty of Veterinary Medicine , Ataturk University , Erzurum , Turkey
| | - Mustafa Ozkaraca
- d Department of Pathology, Faculty of Veterinary Medicine , Ataturk University , Erzurum , Turkey
| | - Mirac Uckun
- e Department of Food Engineering, Faculty of Engineering , Adiyaman University , Adiyaman , Turkey
| | - Ertan Yologlu
- f Department of Science Education, Faculty of Education , Adiyaman University , Adiyaman , Turkey
| | - Veysel Comakli
- g School of Health , Agri Ibrahim Cecen University , Agri , Turkey
| | - Ramazan Demirdag
- g School of Health , Agri Ibrahim Cecen University , Agri , Turkey
| | - Semra Yologlu
- a Department of Chemistry, Faculty of Science and Art , Adiyaman University , Adiyaman , Turkey
| |
Collapse
|
18
|
He X, Lin F, Li Y, Chen Y, Li J, Guo L, Han X, Song H. Effect of LA on the Growth and Development of the Main Organs in Female Mice. Biol Trace Elem Res 2017; 175:169-176. [PMID: 27246169 DOI: 10.1007/s12011-016-0757-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
Effects of lead acetate (LA) on the growth and development of major organs in female mice were studied. Female mice were divided randomly into four treatment groups and one control group. In treatment groups, mice were injected with different concentrations of LA solution every 2 days; whereas control-group mice received equal volumes of sterile normal saline. Body weight (BW) and symptoms were recorded every 2 days. After LA exposure, mice were executed by cervical dislocation and main organs (heart, liver, spleen, lung, kidney) collected for evaluation of morphologic and histologic changes. LA could greatly affect increases in BW, and BW decreased with increasing dose and time of exposure to LA. Compared with the control group, organ coefficients in treatment groups were of the order kidney and spleen > liver and lung > heart and demonstrated obvious dose-time effects. LA exposure could damage the heart, liver, spleen, lung, and kidney. Damage to the kidney and spleen was the most severe, followed by that to the liver, heart, and lung. Damage was aggravated with increasing doses and exposure time to LA in an obvious dose-time relationship; when LA dose was ≥20 mg/kg, the growth and development of mice were obviously inhibited. These results suggest that long-term exposure to low-dose LA can result in universal pathologic damage to mouse organs and that severity is dependent on the dose and duration of LA exposure.
Collapse
Affiliation(s)
- Xiuyuan He
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Feng Lin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Yongtao Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yuxia Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jing Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Linlin Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Xuelei Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Huan Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
19
|
Oyagbemi AA, Omobowale TO, Akinrinde AS, Saba AB, Ogunpolu BS, Daramola O. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1235-1243. [PMID: 24706517 DOI: 10.1002/tox.21994] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/16/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Removal of lead from the environment of man or otherwise, the movement of man from lead-contaminated areas has been employed as a means of abatement of the toxic effects of lead. Whether toxic effects in already-exposed individuals subside after lead withdrawal remains unanswered. To understand the reversibility of nephrotoxicity induced by lead acetate, male Wistar rats were orally exposed to 0.25, 0.5, and 1.0 mg/mL of lead acetate for 6 weeks. Activities of glutathione-s-transferase, catalase (CAT), superoxide dismutase (SOD) and the concentrations of hydrogen peroxide (H2 O2 ), and malondialdehyde increased significantly (p < 0.05) in a dose-dependent manner, whereas reduced glutathione (GSH) level and glutathione peroxidase activity were significantly reduced. The pattern of alterations in most of the oxidative stress and antioxidant parameters remained similar in rats from the withdrawal period, although CAT and SOD activities reduced, in contrast to their elevation during the exposure period. Serum creatinine levels were significantly elevated in both exposure and withdrawal experiments whereas serum blood urea nitrogen levels were not significantly different from the control in both exposure and withdrawal periods. The histological damage observed include multifocal areas of inflammation, disseminated tubular necrosis, and fatty infiltration of the kidney tubules both at exposure and withdrawal periods. The results suggest that lead acetate-induced nephrotoxicity by induction of oxidative stress and disruption of antioxidant. The aforementioned alterations were not reversed in the rats left to recover within the time course of study.