1
|
Chattopadhyay G, Ahmed S, Srilatha NS, Asok A, Varadarajan R. Ter-Seq: A high-throughput method to stabilize transient ternary complexes and measure associated kinetics. Protein Sci 2023; 32:e4514. [PMID: 36382921 PMCID: PMC9793979 DOI: 10.1002/pro.4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.
Collapse
Affiliation(s)
- Gopinath Chattopadhyay
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Institute for Evolutionary Biology and Environmental SciencesUniversity of ZurichZurichSwitzerland
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- St. Jude Children's Research HospitalTennesseeUSA
| | | | - Aparna Asok
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
2
|
Hudson LK, Constantine-Renna L, Thomas L, Moore C, Qian X, Garman K, Dunn JR, Denes TG. Genomic characterization and phylogenetic analysis of Salmonella enterica serovar Javiana. PeerJ 2020; 8:e10256. [PMID: 33240617 PMCID: PMC7682435 DOI: 10.7717/peerj.10256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Javiana is the fourth most reported serovar of laboratory-confirmed human Salmonella infections in the U.S. and in Tennessee (TN). Although Salmonella ser. Javiana is a common cause of human infection, the majority of cases are sporadic in nature rather than outbreak-associated. To better understand Salmonella ser. Javiana microbial population structure in TN, we completed a phylogenetic analysis of 111 Salmonella ser. Javiana clinical isolates from TN collected from Jan. 2017 to Oct. 2018. We identified mobile genetic elements and genes known to confer antibiotic resistance present in the isolates, and performed a pan-genome-wide association study (pan-GWAS) to compare gene content between clades identified in this study. The population structure of TN Salmonella ser. Javiana clinical isolates consisted of three genetic clades: TN clade I (n = 54), TN clade II (n = 4), and TN clade III (n = 48). Using a 5, 10, and 25 hqSNP distance threshold for cluster identification, nine, 12, and 10 potential epidemiologically-relevant clusters were identified, respectively. The majority of genes that were found to be over-represented in specific clades were located in mobile genetic element (MGE) regions, including genes encoding integrases and phage structures (91.5%). Additionally, a large portion of the over-represented genes from TN clade II (44.9%) were located on an 87.5 kb plasmid containing genes encoding a toxin/antitoxin system (ccdAB). Additionally, we completed phylogenetic analyses of global Salmonella ser. Javiana datasets to gain a broader insight into the population structure of this serovar. We found that the global phylogeny consisted of three major clades (one of which all of the TN isolates belonged to) and two cgMLST eBurstGroups (ceBGs) and that the branch length between the two Salmonella ser. Javiana ceBGs (1,423 allelic differences) was comparable to those from other serovars that have been reported as polyphyletic (929–2,850 allelic differences). This study demonstrates the population structure of TN and global Salmonella ser. Javiana isolates, a clinically important Salmonella serovar and can provide guidance for phylogenetic cluster analyses for public health surveillance and response.
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| | | | - Linda Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Katie Garman
- Tennessee Department of Health, Nashville, TN, United States of America
| | - John R Dunn
- Tennessee Department of Health, Nashville, TN, United States of America
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
3
|
Janczak M, Hyz K, Bukowski M, Lyzen R, Hydzik M, Wegrzyn G, Szalewska-Palasz A, Grudnik P, Dubin G, Wladyka B. Chromosomal localization of PemIK toxin-antitoxin system results in the loss of toxicity - Characterization of pemIK Sa1-Sp from Staphylococcus pseudintermedius. Microbiol Res 2020; 240:126529. [PMID: 32622987 DOI: 10.1016/j.micres.2020.126529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.
Collapse
Affiliation(s)
- Monika Janczak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hyz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Lyzen
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Gdansk, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Przemyslaw Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Collin F, Maxwell A. The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents. J Mol Biol 2019; 431:3400-3426. [PMID: 31181289 PMCID: PMC6722960 DOI: 10.1016/j.jmb.2019.05.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Microcin B17 (MccB17) is an antibacterial peptide produced by strains of Escherichia coli harboring the plasmid-borne mccB17 operon. MccB17 possesses many notable features. It is able to stabilize the transient DNA gyrase-DNA cleavage complex, a very efficient mode of action shared with the highly successful fluoroquinolone drugs. MccB17 stabilizes this complex by a distinct mechanism making it potentially valuable in the fight against bacterial antibiotic resistance. MccB17 was the first compound discovered from the thiazole/oxazole-modified microcins family and the linear azole-containing peptides; these ribosomal peptides are post-translationally modified to convert serine and cysteine residues into oxazole and thiazole rings. These chemical moieties are found in many other bioactive compounds like the vitamin thiamine, the anti-cancer drug bleomycin, the antibacterial sulfathiazole and the antiviral nitazoxanide. Therefore, the biosynthetic machinery that produces these azole rings is noteworthy as a general method to create bioactive compounds. Our knowledge of MccB17 now extends to many aspects of antibacterial-bacteria interactions: production, transport, interaction with its target, and resistance mechanisms; this knowledge has wide potential applicability. After a long time with limited progress on MccB17, recent publications have addressed critical aspects of MccB17 biosynthesis as well as an explosion in the discovery of new related compounds in the thiazole/oxazole-modified microcins/linear azole-containing peptides family. It is therefore timely to summarize the evidence gathered over more than 40 years about this still enigmatic molecule and place it in the wider context of antibacterials.
Collapse
Affiliation(s)
- Frederic Collin
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
5
|
Li YJ, Liu Y, Zhang Z, Chen XJ, Gong Y, Li YZ. A Post-segregational Killing Mechanism for Maintaining Plasmid PMF1 in Its Myxococcus fulvus Host. Front Cell Infect Microbiol 2018; 8:274. [PMID: 30131946 PMCID: PMC6091211 DOI: 10.3389/fcimb.2018.00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023] Open
Abstract
Although plasmids provide additional functions for cellular adaptation to the environment, they also create a metabolic burden, which causes the host cells to be less competitive with their siblings. Low-copy-number plasmids have thus evolved several mechanisms for their long-term maintenance in host cells. pMF1, discovered in Myxococcus fulvus 124B02, is the only endogenous autonomously replicated plasmid yet found in myxobacteria. Here we report that a post-segregational killing system, encoded by a co-transcriptional gene pair of pMF1.19 and pMF1.20, is involved in maintaining the pMF1 plasmid in its host cells. We demonstrate that the protein encoded by pMF1.20 is a new kind of nuclease, which is able to cleave DNA in vitro. The nuclease activity can be neutralized by the protein encoded by pMF1.19 through protein–protein interaction, suggesting that the protein is an immune protein for nuclease cleavage. We propose that the post-segregational killing mechanism of the nuclease toxin and immune protein pair encoded by pMF1.20 and pMF1.19 is helpful for the stable maintenance of pMF1 in M. fulvus cells.
Collapse
Affiliation(s)
- Ya-Jie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Jing Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Baliga C, Varadarajan R, Aghera N. Homodimeric Escherichia coli Toxin CcdB (Controller of Cell Division or Death B Protein) Folds via Parallel Pathways. Biochemistry 2016; 55:6019-6031. [PMID: 27696818 DOI: 10.1021/acs.biochem.6b00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of parallel pathways in the folding of proteins seems intuitive, yet remains controversial. We explore the folding kinetics of the homodimeric Escherichia coli toxin CcdB (Controller of Cell Division or Death B protein) using multiple optical probes and approaches. Kinetic studies performed as a function of protein and denaturant concentrations demonstrate that the folding of CcdB is a four-state process. The two intermediates populated during folding are present on parallel pathways. Both form by rapid association of the monomers in a diffusion limited manner and appear to be largely unstructured, as they are silent to the optical probes employed in the current study. The existence of parallel pathways is supported by the insensitivity of the amplitudes of the refolding kinetic phases to the different probes used in the study. More importantly, interrupted refolding studies and ligand binding studies clearly demonstrate that the native state forms in a biexponential manner, implying the presence of at least two pathways. Our studies indicate that the CcdA antitoxin binds only to the folded CcdB dimer and not to any earlier folding intermediates. Thus, despite being part of the same operon, the antitoxin does not appear to modulate the folding pathway of the toxin encoded by the downstream cistron. This study highlights the utility of ligand binding in distinguishing between sequential and parallel pathways in protein folding studies, while also providing insights into molecular interactions during folding in Type II toxin-antitoxin systems.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560 004, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| |
Collapse
|
8
|
Melničáková J, Bečárová Z, Makroczyová J, Barák I. Analysis of the Bacillus cereus SpoIIS antitoxin-toxin system reveals its three-component nature. Front Microbiol 2015; 6:808. [PMID: 26300872 PMCID: PMC4526809 DOI: 10.3389/fmicb.2015.00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death in bacteria is generally associated with two-component toxin-antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane-bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harboring an additional gene spoIISC. Its protein product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in B. cereus but also in other Bacilli containing a SpoIIS toxin-antitoxin system. In addition, we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible role of this multimerization for the protein's toxic function.
Collapse
Affiliation(s)
- Jana Melničáková
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Zuzana Bečárová
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Jana Makroczyová
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| |
Collapse
|
9
|
Chan WT, Balsa D, Espinosa M. One cannot rule them all: Are bacterial toxins-antitoxins druggable? FEMS Microbiol Rev 2015; 39:522-40. [PMID: 25796610 PMCID: PMC4487406 DOI: 10.1093/femsre/fuv002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 01/31/2023] Open
Abstract
Type II (proteic) toxin–antitoxin (TA) operons are widely spread in bacteria and archaea. They are organized as operons in which, usually, the antitoxin gene precedes the cognate toxin gene. The antitoxin generally acts as a transcriptional self-repressor, whereas the toxin acts as a co-repressor, both proteins constituting a harmless complex. When bacteria encounter a stressful environment, TAs are triggered. The antitoxin protein is unstable and will be degraded by host proteases, releasing the free toxin to halt essential processes. The result is a cessation of cell growth or even death. Because of their ubiquity and the essential processes targeted, TAs have been proposed as good candidates for development of novel antimicrobials. We discuss here the possible druggability of TAs as antivirals and antibacterials, with focus on the potentials and the challenges that their use may find in the ‘real’ world. We present strategies to develop TAs as antibacterials in view of novel technologies, such as the use of very small molecules (fragments) as inhibitors of protein–protein interactions. Appropriate fragments could disrupt the T:A interfaces leading to the release of the targeted TA pair. Possible ways of delivery and formulation of Tas are also discussed. We consider various approaches to develop the toxins of the type II family as possible candidates to drug discovery; druggability of toxins-antitoxins could be possible as antivirals. As antibacterials, they might be considered as druggable but delivery and formulation may not be simple so far.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28006-Madrid, Spain
| | - Dolors Balsa
- Immunology & Vaccines, Laboratorios LETI, Gran Via de les Corts Catalanes 184. 08034-Barcelona, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28006-Madrid, Spain
| |
Collapse
|
10
|
Bian X, Plaza A, Yan F, Zhang Y, Müller R. Rational and efficient site-directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Biotechnol Bioeng 2015; 112:1343-53. [DOI: 10.1002/bit.25560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoying Bian
- Department of Microbial Natural Products; Helmholtz-Institute for Pharmaceutical Research Saarland; Helmholtz Centre for Infection Research; Campus C2 3, 66123 Saarbrücken Germany
- Department of Pharmaceutical Biotechnology; Saarland University; Campus C2 3, 66123 Saarbrücken Germany
- Shandong University-Helmholtz Institute of Biotechnology; State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Zhuzhou Road 168, 266101 Qingdao P. R. China
| | - Alberto Plaza
- Department of Microbial Natural Products; Helmholtz-Institute for Pharmaceutical Research Saarland; Helmholtz Centre for Infection Research; Campus C2 3, 66123 Saarbrücken Germany
- Department of Pharmaceutical Biotechnology; Saarland University; Campus C2 3, 66123 Saarbrücken Germany
| | - Fu Yan
- Department of Microbial Natural Products; Helmholtz-Institute for Pharmaceutical Research Saarland; Helmholtz Centre for Infection Research; Campus C2 3, 66123 Saarbrücken Germany
- Department of Pharmaceutical Biotechnology; Saarland University; Campus C2 3, 66123 Saarbrücken Germany
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology; State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Zhuzhou Road 168, 266101 Qingdao P. R. China
| | - Rolf Müller
- Department of Microbial Natural Products; Helmholtz-Institute for Pharmaceutical Research Saarland; Helmholtz Centre for Infection Research; Campus C2 3, 66123 Saarbrücken Germany
- Department of Pharmaceutical Biotechnology; Saarland University; Campus C2 3, 66123 Saarbrücken Germany
| |
Collapse
|
11
|
Chan WT, Yeo CC, Sadowy E, Espinosa M. Functional validation of putative toxin-antitoxin genes from the Gram-positive pathogen Streptococcus pneumoniae: phd-doc is the fourth bona-fide operon. Front Microbiol 2014; 5:677. [PMID: 25538695 PMCID: PMC4257102 DOI: 10.3389/fmicb.2014.00677] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary(19A)-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine and Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu Terengganu, Malaysia
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute Warsaw, Poland
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
12
|
Guglielmini J, Van Melderen L. Bacterial toxin-antitoxin systems: Translation inhibitors everywhere. Mob Genet Elements 2014; 1:283-290. [PMID: 22545240 PMCID: PMC3337138 DOI: 10.4161/mge.18477] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Toxin-antitoxin (TA) systems are composed of two elements: a toxic protein and an antitoxin which is either an RNA (type I and III) or a protein (type II). Type II systems are abundant in bacterial genomes in which they move via horizontal gene transfer. They are generally composed of two genes organized in an operon, encoding a toxin and a labile antitoxin. When carried by mobile genetic elements, these small modules contribute to their stability by a phenomenon denoted as addiction. Recently, we developed a bioinformatics procedure that, along with experimental validation, allowed the identification of nine novel toxin super-families. Here, considering that some toxin super-families exhibit dramatic sequence diversity but similar structure, bioinformatics tools were used to predict tertiary structures of novel toxins. Seven of the nine novel super-families did not show any structural homology with known toxins, indicating that combination of sequence similarity and three-dimensional structure prediction allows a consistent classification. Interestingly, the novel super-families are translation inhibitors similar to the majority of known toxins indicating that this activity might have been selected rather than more detrimental traits such as DNA-gyrase inhibitors, which are very toxic for cells.
Collapse
|
13
|
Wang H, Bian X, Xia L, Ding X, Müller R, Zhang Y, Fu J, Stewart AF. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 2013; 42:e37. [PMID: 24369425 PMCID: PMC3950717 DOI: 10.1093/nar/gkt1339] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
Collapse
Affiliation(s)
- Hailong Wang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China, Department of Genomics, Dresden University of Technology, BioInnovations-Zentrum, Tatzberg 47-51, 01307 Dresden, Germany, Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany and Gene Bridges GmbH, Building C2.3, Saarland University, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 2013. [PMID: 23204366 DOI: 10.1128/mmbr.00030-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pneumococcal infections cause up to 2 million deaths annually and raise a large economic burden and thus constitute an important threat to mankind. Because of the increase in the antibiotic resistance of Streptococcus pneumoniae clinical isolates, there is an urgent need to find new antimicrobial approaches to triumph over pneumococcal infections. Toxin-antitoxin (TA) systems (TAS), which are present in most living bacteria but not in eukaryotes, have been proposed as an effective strategy to combat bacterial infections. Type II TAS comprise a stable toxin and a labile antitoxin that form an innocuous TA complex under normal conditions. Under stress conditions, TA synthesis will be triggered, resulting in the degradation of the labile antitoxin and the release of the toxin protein, which would poison the host cells. The three functional chromosomal TAS from S. pneumoniae that have been studied as well as their molecular characteristics are discussed in detail in this review. Furthermore, a meticulous bioinformatics search has been performed for 48 pneumococcal genomes that are found in public databases, and more putative TAS, homologous to well-characterized ones, have been revealed. Strikingly, several unusual putative TAS, in terms of components and genetic organizations previously not envisaged, have been discovered and are further discussed. Previously, we reported a novel finding in which a unique pneumococcal DNA signature, the BOX element, affected the regulation of the pneumococcal yefM-yoeB TAS. This BOX element has also been found in some of the other pneumococcal TAS. In this review, we also discuss possible relationships between some of the pneumococcal TAS with pathogenicity, competence, biofilm formation, persistence, and an interesting phenomenon called bistability.
Collapse
|
15
|
Unterholzner SJ, Hailer B, Poppenberger B, Rozhon W. Characterisation of the stbD/E toxin-antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae. Plasmid 2013; 70:216-25. [PMID: 23632277 DOI: 10.1016/j.plasmid.2013.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
Abstract
pEP36 is a plasmid ubiquitously present in Erwinia pyrifoliae, a pathogen which causes black stem blight of Asian pear. pEP36 is highly stable in its host, even in the absence of selective pressure. The plasmid is closely related to pEA29, which is widespread in E. amylovora, the causative agent of fire blight of apple and pear trees. Here we report that pEP36 possesses a functional hybrid toxin-antitoxin module, stbD/E(pEP36), with the toxin showing homology to the RelE/ParE proteins and the antidote belonging to the Phd/YefM antitoxin family. Bacteria expressing the StbE(pEP36) toxin arrest cell growth and enter a viable but non-culturable stage. However, they maintain their typical cell length and do not show filamentation. Pulse-chase experiments revealed that StbE(pEP36) acts as a global inhibitor of protein synthesis while it does not interfere with DNA and RNA synthesis. The StbD(pEP36) antitoxin is capable of neutralising StbE(pEP36) toxicity. Additional experiments show that the stbD/E(pEP36) module can stabilise plasmids at least 20-fold. Thus the toxin-antitoxin system may contribute to the remarkable stability of pEP36.
Collapse
Affiliation(s)
- Simon J Unterholzner
- Biotechnology of Horticultural Crops, Technische Universität München, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | | | | | | |
Collapse
|
16
|
Westra ER, Staals RH, Gort G, Høgh S, Neumann S, de la Cruz F, Fineran PC, Brouns SJ. CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids. RNA Biol 2013; 10:749-61. [PMID: 23535265 PMCID: PMC3737333 DOI: 10.4161/rna.24202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
Most prokaryotes contain CRISPR-Cas immune systems that provide protection against mobile genetic elements. We have focused on the ability of CRISPR-Cas to block plasmid conjugation, and analyzed the position of target sequences (protospacers) on conjugative plasmids. The analysis reveals that protospacers are non-uniformly distributed over plasmid regions in a pattern that is determined by the plasmid's mobilization type (MOB). While MOBP plasmids are most frequently targeted in the region entering the recipient cell last (lagging region), MOBF plasmids are mostly targeted in the region entering the recipient cell first (leading region). To explain this protospacer distribution bias, we propose two mutually non-exclusive hypotheses: (1) spacers are acquired more frequently from either the leading or lagging region depending on the MOB type (2) CRISPR-interference is more efficient when spacers target these preferred regions. To test the latter hypothesis, we analyzed Type I-E CRISPR-interference against MOBF prototype plasmid F in Escherichia coli. Our results show that plasmid conjugation is effectively inhibited, but the level of immunity is not affected by targeting the plasmid in the leading or lagging region. Moreover, CRISPR-immunity levels do not depend on whether the incoming single-stranded plasmid DNA, or the DNA strand synthesized in the recipient is targeted. Our findings indicate that single-stranded DNA may not be a target for Type I-E CRISPR-Cas systems, and suggest that the protospacer distribution bias might be due to spacer acquisition preferences.
Collapse
Affiliation(s)
- Edze R. Westra
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Raymond H.J. Staals
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris; Wageningen University and Research Center; Wageningen, The Netherlands
| | - Søren Høgh
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Sarah Neumann
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Fernando de la Cruz
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria; Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN; Santander, Spain
| | - Peter C. Fineran
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| | - Stan J.J. Brouns
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| |
Collapse
|
17
|
Kopfmann S, Hess WR. Toxin-antitoxin systems on the large defense plasmid pSYSA of Synechocystis sp. PCC 6803. J Biol Chem 2013; 288:7399-409. [PMID: 23322786 PMCID: PMC3591647 DOI: 10.1074/jbc.m112.434100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Indexed: 12/28/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci and mediate plasmid and genomic island maintenance through post-segregational killing mechanisms. TA systems exist in surprisingly high numbers in all prokaryotes, but cyanobacterial TA systems have been only very poorly experimentally characterized so far. Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. As such, cyanobacteria are of high ecological importance and are considered promising for the production of biofuels. Here, we present the molecular characterization of the sll7003/ssl7004 TA system encoded on plasmid pSYSA of the model cyanobacterium Synechocystis sp. PCC 6803 as involving a Mg(2+)-dependent RNA endonuclease activity targeting single-stranded RNA regions and demonstrate the functionality of four more TA systems encoded on this 100,749-bp plasmid. Furthermore, one additional type I, one additional type II, and three freestanding TA system components are predicted on pSYSA, all of which appear active judged by their expression. By harboring at least seven simultaneously active TA systems, pSYSA appears as the plasmid most strongly selected for among all plasmids studied in this respect thus far. These results point to a high biological relevance of pSYSA, whose coding capacity is 75% devoted to three distinct clustered regularly interspaced short palindromic repeats (CRISPR) systems mediating antiviral defense.
Collapse
Affiliation(s)
- Stefan Kopfmann
- From the Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Wolfgang R. Hess
- From the Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Brinkman CL, Bumgarner R, Kittichotirat W, Dunman PM, Kuechenmeister LJ, Weaver KE. Characterization of the effects of an rpoC mutation that confers resistance to the Fst peptide toxin-antitoxin system toxin. J Bacteriol 2013; 195:156-66. [PMID: 23104812 PMCID: PMC3536179 DOI: 10.1128/jb.01597-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/22/2012] [Indexed: 01/24/2023] Open
Abstract
Overexpression of the Fst toxin in Enterococcus faecalis strain OG1X leads to defects in chromosome segregation, cell division and, eventually, membrane integrity. The M7 mutant derivative of OG1X is resistant to most of these effects but shows a slight growth defect in the absence of Fst. Full-genome sequencing revealed two differences between M7 and its OG1X parent. First, OG1X contains a frameshift mutation that inactivates the etaR response regulator gene, while M7 is a wild-type revertant for etaR. Second, the M7 mutant contains a missense mutation in the rpoC gene, which encodes the β' subunit of RNA polymerase. Mutagenesis experiments revealed that the rpoC mutation was primarily responsible for the resistance phenotype. Microarray analysis revealed that a number of transporters were induced in OG1X when Fst was overexpressed. These transporters were not induced in M7 in response to Fst, and further experiments indicated that this had a direct protective effect on the mutant cells. Therefore, exposure of cells to Fst appears to have a cascading effect, first causing membrane stress and then potentiation of these effects by overexpression of certain transporters.
Collapse
Affiliation(s)
- Cassandra L. Brinkman
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Paul M. Dunman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lisa J. Kuechenmeister
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Keith E. Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
19
|
Lysine-specific demethylase 2A (KDM2A) normalizes human embryonic stem cell derived keratinocytes. Proc Natl Acad Sci U S A 2012; 109:9442-7. [PMID: 22635273 DOI: 10.1073/pnas.1206176109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies on human lysine-specific demethylase 2A (KDM2A) by others have recently begun. To date, the demethylase activity has been known to reduce expression of genes and eventually inhibit proliferation of cells. However, while attempting to improve proliferation of hES-cell-derived Nod keratinocytes, which grow poorly and have a short life span, we found that high expression of the KDM2A gene improves the poor proliferation of the cells. Of the four isomer cDNAs that we prepared from alternatively spliced KDM2A transcripts, only one stimulates the proliferation. This (KDM2A-N782) encodes the 782AA protein containing the JmjC, CXXC, and Ring domains, but not the F-box and AMN1 domains, unlike KDM2A, which has been studied by other groups. Our results not only show that differently spliced transcripts from a gene result in totally opposite outcomes, but also present critical evidence of the complicated activities of KDM2A, which contains all of the five domains.
Collapse
|
20
|
De Jonge N, Simic M, Buts L, Haesaerts S, Roelants K, Garcia-Pino A, Sterckx Y, De Greve H, Lah J, Loris R. Alternative interactions define gyrase specificity in the CcdB family. Mol Microbiol 2012; 84:965-78. [DOI: 10.1111/j.1365-2958.2012.08069.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Abou-Nader M, Benedik MJ. Rapid generation of random mutant libraries. Bioeng Bugs 2012; 1:337-40. [PMID: 21326833 DOI: 10.4161/bbug.1.5.12942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 11/19/2022] Open
Abstract
A simple and efficient method utilizing in vivo recombination to create recombinant libraries incorporating the products of PCR amplification is described. This will be especially useful for generating large pools of randomly mutagenized clones after error-prone PCR mutagenesis. Here we investigate various parameters to optimize this approach and we demonstrate that as little as 1 pmole of PCR fragment can generate a library with greater than 104 clones in a single transformation without ligation.
