1
|
Wang S, Song M, Yong H, Zhang C, Kang K, Liu Z, Yang Y, Huang Z, Wang S, Ge H, Zhao X, Song F. Mitochondrial Localization of SARM1 in Acrylamide Intoxication Induces Mitophagy and Limits Neuropathy. