1
|
Slivenecka E, Jurnecka D, Holubova J, Stanek O, Brazdilova L, Cizkova M, Bumba L. The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair. Microbiol Res 2025; 292:128043. [PMID: 39740637 DOI: 10.1016/j.micres.2024.128043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions. Both ApxIVA and ORF1 are essential for full virulence of A. pleuropneumoniae, but the molecular mechanisms by which they contribute to the pathogenicity are not yet understood. Here, we provide a comprehensive structural and functional analysis of ApxIVA and ORF1 proteins. Our findings reveal that the N-terminal segment of ApxIVA shares structural similarity with colicin M (ColM)-like bacteriocins and exhibits an antimicrobial activity. The ORF1 protein resembles the colicin M immunity protein (Cmi) and, like Cmi, is exported to the periplasm through its N-terminal signal peptide. Additionally, ORF1 can protect bacterial cells from the antimicrobial activity of ApxIVA, suggesting that ORF1 and ApxIVA function as an antibacterial toxin-immunity pair. Moreover, we demonstrate that fetal bovine serum could elicit ApxIVA and ORF1 production under in vitro conditions. These findings highlight the coordinated action of various RTX determinants, where the fine-tuned spatiotemporal production of ApxIVA may enhance the fitness of A. pleuropneumoniae, facilitating its invasion to a resident microbial community on the surface of airway mucosa.
Collapse
Affiliation(s)
- Eva Slivenecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
2
|
Kursa O. Multidrug Resistance of Gallibacterium anatis Biovar Haemolytica Isolated from the Reproductive Tracts of Laying Hens. Pathogens 2024; 13:989. [PMID: 39599542 PMCID: PMC11597584 DOI: 10.3390/pathogens13110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance is recognized worldwide as one of the greatest threats to human and animal health and the environment. To evaluate the resistance rate of Gallibacterium anatis biovar haemolytica, which contributes to bacteremia, oophoritis, ovarian follicle degeneration, salpingitis, decreased egg production, and increased mortality in hens, strains isolated from the reproductive tracts of layers were analyzed. The oviducts were taken from three hens from each of 10 flocks manifesting clinical signs related to laying. Twenty-two isolates of G. anatis biovar haemolytica collected from the three parts of the reproductive system were identified using MALDI-TOF and molecular methods. The biovar's resistance to 19 antimicrobial substances was assessed using the disk diffusion (n = 8) and broth microdilution (n = 11) methods. The presence of virulence (gtxA, gyrB, and flfA) and antibiotic resistance (blaROB, aphA, tetB, and tetH) genes was examined using PCR. All the isolates were resistant to four or more classes of antibiotics and were considered multidrug-resistant. All such isolates were resistant to tilmicosin, tylosin, and enrofloxacin, 88.2% were to tetracycline, and 82.4% to vancomycin. The gtxA, gyrB, tetB, and tetH genes were demonstrated. Considering the present prevalence of multidrug resistance among G. anatis biovar haemolytica isolates from laying hen reproductive tracts, surveillance in reproductive flocks is warranted.
Collapse
Affiliation(s)
- Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
3
|
Sasaki H, Ueshiba H, Yanagisawa N, Itoh Y, Ishikawa H, Shigenaga A, Benga L, Ike F. Genomic and pathogenic characterization of RTX toxin producing Rodentibacter sp. that is closely related to Rodentibacter haemolyticus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105314. [PMID: 35675867 DOI: 10.1016/j.meegid.2022.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/13/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rodentibacter spp. are opportunistic pathogens that are often isolated from the upper respiratory tracts of laboratory rodents. In particular, R. pneumotropicus and R. heylii require considerable caution in rodent colonies, as they cause lethal pneumonia in rodents. A new species, R. haemolyticus, has recently been classified in the genus, and a very closely related strain, Rodentibacter sp. strain JRC, has been isolated in Japan. This study focused on strain JRC by performing genomic and pathogenic analyses. Draft genome sequencing of strain JRC identified several genes coding for putative virulent proteins, including hemolysin and adhesin. Furthermore, we found a new RTX (repeats-in-structural toxin) toxin gene in the genome, which was predicted to produce a critical virulence factor (RTXIA) similar to Enterobacteriaceae. The concentrated culture supernatant containing RTX toxin (RTXIA) showed cytotoxicity toward RAW264.7 cells. Pre-incubation with anti-CD11a attenuated the cytolysis, suggesting that the concentrated culture supernatant containing RTXIA is cell surface LFA-1 mediated cytolysin. Experimental infection of strain JRC intranasally with 5 female BALB/c-Rag2-/- mice showed 60% lethality and was not significantly different from those of R. pneumotropicus ATCC 35149T using the log-rank test. Combined with our finding that RTXIA has an almost identical amino acid sequence (98% identity) to that of R. haemolyticus 1625/19T, these results strongly suggest that RTXIA-producing strain JRC (and related R. haemolyticus) is pathogenic to immunodeficient rodents, and both agents should be excluded in laboratory rodent colonies.
Collapse
Affiliation(s)
- Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.
| | - Hidehiro Ueshiba
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yuta Itoh
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, University Hospital, Heinrich - Heine - University, Düsseldorf, Germany
| | - Fumio Ike
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Zhang L, Luo W, Xiong R, Li H, Yao Z, Zhuo W, Zou G, Huang Q, Zhou R. A Combinatorial Vaccine Containing Inactivated Bacterin and Subunits Provides Protection Against Actinobacillus pleuropneumoniae Infection in Mice and Pigs. Front Vet Sci 2022; 9:902497. [PMID: 35747235 PMCID: PMC9212066 DOI: 10.3389/fvets.2022.902497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is the etiological agent of porcine contagious pleuropneumonia (PCP) that causes great economic losses in the swine industry. Currently, vaccination is still a commonly used strategy for the prevention of the disease. Commercially available vaccines of this disease, including inactivated bacterins and subunit vaccines, have clinical limitations such as side effects and low cross-protection. In this study, a combinatorial vaccine (Bac-sub) was developed, which contained inactivated bacterial cells of a serovar 1 strain and three recombinant protoxins (rApxIA, rApxIIA, and rApxIIIA). Its side effects, immune protection, and cross-protection were evaluated and compared with a commercial subunit vaccine and a commercial trivalent bacterin in a mouse infection model. The results revealed that the Bac-sub vaccine showed no obvious side effects, and induced higher levels of Apx toxin-specific IgG, IgG1, and IgG2a than the commercial vaccines after booster. After a challenge with virulent strains of serovars 1, 5, and 7, the Bac-sub vaccine provided greater protection (91.76%, 100%, and 100%, respectively) than commercial vaccines. Much lower lung bacterial loads (LBLs) and milder lung lesions were observed in the Bac-sub-vaccinated mice than in those vaccinated with the other two vaccines. The protective efficacy of the Bac-sub vaccine was further evaluated in pigs, which showed that vaccinated pigs displayed significantly milder clinical symptoms and lung lesions than the unvaccinated pigs after the challenge. Taken together, Bac-sub is a safe and effective vaccine that could provide high protection against A. pleuropneumoniae infection in both mice and pigs.
Collapse
Affiliation(s)
- Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruyue Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxiao Zhuo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Diseases, Ministry of Science and Technology (China), Wuhan, China
- *Correspondence: Qi Huang
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Diseases, Ministry of Science and Technology (China), Wuhan, China
- The HZAU-HVSEN Institute, Huazhong Agricultural University, Wuhan, China
- Rui Zhou
| |
Collapse
|
5
|
Loy JD, Hille M, Maier G, Clawson ML. Component Causes of Infectious Bovine Keratoconjunctivitis - The Role of Moraxella Species in the Epidemiology of Infectious Bovine Keratoconjunctivitis. Vet Clin North Am Food Anim Pract 2021; 37:279-293. [PMID: 34049659 DOI: 10.1016/j.cvfa.2021.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022] Open
Abstract
Infectious bovine keratoconjunctivitis (IBK) involves multiple factors and opportunistic pathogens, including members of the genus Moraxella, specifically M bovis. The causal role of M bovis is clear, where the presence of virulence factors that facilitate colonization (pili) and host cytotoxicity (RTX toxins) are well characterized, and IBK has been reproduced in many models. Experimental infection with M bovoculi has failed to reproduce IBK-typical lesions in cattle thus far. However, recent work using genomics and mass spectrometry have found genomic diversity and recombination within these species, making species differentiation complex and challenging the ability to assign IBK causality to these organisms.
Collapse
Affiliation(s)
- John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop North 115Q NVDC, Lincoln, NE 68583-0907, USA.
| | - Matthew Hille
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop North 115Q NVDC, Lincoln, NE 68583-0907, USA
| | - Gabriele Maier
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, 1 Shields Avenue, VM3B, Davis, CA 95616, USA
| | - Michael L Clawson
- US Meat Animal Research Center, USDA Agriculture Research Service, Clay Center, 844 Road 313, Clay Center, NE 68933, USA
| |
Collapse
|
6
|
Kuhnert P, Brodard I, Schönecker L, Akarsu H, Christensen H, Bisgaard M. Mannheimia pernigra sp. nov., isolated from bovine respiratory tract. Int J Syst Evol Microbiol 2021; 71. [PMID: 33470926 DOI: 10.1099/ijsem.0.004643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Over a period of 1 year, 270 isolates identified as Taxon 39 of Bisgaard were obtained from the nasopharynx of veal calves at 11 epidemiologically independent Swiss fattening farms. Two isolates from each farm and the Australian Taxon 39 reference strain BNO311 were further characterized by genetic and phenotypic methods. Phylogenetic analysis of 16S rRNA and recN gene sequences placed the isolates in a single, distinct cluster within the genus Mannheimia. As to the rpoB gene, most isolates clustered together, but four strains formed a separate cluster close to Mannheimia varigena. Genome sequence analysis of isolates from both rpoB clusters confirmed their species status, with an average nucleotide identity (ANI) >98.9 % between isolates and <84 % to the closest species, M. varigena. Based upon whole genome sequences, the G+C content was determined as 39.1 mol%. Similarly, analysis of MALDI-TOF MS reference spectra clustered the isolates clearly separated from the other Mannheimia species, making this the method of choice for identification. In addition, numerous biochemical markers based on classical as well as commercial identification schemes were determined, allowing separation from other Mannheimia species and identification of the new taxon. Major fatty acids for strain 17CN0883T are C14 : 0, C16 : 0, C16 : 1 ω7c and C18 : 1 ω7c. Major respiratory quinones are ubiquinone-7 and ubiquinone-8. We propose the name Mannheimia pernigra sp. nov. for former Taxon 39 of Bisgaard. The type strain is 17CN0883T (=CCUG 74657T=DSM 111153T) isolated from a veal calf in Switzerland.
Collapse
Affiliation(s)
- Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Isabelle Brodard
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Lutz Schönecker
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Hatice Akarsu
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, Stigbøjlen 4, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Magne Bisgaard
- Professor emeritus, Horsevænget 40, 4130 Viby Sjælland, Denmark
| |
Collapse
|
7
|
Nahar N, Turni C, Tram G, Blackall PJ, Atack JM. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. Adv Microb Physiol 2021; 78:179-216. [PMID: 34147185 DOI: 10.1016/bs.ampbs.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is responsible for high economic losses in swine herds across the globe. Pleuropneumonia is characterized by severe respiratory distress and high mortality. The knowledge about the interaction between bacterium and host within the porcine respiratory tract has improved significantly in recent years. A. pleuropneumoniae expresses multiple virulence factors, which are required for colonization, immune clearance, and tissue damage. Although vaccines are used to protect swine herds against A. pleuropneumoniae infection, they do not offer complete coverage, and often only protect against the serovar, or serovars, used to prepare the vaccine. This review will summarize the role of individual A. pleuropneumoniae virulence factors that are required during key stages of pathogenesis and disease progression, and highlight progress made toward developing effective and broadly protective vaccines against an organism of great importance to global agriculture and food production.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
8
|
Narasinakuppe Krishnegowda D, Dhama K, Kumar Mariappan A, Munuswamy P, Iqbal Yatoo M, Tiwari R, Karthik K, Bhatt P, Reddy MR. Etiology, epidemiology, pathology, and advances in diagnosis, vaccine development, and treatment of Gallibacterium anatis infection in poultry: a review. Vet Q 2020; 40:16-34. [PMID: 31902298 PMCID: PMC7006735 DOI: 10.1080/01652176.2020.1712495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Gallibacterium anatis is a Gram-negative bacterium of the Pasteurellaceae family that resides normally in the respiratory and reproductive tracts in poultry. It is a major cause of oophoritis, salpingitis, and peritonitis, decreases egg production and mortality in hens thereby severely affecting animal welfare and overall productivity by poultry industries across Europe, Asia, America, and Africa. In addition, it has the ability to infect wider host range including domesticated and free-ranging avian hosts as well as mammalian hosts such as cattle, pigs and human. Evaluating the common virulence factors including outer membrane vesicles, fimbriae, capsule, metalloproteases, biofilm formation, hemagglutinin, and determining novel factors such as the RTX–like toxin GtxA, elongation factor-Tu, and clustered regularly interspaced short palindromic repeats (CRISPR) has pathobiological, diagnostic, prophylactic, and therapeutic significance. Treating this bacterial pathogen with traditional antimicrobial drugs is discouraged owing to the emergence of widespread multidrug resistance, whereas the efficacy of preventing this disease by classical vaccines is limited due to its antigenic diversity. It will be necessary to acquire in-depth knowledge on important virulence factors, pathogenesis and, concerns of rising antibiotic resistance, improvised treatment regimes, and novel vaccine candidates to effectively tackle this pathogen. This review substantially describes the etio-epidemiological aspects of G. anatis infection in poultry, and updates the recent development in understanding the pathogenesis, organism evolution and therapeutic and prophylactic approaches to counter G. anatis infection for safeguarding the welfare and health of poultry.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, GovindBallabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | |
Collapse
|
9
|
Park BS, Lee N. A bivalent fusion vaccine composed of recombinant Apx proteins shows strong protection against Actinobacillus pleuroneumoniae serovar 1 and 2 in a mouse model. Pathog Dis 2020; 77:5426212. [PMID: 30939190 DOI: 10.1093/femspd/ftz020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2018] [Accepted: 03/31/2019] [Indexed: 11/12/2022] Open
Abstract
Actinobacillus pleuropneumonia (APP) causes porcine pleuropneumoniae, resulting in severe economic losses in the swine industry. Since there are diverse serotypes of APP, it is necessary for vaccines to induce cross-protection. In this report, we developed a bivalent fusion vaccine, the L vaccine composed of ApxIA and ApxIIA fragments. According to the experimental results of the L vaccine, recombinant protein specific-IgG antibody level increased significantly as well as Apx toxin specific-IgG antibody, suggesting toxin-neutralizing effect. Also, the production of both IgG1 and IgG2a indicates this fusion vaccine induces Th1 and Th2 immune reactions. In addition, lymphocytes were proliferated and immune related-cytokines of TNF-α, IL-12, IFN-γ and IL-5 were detected in the serum after the vaccination. The L vaccine showed a perfect cross-protection against APP serovar 1 and 2 that each secrete different Apx exotoxins. These findings reveal that the fusion L vaccine induces specific humoral and cellular immunity, leading to a perfect cross-protection against A. pleuropneumoniae infections in a murine model.
Collapse
Affiliation(s)
- Byung-Sun Park
- Technology Institute, KBNP, Inc., Anyang, Gyeonggi, South Korea
| | - Nakhyung Lee
- Technology Institute, KBNP, Inc., Anyang, Gyeonggi, South Korea
| |
Collapse
|
10
|
Tang B, Pors SE, Kristensen BM, Skjerning RBJ, Olsen RH, Bojesen AM. GtxA is a virulence factor that promotes a Th2-like response during Gallibacterium anatis infection in laying hens. Vet Res 2020; 51:40. [PMID: 32156313 PMCID: PMC7065373 DOI: 10.1186/s13567-020-00764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
GtxA, a leukotoxic RTX-toxin, has been proposed a main virulence factor of Gallibacterium anatis. To evaluate the impact of GtxA during infection, we experimentally infected laying hens with a G. anatis wild-type (WT) strain and its isogenic gtxA deletion mutant (ΔgtxA), respectively, and monitored the birds during a 6 day period. Birds inoculated with ΔgtxA had significantly reduced gross lesions and microscopic changes compared to the birds inoculated with the WT strain. To assess the host response further, we quantified the expression of pro-inflammatory cytokines and apoptosis genes by RT-qPCR. In the ovarian tissue, the expression levels of IL-4 and TNF-α were significantly lower in the ΔgtxA group compared to the WT group, while IL-6 and IL-10 levels appeared similar in the two groups. In the spleen tissue of ΔgtxA infected chickens, IL-4 expression was also lower compared to the WT infected chickens. The results indicated that GtxA plays a key role in an acute cytokine-mediated Th2-like response against G. anatis infection in the ovary tissue. The pro-inflammatory response in the ovary tissue of birds inoculated with ΔgtxA mutant was thus significantly lower than the wild-type response. This was, at least partly, supported by the apoptosis gene expression levels, which were significantly higher in the ΔgtxA mutant compared to the wild-type infected chickens. In conclusion, GtxA clearly plays an important role in the pathogenesis of G. anatis infections in laying hens. Further investigations into the specific factors regulating the host response is however needed to provide a more complete understanding of the bacteria-host interaction.
Collapse
Affiliation(s)
- Bo Tang
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Susanne E. Pors
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Bodil M. Kristensen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Ragnhild Bager J. Skjerning
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Rikke H. Olsen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Anders M. Bojesen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
12
|
dos Santos LF, Costa Polveiro R, Scatamburlo Moreira T, Pereira Vidigal PM, Chang YF, Scatamburlo Moreira MA. Polymorphism analysis of the apxIA gene of Actinobacillus pleuropneumoniae serovar 5 isolated in swine herds from Brazil. PLoS One 2018; 13:e0208789. [PMID: 30562362 PMCID: PMC6298653 DOI: 10.1371/journal.pone.0208789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022] Open
Abstract
The bacterium Actinobacillus pleuropneumoniae is the etiological agent of Contagious Porcine Pleuropneumonia, a disease responsible for economic losses in the swine industry worldwide. A. pleuropneumoniae is capable of producing proteinaceous exotoxins responsible for inducing hemorrhagic lesions, one of which is ApxI. Few studies have conducted an in-depth evaluation of polymorphisms of the nucleotides that make up the ApxI toxin gene. Here we analyze the polymorphisms of the apxIA gene region of A. pleuropneumoniae serovar 5 isolated from swine in different regions in Brazil and report the results of molecular sequencing and phylogenetic analysis. Analysis of the apxIA gene in 60 isolates revealed the presence of genetic diversity and variability. The polymorphisms in the nucleotide sequences determined the grouping of the Brazilian sequences and five more sequences from the GenBank database into 14 different haplotypes, which formed three main groups and revealed the presence of mutations in the nucleotide sequences. The estimation of selection pressures suggests the occurrence of genetic variations by positive selective pressure on A. pleuropneumoniae in large groups of animals in relatively small spaces. These conditions presumably favor the horizontal dissemination of apxIA gene mutations within bacterial populations with host reservoirs. As a result, the same serovar can demonstrate different antigenic capacities due to mutations in the apxIA gene. These alterations in sequences of the apxIA gene could occur in other areas of countries with intense swine production, which could lead to differences in the pathogenicity and immunogenicity of each serovar and have implications for the clinical status or diagnosis of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Lucas Fernando dos Santos
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Microbiologia Veterinária Especial LTDA (Microvet), Viçosa, Minas Gerais, Brazil
| | - Richard Costa Polveiro
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Thalita Scatamburlo Moreira
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Center of Biological Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Maria Aparecida Scatamburlo Moreira
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
13
|
Pérez-Reytor D, Jaña V, Pavez L, Navarrete P, García K. Accessory Toxins of Vibrio Pathogens and Their Role in Epithelial Disruption During Infection. Front Microbiol 2018; 9:2248. [PMID: 30294318 PMCID: PMC6158335 DOI: 10.3389/fmicb.2018.02248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Gastrointestinal episodes associated with Vibrio species have been rising worldwide in the last few years. Consequently, it is important to comprehend how occurs the production of diarrhea, to establish new preventive and therapeutic measures. Besides the classical CT and TCP toxins, Zot, RTX, and Ace among others have been deeply studied in V. cholerae. However, in other Vibrio species of clinical interest, where some of these toxins have been reported, there is practically no information. Zot activates a cascade of signals inside of the cell that increase the permeability of epithelial barrier, while RTX causes depolymerization of the actin cytoskeleton and Ace increases the permeability of intestinal cell monolayers. The goal of this study is to acquire information about the distribution of these toxins in human pathogenic Vibrios and to review the progress in the study of their role in the intestinal epithelium during infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Victor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
14
|
A Novel Glaesserella sp. Isolated from Pigs with Severe Respiratory Infections Has a Mosaic Genome with Virulence Factors Putatively Acquired by Horizontal Transfer. Appl Environ Microbiol 2018; 84:AEM.00092-18. [PMID: 29572210 DOI: 10.1128/aem.00092-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2018] [Accepted: 03/19/2018] [Indexed: 01/31/2023] Open
Abstract
An unknown member of the family Pasteurellaceae was repeatedly isolated from 20- to 24-week-old pigs with severe pulmonary lesions reared on the same farm in Victoria, Australia. The etiological diagnosis of the disease was inconclusive. The complete genome sequence analysis of one strain, 15-184, revealed some phylogenic proximity to Glaesserella (Haemophilus) parasuis, the cause of Glasser's disease. However, the sequences of the 16S rRNA and housekeeping genes, as well as the average nucleotide identity scores, differed from those of all other known species in the family Pasteurellaceae The protein content of 15-184 was composite, with 60% of coding sequences matching known G. parasuis products, while more than 20% had a closer relative in the genera Actinobacillus, Mannheimia, Pasteurella, and Bibersteinia Several putative virulence genes absent from G. parasuis but present in other Pasteurellaceae were also found, including the apxIII RTX toxin gene from Actinobacillus pleuropneumoniae, ABC transporters from Actinobacillus minor, and iron transporters from various species. Three prophages and one integrative conjugative element were present in the isolate. Horizontal gene transfers might explain the mosaic genomic structure and atypical metabolic and virulence characteristics of 15-184. This organism has not been assigned a taxonomic position in the family, but this study underlines the need for a large-scale epidemiological and clinical characterization of this novel pathogen in swine populations, as a genomic analysis suggests it could have a severe impact on pig health.IMPORTANCE Several species of Pasteurellaceae cause a range of significant diseases in pigs. A novel member of this family was recently isolated from Australian pigs suffering from severe respiratory infections. Comparative whole-genome analyses suggest that this bacterium represents a new species, which possesses a number of virulence genes horizontally acquired from a diverse range of other Pasteurellaceae While the possible contribution of other coinfecting noncultivable agents to the disease has not been ruled out in this study, the repertoire of virulence genes found in this organism may nevertheless explain some aspects of the associated pathology observed on the farm. The prevalence of this novel pathogen within pig populations is currently unknown. This finding is of particular importance for the pig industry, as this organism can have a serious impact on the health of these animals.
Collapse
|
15
|
Wu HC, Yeh PH, Hsueh KJ, Yang WJ, Chu CY. Recombinant ApxIV protein enhances protective efficacy against Actinobacillus pleuropneumoniae in mice and pigs. J Appl Microbiol 2018; 124:1366-1376. [PMID: 29431246 DOI: 10.1111/jam.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 11/28/2022]
Abstract
AIMS Available bacterins, commercial or autogenous, for Actinobacillus pleuropneumoniae disease control have, thus far, shown debatable protective efficacy and only in homologous challenges. Our study sought to determine whether the addition of reombinant protein ApxIV to the multicomponent vaccine could enhance protection against homologous and heterologous challenge of A. pleuropneumoniae. METHODS AND RESULTS The virulence of ApxI, ApxII, ApxIV and OMP were cloned and expressed using a prokaryotic system; these recombinant proteins were combined with inactivated A. pleuropneumoniae serovar 1 to formulate different multicomponent vaccines. Immune response and protective efficacy of the vaccines were evaluated in mice and pigs. A protection rate of 67% was observed against heterologous challenge in mice vaccinated with the rApxIV formulation. Piglets vaccinated with vaccine containing ApxIV produced significantly higher antibody titre and provided complete protection and reduced gross lesions by 67% when compared with the nonimmunized group after homologous challenge. Additionally, flow cytometry analysis showed significant cellular immune response. CONCLUSIONS The results of our vaccination experiments revealed that a combination of inactivated bacteria and the recombinant antigens rApxI, rApxII, rApxIV and rOMP can provide effective protection against heterologous A. pleuropneumoniae challenge. SIGNIFICANCE AND IMPACT OF THE STUDY The addition of ApxIV to the multicomponent vaccine could enhance homologous and heterologous protection in mice and pigs, respectively, against challenge by A. pleuropneumoniae.
Collapse
Affiliation(s)
- H-C Wu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - P-H Yeh
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - K-J Hsueh
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - W-J Yang
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, Taiwan
| | - C-Y Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
16
|
Ding W, Ma C, Zhang W, Chiang H, Tam C, Xu Y, Zhang G, Qian PY. Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses. BIOFOULING 2018; 34:111-122. [PMID: 29334812 DOI: 10.1080/08927014.2017.1409891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/10/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Butenolide is an environmentally friendly antifouling natural product, but its efficiency and mechanism in preventing biofilm formation have not been examined. Furthermore, controlling the release of butenolide from paints into seawater is technically challenging. A coating was developed by mixing butenolide with a biodegradable polymer, poly (ε-caprolactone)-based polyurethane, and a one-month in situ anti-biofilm test was conducted in a subtidal area. The constant release of butenolide from the surface suggested that its release was well controlled. Direct observation and confocal microscope investigation indicated that the coating was effective against both biofilm formation and attachment of large fouling organisms. Metatranscriptomic analysis of biofilm samples implied that the coating selectively inhibited the adhesion of microbes from a variety of phyla and targeted particular functional pathways including energy metabolism, drug transport and toxin release. These integrated analyses demonstrated the potential application of this butenolide/polymer coating as an anti-biofilm material.
Collapse
Key Words
- ABC transporters, ATP-binding cassette transporters
- Anti-biofilm
- CLSM, confocal laser scanning microscopy
- COGs, Clusters of Orthologous Groups
- DBTDL, dibutyltin dilaurate
- DCOIT, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one
- FITC, fluorescein isothiocyanate
- HPLC, high performance liquid chromatography
- PCA, principal component analysis
- RTX, repeats-in-toxin
- butenolide
- butenolide, 5-octylfuran-2(5H)-one
- metatranscriptomics
- polymer coating
Collapse
Affiliation(s)
- Wei Ding
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Chunfeng Ma
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
- b Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou , PR China
| | - Weipeng Zhang
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Hoyin Chiang
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Chunkit Tam
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| | - Ying Xu
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
- c College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , PR China
| | - Guangzhao Zhang
- b Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou , PR China
| | - Pei-Yuan Qian
- a Division of Life Science , Hong Kong University of Science and Technology , Hong Kong , PR China
| |
Collapse
|
17
|
Gignoux-Wolfsohn SA, Aronson FM, Vollmer SV. Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. FEMS Microbiol Ecol 2017. [PMID: 28637338 DOI: 10.1093/femsec/fix080] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Increased bacterial diversity on diseased corals can obscure disease etiology and complicate our understanding of pathogenesis. To untangle microbes that may cause white band disease signs from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an infectious dose from visibly diseased corals. We sampled these dosed corals and healthy controls over time for sequencing of the bacterial 16S region. Endozoicomonas were associated with healthy fragments from 4/10 colonies, dominating microbiomes before dosing and decreasing over time only in corals that displayed disease signs, suggesting a role in disease resistance. We grouped disease-associated bacteria by when they increased in abundance (primary vs secondary) and whether they originated in the dose (colonizers) or the previously healthy corals (responders). We found that all primary responders increased in all dosed corals regardless of final disease state and are therefore unlikely to cause disease signs. In contrast, primary colonizers in the families Pasteurellaceae and Francisellaceae increased solely in dosed corals that ultimately displayed disease signs, and may be infectious foreign bacteria involved in the development of disease signs. Moving away from a static comparison of diseased and healthy bacterial communities, we provide a framework to identify key players in other coral diseases.
Collapse
Affiliation(s)
- Sarah A Gignoux-Wolfsohn
- Department of Ecology, Evolution, & Natural Resources School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA
| | - Felicia M Aronson
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
18
|
Oppermann T, Busse N, Czermak P. Mannheimia haemolytica growth and leukotoxin production for vaccine manufacturing — A bioprocess review. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022] Open
|
19
|
Pedersen IJ, Pors SE, Bager Skjerning RJ, Nielsen SS, Bojesen AM. Immunogenic and protective efficacy of recombinant protein GtxA-N against Gallibacterium anatis challenge in chickens. Avian Pathol 2016; 44:386-91. [PMID: 26443063 DOI: 10.1080/03079457.2015.1069259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
Gallibacterium anatis is a major cause of reproductive tract infections in chickens. Here, we aimed to evaluate the efficacy of the recombinant protein GtxA-N at protecting hens, by addressing three objectives; (i) evaluating the antibody response following immunization (ii) scoring and comparing lesions, following challenge with G. anatis, in immunized and non-immunized hens and (iii) investigating if the anti-GtxA-N antibody titre in individual hens correlated with the observed lesions. Two consecutive experiments were performed in hens. In the first experiment hens were immunized with GtxA-N on day 0 and day 14, infected with G. anatis on day 28 and euthanized on day 56. The GtxA-N antibody response was assessed in pooled serum samples throughout the experiment, using an indirect enzyme-linked immunosorbent assay (ELISA). In the second experiment the GtxA-N antibody titres were assessed in individual hens before and after immunization. Subsequently, the hens were inoculated with G. anatis and finally all hens where euthanized and submitted for post mortem examination 48 h after inoculation. Immunization elicited strong antibody responses that lasted at least 8 weeks (P < .0001). The individual antibody titres observed in response to immunization varied considerably among hens (range: 174,100-281,500). Lesion scores following G. anatis infection were significantly lower in immunized hens compared to non-immunized hens (P = .004). Within the immunized group, no correlation was found between the individual antibody titres and the lesion scores. This study clearly demonstrated GtxA-N as a vaccine antigen able of inducing protective immunity against G. anatis.
Collapse
Affiliation(s)
- Ida J Pedersen
- a Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
| | - Susanne E Pors
- a Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
| | - Ragnhild J Bager Skjerning
- a Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
| | - Søren S Nielsen
- b Department of Large Animal Science, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
| | - Anders M Bojesen
- a Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg , Denmark
| |
Collapse
|
20
|
|
21
|
Hsu CW, Li SC, Chang NY, Chen ZW, Liao JW, Chen TH, Wang JP, Lin JH, Hsuan SL. Involvement of NF-κB in regulation of Actinobacillus pleuropneumoniae exotoxin ApxI-induced proinflammatory cytokine production in porcine alveolar macrophages. Vet Microbiol 2016; 195:128-135. [PMID: 27771058 DOI: 10.1016/j.vetmic.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Actinobacillus pleuropneumoniae is a crucial respiratory pathogen that causes fibrinous, hemorrhagic, necrotizing pleuropneumonia in pigs. A. pleuropneumoniae exotoxins (ApxI to IV) are the major virulence factors contributing to A. pleuropneumoniae pathogenesis. Previously, we demonstrated that ApxI induces the expression of proinflammatory cytokines in porcine alveolar macrophages (PAMs) via the mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK). Nonetheless, the role of nuclear factor (NF)-κB-a transcription factor widely implicated in immune and inflammatory responses-in ApxI-elicited cytokine production has yet to be defined. In the present study, we examined the involvement of NF-κB in ApxI-elicited production of interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α in PAMs and investigated the correlation between NF-κB and MAPK (p38 and JNK) pathways in this event. The results of Western blot analysis, confocal microscopy, and a DNA binding activity assay revealed that the classical NF-κB pathway was activated by ApxI, as evidenced by the decreased levels of IκB and subsequent NF-κB translocation and activation in ApxI-stimulated PAMs. Moreover, the blocking of ApxI-induced NF-κB activation significantly attenuated the levels of mRNA and protein secretion of IL-1β, IL-8, and TNF-α in PAMs. Notably, the attenuation of JNK activation by a specific inhibitor (SP600125) reduced ApxI-induced NF-κB activation, whereas a p38 blocker (SB203580) had no effect on the NF-κB pathway. Further examination revealed that the level of phosphorylation at serine 536 on the NF-κB p65 subunit was dependent on JNK activity. Collectively, this study, for the first time, demonstrates a pivotal role of NF-κB in ApxI-induced IL-1β, IL-8, and TNF-α production; JNK, but not p38, may positively affect the activation of the classical NF-κB pathway.
Collapse
Affiliation(s)
- Chiung-Wen Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC; Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Siou-Cen Li
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC; Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Nai-Yun Chang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Zeng-Weng Chen
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Jyh-Perng Wang
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Shih-Ling Hsuan
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
22
|
Persson G, Bojesen AM. Bacterial determinants of importance in the virulence of Gallibacterium anatis in poultry. Vet Res 2015; 46:57. [PMID: 26063044 PMCID: PMC4462078 DOI: 10.1186/s13567-015-0206-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2015] [Accepted: 05/11/2015] [Indexed: 11/12/2022] Open
Abstract
Gallibacterium anatis, a member of the Pasteurellaceae family, constitute a part of the normal micro-flora of the upper respiratory tract and the lower genital tract in chickens. However, increasing evidence indicate that G. anatis is also associated with a wide range of pathological changes, particularly in the reproductive organs, which leads to decreased egg production, lowered animal welfare and increased mortality. As a recently defined opportunistic pathogen limited focus has been placed on the pathogenesis and putative virulence factors permitting G. anatis to cause disease. One of the most studied virulence determinants is a large RTX-like toxin (GtxA), which has been demonstrated to induce a strong leukotoxic effect on avian macrophages. A number of fimbria of different sizes and shapes has been described. Particularly fimbriae belonging to the F17-like family appears to be common in a diverse selection of G. anatis strains. Mutants lacking the FlfA fimbria were severely attenuated in experimentally infected chickens. Additional characteristics including the ability to express capsular material possibly involved in serum resistance; secretion of metalloproteases capable of degrading immunoglobulins, and hemagglutinins, which may promote biofilm formation are all factors likely linked to the virulence of G. anatis. A major advantage for the study of how G. anatis interact with its host is the ability to perform biologically relevant experimental infections where natural routes of exposure allows reproduction of lesions observed during spontaneous infections. This review summarizes the current understanding of the G. anatis pathogenesis and discusses the contribution of the established and putative virulence factors described for this bacterium to date.
Collapse
Affiliation(s)
- Gry Persson
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
23
|
Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 2014; 304:521-9. [DOI: 10.1016/j.ijmm.2014.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
|
24
|
Layman QD, Rezabek GB, Ramachandran A, Love BC, Confer AW. A retrospective study of equine actinobacillosis cases: 1999-2011. J Vet Diagn Invest 2014; 26:365-375. [PMID: 24742921 DOI: 10.1177/1040638714531766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Several Actinobacillus spp. are common commensal bacteria of the oral cavity, gastrointestinal tract, and reproductive tract of horses and can cause disease in both foals and adults. The current retrospective study was designed to review Actinobacillus spp. isolated from clinical samples or necropsies of 99 horses during 1999-2011. The cases consisted of 43 foals (<6 months of age), 4 young adults (6 months-2 years), 39 adults (>2 years of age), 2 aborted fetuses, and 11 with unspecified ages. Clinical history, signs, bacterial species isolated, and associated lesions were documented. Actinobacillus spp. were isolated 111 times. The most common isolates were Actinobacillus equuli subsp. equuli (38.7%) and hemolytic Actinobacillus spp. (24.3%). Other isolates were Actinobacillus lignieresii (5.4%), Actinobacillus pleuropneumoniae (1.8%), and unclassified Actinobacillus spp. (28.8%). Actinobacillus equuli subsp. equuli was most commonly isolated from clinical and necropsy cases of septicemia and respiratory disease in both foals and adults. Embolic nephritis, the classical septicemic lesion of equine neonatal actinobacillosis, was also present in several adult septicemic actinobacillosis cases. Predisposing factors such as failure of passive transfer of colostral antibodies as well as concurrent pathogenic bacterial or viral infections were present in numerous actinobacillosis cases. There were many cases, however, for which a predisposing factor or concurrent infection was not documented or apparent, suggesting that Actinobacillus spp. can be primary pathogens under the right circumstances and in the right location.
Collapse
Affiliation(s)
- Quinci D Layman
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Grant B Rezabek
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Akhilesh Ramachandran
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Brenda C Love
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| | - Anthony W Confer
- Oklahoma State University, Center of Veterinary Health Sciences, Department of Veterinary Pathobiology (Layman, Confer), Stillwater, OKOklahoma Animal Disease Diagnostic Laboratory (Rezabek, Ramachandran, Love), Stillwater, OK
| |
Collapse
|
25
|
Simultaneous detection of antibodies against Apx toxins ApxI, ApxII, ApxIII, and ApxIV in pigs with known and unknown Actinobacillus pleuropneumoniae exposure using a multiplexing liquid array platform. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:85-95. [PMID: 24226091 DOI: 10.1128/cvi.00451-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Surveillance for the presence of Actinobacillus pleuropneumoniae infection in a population plays a central role in controlling the disease. In this study, a 4-plex fluorescent microbead-based immunoassay (FMIA), developed for the simultaneous detection of IgG antibodies to repeat-in-toxin (RTX) toxins (ApxI, ApxII, ApxIII, and ApxIV) of A. pleuropneumoniae, was evaluated using (i) blood serum samples from pigs experimentally infected with each of the 15 known A. pleuropneumoniae serovars or with Actinobacillus suis, (ii) blood serum samples from pigs vaccinated with a bacterin containing A. pleuropneumoniae serovar 1, 3, 5, or 7, and (iii) blood serum samples from pigs with an unknown A. pleuropneumoniae exposure status. The results were compared to those obtained in a previous study where a dual-plate complement fixation test (CFT) and three commercially available enzyme-linked immunosorbent assays (ELISAs) were conducted on the same sample set. On samples from experimentally infected pigs, the 4-plex Apx FMIA detected specific seroconversion to Apx toxins as early as 7 days postinfection in a total of 29 pigs inoculated with 14 of the 15 A. pleuropneumoniae serovars. Seroconversion to ApxII and ApxIII was detected by FMIA in pigs inoculated with A. suis. The vaccinated pigs showed poor humoral responses against ApxI, ApxII, ApxIII, and ApxIV. In the field samples, the humoral response to ApxIV and the A. pleuropneumoniae seroprevalence increased with age. This novel FMIA (with a sensitivity of 82.7% and a specificity of 100% for the anti-ApxIV antibody) was found to be more sensitive and accurate than current tests (sensitivities, 9.5 to 56%; specificity, 100%) and is potentially an improved tool for the surveillance of disease and for monitoring vaccination compliance.
Collapse
|
26
|
Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol 2013; 8:73-84. [PMID: 23252494 DOI: 10.2217/fmb.12.131] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.
Collapse
Affiliation(s)
- Travis J Wiles
- Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA
| | | |
Collapse
|
27
|
Küng E, Frey J. AvxA, a composite serine-protease-RTX toxin of Avibacterium paragallinarum. Vet Microbiol 2013; 163:290-8. [DOI: 10.1016/j.vetmic.2012.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/27/2022]
|
28
|
Aulik NA, Atapattu DN, Czuprynski CJ, McCaslin DR. Brief heat treatment causes a structural change and enhances cytotoxicity of theEscherichia coliα-hemolysin. Immunopharmacol Immunotoxicol 2012; 35:15-27. [DOI: 10.3109/08923973.2012.723009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
|
29
|
Pan YC, Tan DH, Shien JH, Liu CC, He YS, Shen PC, Chang PC. Identification and Characterization of an RTX Toxin–Like Gene and Its Operon from Avibacterium paragallinarum. Avian Dis 2012; 56:537-44. [DOI: 10.1637/10047-122211-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|
30
|
Expression and secretion of the RTX-toxin GtxA among members of the genus Gallibacterium. Vet Microbiol 2011; 153:116-23. [DOI: 10.1016/j.vetmic.2011.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2010] [Revised: 05/02/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
|
31
|
Wu CM, Chen ZW, Chen TH, Liao JW, Lin CC, Chien MS, Lee WC, Hsuan SL. Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages. Vet Microbiol 2011; 151:372-8. [DOI: 10.1016/j.vetmic.2011.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2010] [Revised: 03/26/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
32
|
Common ancestry and novel genetic traits of Francisella novicida-like isolates from North America and Australia as revealed by comparative genomic analyses. Appl Environ Microbiol 2011; 77:5110-22. [PMID: 21666011 DOI: 10.1128/aem.00337-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Francisella novicida is a close relative of Francisella tularensis, the causative agent of tularemia. The genomes of F. novicida-like clinical isolates 3523 (Australian strain) and Fx1 (Texas strain) were sequenced and compared to F. novicida strain U112 and F. tularensis strain Schu S4. The strain 3523 chromosome is 1,945,310 bp and contains 1,854 protein-coding genes. The strain Fx1 chromosome is 1,913,619 bp and contains 1,819 protein-coding genes. NUCmer analyses revealed that the genomes of strains Fx1 and U112 are mostly colinear, whereas the genome of strain 3523 has gaps, translocations, and/or inversions compared to genomes of strains Fx1 and U112. Using the genome sequence data and comparative analyses with other members of the genus Francisella, several strain-specific genes that encode putative proteins involved in RTX toxin production, polysaccharide biosynthesis/modification, thiamine biosynthesis, glucuronate utilization, and polyamine biosynthesis were identified. The RTX toxin synthesis and secretion operon of strain 3523 contains four open reading frames (ORFs) and was named rtxCABD. Based on the alignment of conserved sequences upstream of operons involved in thiamine biosynthesis from various bacteria, a putative THI box was identified in strain 3523. The glucuronate catabolism loci of strains 3523 and Fx1 contain a cluster of nine ORFs oriented in the same direction that appear to constitute an operon. Strains U112 and Schu S4 appeared to have lost the loci for RTX toxin production, thiamine biosynthesis, and glucuronate utilization as a consequence of host adaptation and reductive evolution. In conclusion, comparative analyses provided insights into the common ancestry and novel genetic traits of these strains.
Collapse
|
33
|
Sasaki H, Ishikawa H, Sato T, Sekiguchi S, Amao H, Kawamoto E, Matsumoto T, Shirama K. Molecular and virulence characteristics of an outer membrane-associated RTX exoprotein in Pasteurella pneumotropica. BMC Microbiol 2011; 11:55. [PMID: 21410992 PMCID: PMC3075217 DOI: 10.1186/1471-2180-11-55] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2010] [Accepted: 03/17/2011] [Indexed: 11/18/2022] Open
Abstract
Background Pasteurella pneumotropica is a ubiquitous bacterium that is frequently isolated from laboratory rodents and causes various clinical symptoms in immunodeficient animals. Currently two RTX toxins, PnxIA and PnxIIA, which are similar to hemolysin-like high-molecular-weight exoproteins are known in this species. In this study, we identified and analyzed a further RTX toxin named PnxIIIA and the corresponding type I secretion system. Results The RTX exoprotein, PnxIIIA, contains only a few copies of the RTX repeat-like sequence and 3 large repeat sequences that are partially similar to the outer membrane protein found in several prokaryotes. Recombinant PnxIIIA protein (rPnxIIIA) was cytotoxic toward J774A.1 mouse macrophage cells, whereas cytotoxicity was attenuated by the addition of anti-CD11a monoclonal antibody. rPnxIIIA could bind to extracellular matrices (ECMs) and cause hemagglutination of sheep erythrocytes. Binding was dependent on the 3 large repeat sequences in PnxIIIA. Protein interaction analyses indicated that PnxIIIA is mainly localized in the outer membrane of P. pneumotropica ATCC 35149 in a self-assembled oligomeric form. PnxIIIA is less cytotoxic to J774A.1 cells than PnxIA and PnxIIA. Conclusions The results implicate that PnxIIIA is located on the cell surface and participates in adhesion to ECMs and enhanced hemagglutination in the rodent pathogen P. pneumotropica.