Collapse
Affiliation(s)
- Mary Abou-Nader
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
22
|
Vandermeulen G, Marie C, Scherman D, Préat V. New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther 2011; 19:1942-9. [PMID: 21878901 PMCID: PMC3222533 DOI: 10.1038/mt.2011.182] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022] Open
Abstract
Since it has been established that the injection of plasmid DNA can lead to an efficient expression of a specific protein in vivo, nonviral gene therapy approaches have been considerably improved, allowing clinical trials. However, the use of antibiotic resistance genes as selection markers for plasmid production raises safety concerns which are often pointed out by the regulatory authorities. Indeed, a horizontal gene transfer to patient's bacteria cannot be excluded, and residual antibiotic in the final product could provoke allergic reactions in sensitive individuals. A new generation of plasmid backbones devoid of antibiotic resistance marker has emerged to increase the safety profile of nonviral gene therapy trials. This article reviews the existing strategies for plasmid maintenance and, in particular, those that do not require the use of antibiotic resistance genes. They are based either on the complementation of auxotrophic strain, toxin-antitoxin systems, operator-repressor titration, RNA markers, or on the overexpression of a growth essential gene. Minicircles that allow removing of the antibiotic resistance gene from the initial vector will also be discussed. Furthermore, reported use of antibiotic-free plasmids in preclinical or clinical studies will be listed to provide a comprehensive view of these innovative technologies.
Collapse
Affiliation(s)
- Gaëlle Vandermeulen
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Brussels, Belgium
| | | | | | | |
Collapse
|
23
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
24
|
Liu X, Shi R, Zou D, Li Z, Liu X, Chen Y, Yang X, Zhou Y, Zheng D. Positive selection vector using the KillerRed gene. Anal Biochem 2011; 412:120-2. [DOI: 10.1016/j.ab.2011.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
|
25
|
Halvorsen EM, Williams JJ, Bhimani AJ, Billings EA, Hergenrother PJ. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin-antitoxin system, cleaves mRNA and inhibits protein synthesis. MICROBIOLOGY-SGM 2010; 157:387-397. [PMID: 21030436 PMCID: PMC3090131 DOI: 10.1099/mic.0.045492-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The axe-txe operon encodes a toxin-antitoxin (TA) pair, Axe-Txe, that was initially identified on the multidrug-resistance plasmid pRUM in Enterococcus faecium. In Escherichia coli, expression of the Txe toxin is known to inhibit cell growth, and co-expression of the antitoxin, Axe, counteracts the toxic effect of Txe. Here, we report the nucleotide sequence of pS177, a 39 kb multidrug-resistant plasmid isolated from vancomycin-resistant Ent. faecium, which harbours the axe-txe operon and the vanA gene cluster. RT-PCR analysis revealed that the axe-txe transcript is produced by strain S177 as well as by other vancomycin-resistant enteroccoci. Moreover, we determine the mechanism by which the Txe protein exerts its toxic activity. Txe inhibits protein synthesis in E. coli without affecting DNA or RNA synthesis, and inhibits protein synthesis in a cell-free system. Using in vivo primer extension analysis, we demonstrate that Txe preferentially cleaves single-stranded mRNA at the first base after an AUG start codon. We conclude that Txe is an endoribonuclease which cleaves mRNA and inhibits protein synthesis.
Collapse
Affiliation(s)
- Elizabeth M Halvorsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Julia J Williams
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Azra J Bhimani
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Emily A Billings
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
26
|
Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 2010; 76:719-32. [PMID: 20345661 DOI: 10.1111/j.1365-2958.2010.07129.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Type II toxin-antitoxin (TA) systems are considered as protein pairs in which a specific toxin is associated with a specific antitoxin. We have identified a novel antitoxin family (paaA) that is associated with parE toxins. The paaA-parE gene pairs form an operon with a third component (paaR) encoding a transcriptional regulator. Two paralogous paaR-paaA-parE systems are found in E. coli O157:H7. Deletions of the paaA-parE pairs in O157:H7 allowed us to show that these systems are expressed in their natural host and that PaaA antitoxins specifically counteract toxicity of their associated ParE toxin. For the paaR2-paaA2-parE2 system, PaaR2 and Paa2-ParE2 complex are able to regulate the operon expression and both are necessary to ensure complete repression. The paaR2-paaA2-parE2 system mediates ClpXP-dependent post-segregational killing. The PaaR2 regulator appears to be essential for this function, most likely by maintaining an appropriate antitoxin : toxin ratio in steady-state conditions. Ectopic overexpression of ParE2 is bactericidal and is not resuscitated by PaaA2 expression. ParE2 colocalizes with the nucleoid, while it is diffusely distributed in the cytoplasm when PaaA2 is coexpressed. This indicates that ParE2 interacts with DNA-gyrase cycling on DNA and that coexpression of PaaA2 antitoxin sequesters ParE2 away from its target by protein-protein complex formation.
Collapse
Affiliation(s)
- Régis Hallez
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté des Sciences, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Hu LL, Zhang SS, Li XX, Wang BL. The use of the ccdB lethal gene for constructing a zero background vector in order to clone blunt-end PCR Products. Mol Biol 2010. [DOI: 10.1134/s0026893310010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abstract
INTRODUCTIONCloning polymerase chain reaction (PCR)-amplified fragments into plasmids offers several advantages. Bacteria containing plasmids can be frozen, providing a ready supply of amplified material. Because of the variety of available plasmids with different promoters and selectable markers, cloning is also useful when mutations are to be introduced into the fragment before expression, or when sequence tags encoded in the vector are to be added in-frame. The ease with which nucleotide sequences can be added to the ends of PCR products has led to the development of a variety of cloning strategies. Because such cloning is typically the first step for generating a reagent that will be used to achieve a specific experimental goal, the efficiency of the cloning procedure is an important consideration: Cloning strategies should be simple in design and execution, requiring a minimum of enzymatic steps. Toward this goal, many companies market and continue to develop reagent kits that improve the ease and rapidity of cloning PCR products. This article focuses on some common and efficient cloning strategies, such as those that use DNA ligase or vaccinia virus topoisomerase I (TOPO), as well as techniques for in vitro and in vivo recombination of PCR products and vectors having homologous duplex ends. Also covered is the production of linear PCR products with defined 5′ and 3′ functional elements, which enable direct mammalian cell expression or in vitro transcription/translation. We present an overview of these strategies, their molecular basis, and their advantages and disadvantages for specific applications.