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Departments of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Akinleye Stephen Akinrinde
- Departments of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Departments of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Oluwabusola Daramola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
20
|
Jia Q, Ha X, Yang Z, Hui L, Yang X. Hepatocyte growth factor protects human mesangial cells against apoptosis induced by lead damage. Biol Trace Elem Res 2014; 162:80-6. [PMID: 25154432 DOI: 10.1007/s12011-014-0103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 11/28/2022]
Abstract
Lead is a kind of nephrotoxic metal which frequently threats human health. Hepatocyte growth factor (HGF) is a multifunctional growth factor that protects cell apoptosis. In this study, human mesangial cells (HMCs) were treated with a single HGF dose of 20 and 40 μl/ml in order to investigate the effect of HGF on proliferation and apoptosis ability of HMCs induced by lead acetate. In HGF-treated group, HMCs were incubated with HGF (20, 40 μl/ml) half an hour prior to lead inducing. After lead-induced damage 48 h, the proliferation of HMCs was measured by MTT assay, and the apoptosis was assessed by flow cytometry. RT-PCR was used to detect the expression of P53, Bcl-2, Bax, and caspase-3 mRNA. The expression of Bax protein was measured by Western blot analysis. The results showed that HGF inhibits proliferation of HMCs induced lead acetate in a dose-dependent manner (P < 0.05). HGF significantly promoted the proliferation of HMCs, and flow cytometry revealed that HGF can inhibit apoptosis of HMCs. RT-PCR and Western blot showed that P53, Bax, and caspase-3 expression decreased, while Bcl-2 expression increased. HGF may afford a protection to HMCs against lead-induced damage.
Collapse
Affiliation(s)
- Qinghua Jia
- Experimental Center of Medicine, Lanzhou General Hospital of Lanzhou Military, People's Liberation Army, Key Laboratory of Stem Cells and Gene Drug of Gansu Province, 333 Southern Binhe Road, Lanzhou, 730050, China,
| | | | | | | | | |
Collapse
|
21
|
Han L, Zhou R, Kuang X, Feng X, Chen M, Shen J. Study on lead-induced activation of rat renal interstitial fibroblasts and the related mechanisms. Toxicol Mech Methods 2014; 24:713-8. [PMID: 25270974 DOI: 10.3109/15376516.2014.971138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Lead is a common industrial toxicant and has been proved to be associated with the kidney damage. OBJECTIVE To investigate the effect and mechanism of lead on expression of rat renal interstitial fibroblast activation related protein. MATERIALS AND METHODS The expression of activation related protein mRNA was measured by real-time PCR in the NRK/49F treated by lead acetate with different concentrations (0, 0.5, 1 and 2 µmol/L). The effects of lead acetate on the level of fibronectin (FN) and signal transduction factors (Smads protein) expression were observed by Western blot. RESULTS The mRNA expression of activation-related protein increased significantly after the cells were stimulated by lead acetate for 24 h. The lead acetate-treated group could upregulate the p-Smad2, p-Smad3 and FN protein expression compared with the control group. The level of Smad2/3 protein expression did not change in all groups, the expression of SnoN decreased significantly compared with the control group. DISCUSSION AND CONCLUSION Lead acetate could increase the mRNA expression of activation-related factors. It could promote inflammatory reaction induced by TGF-β via Smad signaling pathway. Lead acetate has the effect on inducing the renal fibrosis.