Collapse
Affiliation(s)
- Hiraku Sasaki
- Animal Research Center, Tokyo Medical University, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Aulik NA, Hellenbrand KM, Kisiela D, Czuprynski CJ. Mannheimia haemolytica leukotoxin binds cyclophilin D on bovine neutrophil mitochondria. Microb Pathog 2011; 50:168-78. [PMID: 21220005 DOI: 10.1016/j.micpath.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 01/03/2023]
Abstract
Mannheimia haemolytica is an important member of the bovine respiratory disease (BRD) complex that causes fibrinous and necrotizing pleuropneumonia in cattle. BRD is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. The most important virulence factor of M. haemolytica is its leukotoxin. Previous research in our laboratory has shown that the leukotoxin is able to enter into and traffic to the mitochondria of a bovine lymphoblastoid cell line (BL-3). In this study, we evaluated the ability of LKT to be internalized and travel to mitochondria in bovine neutrophils. We demonstrate that LKT binds bovine neutrophil mitochondria and co-immunoprecipitates with TOM22 and TOM40, which are members of the translocase of the outer mitochondrial (TOM) membrane family. Upon entry into mitochondria, LKT co-immunoprecipitates with cyclophilin D, a member of the mitochondria permeability transition pore. Unlike BL-3 cells, bovine neutrophil mitochondria are not protected against LKT by the membrane-stabilizing agent cyclosporin A, nor were bovine neutrophil mitochondria protected by the permeability transition pore antagonist bongkrekic acid. In addition, we found that bovine neutrophil cyclophilin D is significantly smaller than that found in BL-3 cells. Bovine neutrophils were protected against LKT by protein transfection of an anti-cyclophilin D antibody directed at the C-terminal amino acids, but not an antibody against the first 50 N-terminal amino acids. In contrast, BL-3 cells were protected by antibodies against either the C-terminus or N-terminus of cyclophilin. These data confirm that LKT binds to bovine neutrophil mitochondria, but indicate there are distinctions between neutrophil and BL-3 mitochondria that might reflect differences in cyclophilin D.
Collapse
Affiliation(s)
- Nicole A Aulik
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
35
|
Chen ZW, Chien MS, Chang NY, Chen TH, Wu CM, Huang C, Lee WC, Hsuan SL. Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1β, IL-8 and TNF-α in porcine alveolar macrophages. Vet Res 2011; 42:25. [PMID: 21314908 PMCID: PMC3041667 DOI: 10.1186/1297-9716-42-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2010] [Accepted: 01/13/2011] [Indexed: 11/12/2022] Open
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs) to transcribe mRNAs of IL-1β, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1β, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK) were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1β, IL-8 and TNF-α production. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1β, IL-8 or TNF-α gene, indicating a pivotal role of β2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1β, IL-8 and TNF-α in PAMs that involves β2 integrins and downstream MAPKs.
Collapse
Affiliation(s)
- Zeng-Weng Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250, Kuo Kuang Road, Taichung, 402, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
38
|
Mannheimia haemolytica and its leukotoxin cause neutrophil extracellular trap formation by bovine neutrophils. Infect Immun 2010; 78:4454-66. [PMID: 20823211 DOI: 10.1128/iai.00840-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Mannheimia haemolytica is an important member of the bovine respiratory disease complex, which is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. Recently several authors have reported that human neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of trapping and killing pathogens. Here, we demonstrate that the leukotoxin (LKT) of M. haemolytica causes NET formation by bovine neutrophils in a CD18-dependent manner. Using an unacylated, noncytotoxic pro-LKT produced by an ΔlktC mutant of M. haemolytica, we show that binding of unacylated pro-LKT stimulates NET formation despite a lack of cytotoxicity. Inhibition of LKT binding to the CD18 chain of lymphocyte function-associated antigen 1 (LFA-1) on bovine neutrophils reduced NET formation in response to LKT or M. haemolytica cells. Further investigation revealed that NETs formed in response to M. haemolytica are capable of trapping and killing a portion of the bacterial cells. NET formation was confirmed by confocal microscopy and by scanning and transmission electron microscopy. Prior exposure of bovine neutrophils to LKT enhanced subsequent trapping and killing of M. haemolytica cells in bovine NETs. Understanding NET formation in response to M. haemolytica and its LKT provides a new perspective on how neutrophils contribute to the pathogenesis of bovine respiratory disease.
Collapse
|
39
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
|
40
|
|
41
|
Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol 2010; 60:44-50. [DOI: 10.1099/ijs.0.011809-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative, coccoid, non-motile bacteria that are catalase-, urease- and indole-negative, facultatively anaerobic and oxidase-positive were isolated from the bovine rumen using an improved selective medium for members of the Pasteurellaceae. All strains produced significant amounts of succinic acid under anaerobic conditions with glucose as substrate. Phenotypic characterization and multilocus sequence analysis (MLSA) using 16S rRNA, rpoB, infB and recN genes were performed on seven independent isolates. All four genes showed high sequence similarity to their counterparts in the genome sequence of the patent strain MBEL55E, but less than 95 % 16S rRNA gene sequence similarity to any other species of the Pasteurellaceae. Genetically these strains form a very homogeneous group in individual as well as combined phylogenetic trees, clearly separated from other genera of the family from which they can also be separated based on phenotypic markers. Genome relatedness as deduced from the recN gene showed high interspecies similarities, but again low similarity to any of the established genera of the family. No toxicity towards bovine, human or fish cells was observed and no RTX toxin genes were detected in members of the new taxon. Based on phylogenetic clustering in the MLSA analysis, the low genetic similarity to other genera and the phenotypic distinction, we suggest to classify these bovine rumen isolates as Basfia succiniciproducens gen. nov., sp. nov. The type strain is JF4016T (=DSM 22022T =CCUG 57335T).
Collapse
Affiliation(s)
- Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | | | | | - Désirée Mayor
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| |
Collapse
|
42
|
Kristensen BM, Frees D, Bojesen AM. GtxA from Gallibacterium anatis, a cytolytic RTX-toxin with a novel domain organisation. Vet Res 2009; 41:25. [PMID: 19954731 PMCID: PMC2820230 DOI: 10.1051/vetres/2009073] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2009] [Accepted: 12/02/2009] [Indexed: 11/29/2022] Open
Abstract
Gallibacterium anatis is a pathogen in chickens and other avian species where it is a significant cause of salpingitis and peritonitis. We found that bacterial cells and cell-free, filter-sterilised culture supernatant from the haemolytic G. anatis biovar haemolytica were highly cytotoxic towards avian-derived macrophage-like cells (HD11). We obtained the genome sequence of G. anatis 12656-12 and used a rational approach to identify a gene predicted to encode a 2026 amino acid RTX-toxin, which we named GtxA (Gallibacterium toxin). The construction of a gtxA knock-out mutant showed gtxA to be responsible for G. anatis’ haemolytic and leukotoxic activity. In addition, Escherichia coli expressing gtxA and an adjacent acyltransferase, gtxC, became cytolytic. GtxA was expressed during in vitro growth and was localised in the extracellular protein fraction in a growth phase dependent manner. GtxA had an unusual modular structure; the C-terminal 1000 amino acids of GtxA were homologous to the classical pore-forming RTX-toxins in other members of Pasteurellaceae. In contrast, the N-terminal approximately 950 amino acids had few significant matches in sequence databases. Expression of truncated GtxA proteins demonstrated that the C-terminal RTX-domain had a lower haemolytic activity than the full-length toxin, indicating that the N-terminal domain was required for maximal haemolytic activity. Cytotoxicity towards HD11 cells was not detected with the C-terminal alone, suggesting that the N-terminal domain plays a critical role for the leukotoxicity.