Collapse
|
29
|
Significant bias against the ACA triplet in the tmRNA sequence of Escherichia coli K-12. J Bacteriol 2009; 191:6157-66. [PMID: 19633073 DOI: 10.1128/jb.00699-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin MazF in Escherichia coli cleaves single-stranded RNAs specifically at ACA sequences. MazF overexpression virtually eliminates all cellular mRNAs to completely block protein synthesis. However, protein synthesis can continue on an mRNA that is devoid of ACA triplets. The finding that ribosomal RNAs remain intact in the face of complete translation arrest suggested a purpose for such preservation. We therefore examined the sequences of all transcribed RNAs to determine if there was any statistically significant bias against ACA. While ACA motifs are absent from tmRNA, 4.5S RNA, and seven of the eight 5S rRNAs, statistical analysis revealed that only for tmRNA was the absence nonrandom. The introduction of single-strand ACAs makes tmRNA highly susceptible to MazF cleavage. Furthermore, analysis of tmRNA sequences from 442 bacteria showed that the discrimination against ACA in tmRNAs was seen mostly in enterobacteria. We propose that the unusual bias against ACA in tmRNA may have coevolved with the acquisition of MazF.
Collapse
|
30
|
Respondek M, Buts L, De Jonge N, Haesaerts S, Loris R, Van Melderen L, Wyns L, Zangger K. Sequence-specific 1H, 15N and 13C resonance assignments of the 23.7-kDa homodimeric toxin CcdB from Vibrio fischeri. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:145-147. [PMID: 19636967 DOI: 10.1007/s12104-009-9161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 03/23/2009] [Indexed: 05/28/2023]
Abstract
CcdB is the toxic component of a bacterial toxin-antitoxin system. It inhibits DNA gyrase (a type II topoisomerase), and its toxicity can be neutralized by binding of its antitoxin CcdA. Here we report the sequential backbone and sidechain (1)H, (15)N and (13)C resonance assignments of CcdB(Vfi) from the marine bacterium Vibrio fischeri. The BMRB accession number is 16135.
Collapse
Affiliation(s)
- Michal Respondek
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The art of selective killing: plasmid toxin/antitoxin systems and their technological applications. Biotechniques 2008; 45:344-6. [PMID: 18778262 DOI: 10.2144/000112955] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Wilbaux M, Mine N, Guérout AM, Mazel D, Van Melderen L. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7. J Bacteriol 2007; 189:2712-9. [PMID: 17259320 PMCID: PMC1855815 DOI: 10.1128/jb.01679-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.
Collapse
Affiliation(s)
- Myriam Wilbaux
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
33
|
Moritz EM, Hergenrother PJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 2006; 104:311-6. [PMID: 17190821 PMCID: PMC1765457 DOI: 10.1073/pnas.0601168104] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin-antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy.
Collapse
Affiliation(s)
| | - Paul J. Hergenrother
- Chemistry, and
- Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Chen H, Schifferli DM. Comparison of a fimbrial versus an autotransporter display system for viral epitopes on an attenuated Salmonella vaccine vector. Vaccine 2006; 25:1626-33. [PMID: 17169467 PMCID: PMC7115504 DOI: 10.1016/j.vaccine.2006.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/25/2006] [Accepted: 11/02/2006] [Indexed: 11/02/2022]
Abstract
Attenuated Salmonella have been used as vectors to deliver foreign antigens as live vaccines. We have previously developed an efficient surface-display system by genetically engineering 987P fimbriae to present transmissible gastroenteritis virus (TGEV) C and A epitopes for the induction of anti-TGEV antibodies with a Salmonella vaccine vector. Here, this system was compared with an autotransporter protein surface display system. The TGEV C and A epitopes were fused to the passenger domain of the MisL autotransporter of Salmonella. Expression of both the MisL- and 987P subunit FasA-fusions to the TGEV epitopes were under the control of in vivo-induced promoters. Expression of the TGEV epitopes from the Salmonella typhimurium CS4552 (crp cya asd pgtE) vaccine strain was greater when the epitopes were fused to MisL than when they were fused to the 987P FasA subunit. However, when BALB/c mice were orally immunized with the Salmonella vector expressing the TGEV epitopes from either one of the fusion constructs or both together, the highest level of anti-TGEV antibody was obtained with the 987P-TGEV immunogen-displaying vector. This result suggested that better immune responses towards specific epitopes could be obtained by using a polymeric display system such as fimbriae.