Collapse
Affiliation(s)
- Lin Han
- Department of Nephrology and
| | | | | | | | | | | |
Collapse
|
22
|
Ameliorating effects of garlic, calcium, and vitamin C on chronic lead toxicity in albino rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1765-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Jia Q, Ha X, Yang Z, Hui L, Yang X. Oxidative stress: a possible mechanism for lead-induced apoptosis and nephrotoxicity. Toxicol Mech Methods 2012; 22:705-10. [PMID: 22894711 DOI: 10.3109/15376516.2012.718811] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lead-induced nephrotoxicity is a human health hazard problem. In this study, Human mesangial cells (HMCs) were treated with different concentration of lead acetate (5, 10, 20 μmol/l) in order to investigate the oxidative stress and apoptotic changes. It was revealed that lead acetate could induce a progressive loss in HMCs viability together with a significant increase in the number of apoptotic cells using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium (MTT) assay and flow cytometry, respectively. The apoptotic morphological changes induced by lead exposure in HMCs were demonstrated by PI-Hochest33342 staining. A DNA laddering pattern in lead-treated cells was shown, which could indicate nuclear fragmentation. In addition, lead acetate significantly increased the levels of malondialehyde (MDA) content and lactate dehydrogenase (LDH) activity. Therefore, it might be concluded that lead could promote HMCs' oxidative stress and apoptosis, which may be the chief mechanisms of lead-induced nephrotoxicity.
Collapse
Affiliation(s)
- Qinghua Jia
- Experimental Center of Medicine, Lanzhou General Hospital of Lanzhou Military, People's Liberation Army, Key Laboratory of Stem Cells and Gene Drug of Gansu Province, 333 Southern Binhe Road, Lanzhou 730050, China.
| | | | | | | | | |
Collapse
|
24
|
Spirulina or dandelion-enriched diet of mothers alleviates lead-induced damages in brain and cerebellum of newborn rats. Food Chem Toxicol 2012; 50:2303-10. [DOI: 10.1016/j.fct.2012.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/23/2022]
|
25
|
Hu H, Shih R, Rothenberg S, Schwartz BS. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:455-62. [PMID: 17431499 PMCID: PMC1849918 DOI: 10.1289/ehp.9783] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/20/2006] [Indexed: 05/14/2023]
Abstract
We review several issues of broad relevance to the interpretation of epidemiologic evidence concerning the toxicity of lead in adults, particularly regarding cognitive function and the cardiovascular system, which are the subjects of two systematic reviews that are also part of this mini-monograph. Chief among the recent developments in methodologic advances has been the refinement of concepts and methods for measuring individual lead dose in terms of appreciating distinctions between recent versus cumulative doses and the use of biological markers to measure these parameters in epidemiologic studies of chronic disease. Attention is focused particularly on bone lead levels measured by K-shell X-ray fluorescence as a relatively new biological marker of cumulative dose that has been used in many recent epidemiologic studies to generate insights into lead's impact on cognition and risk of hypertension, as well as the alternative method of estimating cumulative dose using available repeated measures of blood lead to calculate an individual's cumulative blood lead index. We review the relevance and interpretation of these lead biomarkers in the context of the toxico-kinetics of lead. In addition, we also discuss methodologic challenges that arise in studies of occupationally and environmentally exposed subjects and those concerning race/ethnicity and socioeconomic status and other important covariates.
Collapse
Affiliation(s)
- Howard Hu
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
26
|
Engin AB, Tuzun D, Sahin G. Evaluation of pteridine metabolism in battery workers chronically exposed to lead. Hum Exp Toxicol 2006; 25:353-9. [PMID: 16898163 DOI: 10.1191/0960327106ht634oa] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Occupationally-exposed lead affects the neuromuscular junction and might cause disturbances in the locomotor activity. This study was undertaken to evaluate pteridine metabolism, in which neurotransmitters are synthesized in battery workers. Urinary neopterin, biopterin and creatinine were measured using high performance liquid chromatography. Serum neopterin concentrations were detected by enzyme-linked immunoassay. Blood dihydropteridine reductase (DHPR) activities and deltaaminolevulinic acid (delta-ALA) were measured spectrophotometrically. Blood and urinary lead were detected by atomic absorption spectroscopy. Significantly increased blood and urinary lead levels, urinary neopterin, biopterin and delta-ALA were found in workers, while DHPR activities were indifferent compared to control group. Urinary creatinine decreased. This is the first study to demonstrate that increased activity of the pteridine pathway results in the accumulation of the neurotransmitters that may be responsible for the neurological disorders.
Collapse
Affiliation(s)
- A B Engin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Hacettepe, Sihhiye, Ankara, Turkey
| | | | | |
Collapse
|