Collapse
Affiliation(s)
- Bodil Marie Kristensen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | |
Collapse
|
43
|
Arya G, Niven DF. Production of haemolysins by strains of the Actinobacillus minor/"porcitonsillarum" complex. Vet Microbiol 2009; 141:332-41. [PMID: 19819087 DOI: 10.1016/j.vetmic.2009.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 11/29/2022]
Abstract
Actinobacillus minor and "Actinobacillus porcitonsillarum" are distinguished by their haemolytic activities, the latter organism being haemolytic and the former, non-haemolytic. Analysis of a whole genome shotgun sequence, however, revealed that A. minor strain 202, like "A. porcitonsillarum", possesses a haemolysin-encoding apxII operon. The purpose of this study was therefore to investigate haemolysin production by this organism and also by three additional members of the A. minor/"porcitonsillarum" complex, strains 33PN and 7ATS and A. minor strain NM305(T). Primers based on sequences within the apxII genes of strain 202 allowed the amplification of appropriately sized fragments from DNA from strain 33PN suggesting that this organism also possesses an apxII operon. Analysis of a whole genome shotgun sequence failed to reveal any trace of an apxII operon in strain NM305(T) and attempts to amplify apxII genes from DNA from strain 7ATS also failed. Strains 202 and 33PN, and surprisingly, the type strain of A. minor and strain 7ATS, were all found to be haemolysin-positive as growth media from cultures of these organisms could promote the lysis of erythrocytes in suspension. The erythrocyte specificities of the haemolysins produced by strains 202 and 33PN indicated that the haemolytic activities exhibited by these organisms were due to ApxII. In keeping with the apparent lack of apxII genes in strains NM305(T) and 7ATS, the haemolysins produced by these organisms were not erythrocyte-specific and with both organisms, haemolytic activity appeared to be due to a combination of heat-stable and heat-labile components. The identities of these components, however, remain unknown.
Collapse
Affiliation(s)
- Gitanjali Arya
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
44
|
Scholten E, Renz T, Thomas J. Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett 2009; 31:1947-51. [DOI: 10.1007/s10529-009-0104-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 11/30/2022]
|
45
|
Sannigrahi S, Zhang X, Tzeng YL. Regulation of the type I protein secretion system by the MisR/MisS two-component system in Neisseria meningitidis. MICROBIOLOGY-SGM 2009; 155:1588-1601. [PMID: 19372150 DOI: 10.1099/mic.0.023945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, NMB1400 (hlyB) and NMB1738/1737 (hlyD/tolC), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both hlyB and hlyD by primer extension and lacZ reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of hlyB and hlyD/tolC. Direct binding of MisR to hlyB and hlyD promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of hlyB transcription by MisR was supported by in vitro transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of hlyB, suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from misS mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.
Collapse
Affiliation(s)
- Soma Sannigrahi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xinjian Zhang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
46
|
Identification and characterization of hemolysin-like proteins similar to RTX toxin in Pasteurella pneumotropica. J Bacteriol 2009; 191:3698-705. [PMID: 19363112 DOI: 10.1128/jb.01527-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Pasteurella pneumotropica is an opportunistic pathogen that causes lethal pneumonia in immunodeficient rodents. The virulence factors of this bacterium remain unknown. In this study, we identified the genes encoding two RTX toxins, designated as pnxI and pnxII, from the genomic DNA of P. pneumotropica ATCC 35149 and characterized with respect to hemolysis. The pnxI operon was organized according to the manner in which the genes encoded the structural RTX toxin (pnxIA), the type I secretion systems (pnxIB and pnxID), and the unknown orf. The pnxII gene was involved only with the pnxIIA that coded for a structural RTX toxin. Both the structural RTX toxins of deduced PnxIA and PnxIIA were involved in seven of the RTX repeat and repeat-like sequences. By quantitative PCR analysis of the structural RTX toxin-encoding genes in P. pneumotropica ATCC 35149, the gene expression of pnxIA was found to have increased from the early log phase, while that of pnxIIA increased from the late log to the early stationary phase. As expressed in Escherichia coli, both the recombinant proteins of PnxIA and PnxIIA showed weak hemolytic activity in both sheep and murine erythrocytes. On the basis of the results of the Southern blotting analysis, the pnxIA gene was detected in 82% of the isolates, while the pnxIIA gene was detected in 39%. These results indicate that the products of both pnxIA and pnxIIA were putative associations of virulence factors in the rodent pathogen P. pneumotropica.
Collapse
|
47
|
Gouré J, Findlay WA, Deslandes V, Bouevitch A, Foote SJ, MacInnes JI, Coulton JW, Nash JHE, Jacques M. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae. BMC Genomics 2009; 10:88. [PMID: 19239696 PMCID: PMC2653537 DOI: 10.1186/1471-2164-10-88] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2008] [Accepted: 02/24/2009] [Indexed: 11/12/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology.
Collapse
Affiliation(s)
- Julien Gouré
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Atapattu DN, Aulik NA, McCaslin DR, Czuprynski CJ. Brief heat treatment increases cytotoxicity of Mannheimia haemolytica leukotoxin in an LFA-1 independent manner. Microb Pathog 2009; 46:159-65. [PMID: 19185607 DOI: 10.1016/j.micpath.2008.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2008] [Revised: 12/16/2008] [Accepted: 12/30/2008] [Indexed: 11/25/2022]
Abstract
Mannheimia haemolytica is an important respiratory pathogen in cattle. Its predominant virulence factor is a leukotoxin (LKT) that is a member of the RTX family of exotoxins produced by a variety of Gram negative bacteria. LKT binds to the CD18 chain of beta(2) integrins on bovine leukocytes, resulting in cell death. In this study, we show that brief heat treatment of native LKT (95 degrees C for 3 min) results in increased cytotoxicity for BL-3 (bovine lymphoblastoid) cells. Similar heat treatment restored the activity of LKT that had been rendered inactive by incubation at 22 degrees C for 3 days. A hallmark of LKT is that its toxicity is restricted to leukocytes from cattle or other ruminant species. Surprisingly, heat treatment rendered LKT cytotoxic for human, porcine and canine leukocytes. Membrane binding studies suggested that heat-treated LKT binds to membrane proteins other than LFA-1, and is distributed diffusely along the BL-3 cell membrane. Circular Dichroism spectroscopy studies indicate that heat treatment induced a small change in the secondary structure of the LKT that was not reversed when the LKT was cooled to room temperature. Thus, we speculate that these structural changes might contribute to the altered biological properties of heat-treated LKT.
Collapse
Affiliation(s)
- Dhammika N Atapattu
- Department of Pathobiological Sciences, University of Wisconsin, 2015, Linden Drive, West, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
49
|
Lee BC, Choi SH, Kim TS. Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect 2008; 10:1504-13. [DOI: 10.1016/j.micinf.2008.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 01/06/2023]
|
50
|
Pusterla N, Jones MEB, Mohr FC, Higgins JK, Mapes S, Jang SS, Samitz EM, Byrne BA. Fatal pulmonary hemorrhage associated with RTX toxin producing Actinobacillus equuli subspecies haemolyticus infection in an adult horse. J Vet Diagn Invest 2008; 20:118-21. [PMID: 18182526 DOI: 10.1177/104063870802000127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
A case of fatal pulmonary hemorrhage in a 6-year-old American Paint mare with a 2-week history of intermittent coughing, fever, and epistaxis is described. Significant macroscopic abnormalities at postmortem examination were restricted to the respiratory system, and microscopically, severe pulmonary hemorrhage with suppurative bronchopneumonia was found. Actinobacillus equuli subsp. haemolyticus was cultured from a transtracheal wash performed antemortem as well as from the lungs at necropsy. The presence of airway-associated hemorrhage in conjunction with bacterial bronchopneumonia suggested endothelial damage caused by a locally elaborated bacterial toxin, possibly produced by the A. equuli strain isolated from the lungs. The objective of this report was to indirectly document the presence of hemolysin repeat in structural toxin (RTX) in the lungs of the reported mare. A real-time polymerase chain reaction (PCR) assay targeting the recently described aqx gene of A. equuli subsp. haemolyticus was established and validated. Transcriptional activity of the aqx gene was used as a surrogate method to document toxin production. Real-time PCR analysis of the transtracheal fluid and lung tissue of the affected mare confirmed the presence and the transcriptional activity of the aqx gene at the genomic (gDNA) and complementary DNA (cDNA) levels, respectively. The presence of pneumonia associated with hemorrhagic pulmonary fluid and the culture of large numbers of hemolytic A. equuli should prompt the clinician to consider endothelial damage caused by bacterial toxins.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|