Collapse
|
35
|
Kamphuis MB, Bonvin AMJJ, Monti MC, Lemonnier M, Muñoz-Gómez A, van den Heuvel RHH, Díaz-Orejas R, Boelens R. Model for RNA Binding and the Catalytic Site of the RNase Kid of the Bacterial parD Toxin–Antitoxin System. J Mol Biol 2006; 357:115-26. [PMID: 16413033 DOI: 10.1016/j.jmb.2005.12.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/01/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The toxin Kid and antitoxin Kis are encoded by the parD operon of Escherichia coli plasmid R1. Kid and its chromosomal homologues MazF and ChpBK have been shown to inhibit protein synthesis in cell extracts and to act as ribosome-independent endoribonucleases in vitro. Kid cleaves RNA preferentially at the 5' side of the A residue in the nucleotide sequence 5'-UA(A/C)-3' of single-stranded regions. Here, we show that RNA cleavage by Kid yields two fragments with a 2':3'-cyclic phosphate group and a free 5'-OH group, respectively. The cleavage mechanism is similar to that of RNases A and T1, involving the uracil 2'-OH group. Via NMR titration studies with an uncleavable RNA mimic, we demonstrate that residues of both monomers of the Kid dimer together form a concatenated RNA-binding surface. Docking calculations based on the NMR chemical shifts, the cleavage mechanism and previously reported mutagenesis data provide a detailed picture of the position of the AUACA fragment within the binding pocket. We propose that residues D75, R73 and H17 form the active site of the Kid toxin, where D75 and R73 are the catalytic base and acid, respectively. The RNA sequence specificity is defined by residues T46, S47, A55, F57, T69, V71 and R73. Our data show the importance of these residues for Kid function, and the implications of our results for related toxins, such as MazF, CcdB and RelE, are discussed.
Collapse
Affiliation(s)
- Monique B Kamphuis
- Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 2005; 3:700-10. [PMID: 16138098 DOI: 10.1038/nrmicro1232] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have identified certain hot spots, and many of these involve biofilms. Biofilms are uniquely suited for HGT, as they sustain high bacterial density and metabolic activity, even in the harshest environments. Single-cell detection of donor, recipient and transconjugant bacteria in various natural environments, combined with individual-based mathematical models, has provided a new platform for HGT studies.
Collapse
Affiliation(s)
- Søren J Sørensen
- Department of Microbiology, Institute of Biology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark.
| | | | | | | | | |
Collapse
|
37
|
Wu YQ, Wang GS, Wang MW, Wu BY, You WD, Wang WH. Cloning and expression of gastric cancer related gene GCRG224 in E.coli. Shijie Huaren Xiaohua Zazhi 2004; 12:763-766. [DOI: 10.11569/wcjd.v12.i4.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To express gastric cancer related gene GCRG224 by using thioredoxin fusion expression system.
METHODS: GCRG224 cDNA with complete open reading frame was amplified by PCR from plasmid pGEM-T, and then cloned into thioredoxin fusion expression vector pET102/D-TOPO. The recombinant plasmid was further transformed into E.coli BL21 strain. After induction with IPTG, thioredoxin-GCRG224 fusion protein was expressed in E.coli.
RESULTS: SDS-PAGE analysis showed the thioredoxin-GCRG224 fusion protein with a relative molecule mass of 16 800 was highly expressed. The thin layer gel scanning analysis showed that the yield of GCRG224 fusion protein was 22.3% of the total bacterial protein.
CONCLUSION: The GCRG224 recombinant fusion protein is successfully expressed in E.coli.
Collapse
|
38
|
Zhang J, Zhang Y, Inouye M. Characterization of the interactions within the mazEF addiction module of Escherichia coli. J Biol Chem 2003; 278:32300-6. [PMID: 12810711 DOI: 10.1074/jbc.m304767200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, programmed cell death is mediated through the unique genetic system called "addiction module," which consists of a pair of genes encoding a stable toxin and an unstable antitoxin. The mazEF system is known as an addiction module located on the Escherichia coli chromosome. MazF is a stable toxin, and MazE is a labile antitoxin interacting with MazF to form a complex. MazE and the MazE-MazF complex can bind to the mazEF promoter region to regulate the mazEF expression. Here we show that the binding of purified (His)6MazE to the mazEF promoter DNA was enhanced by MazF. The site-directed mutations at the conserved amino acid residues in MazE N-terminal region (K7A, R8A, S12A, and R16A) disrupted the DNA binding ability of both (His)6MazE and the MazE-MazF-(His)6 complex, suggesting that MazE binds to the mazEF promoter DNA through the N-terminal domain. The ratio of MazE to MazF(His)6 in the MazE-MazF(His)6 complex is about 1:2. Because both MazE and MazF-(His)6 exist as dimers by themselves, the MazE-MazF-(His)6 complex (76.9 kDa) is predicted to consist of one MazE dimer and two MazF(His)6 dimers. The interaction between MazE and MazF was also characterized with the yeast two-hybrid system. It was found that the region from residues 38 to 75 of MazE was required for its binding to MazF. Site-directed mutagenesis at this region revealed that Leu55 and Leu58 play an important role in the MazE-MazF complex formation but not in MazE binding to the mazEF promoter DNA. The present results demonstrate that MazE is composed of two domains, the N-terminal DNA-binding domain and the C-terminal domain interacting with MazF.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
39
|
|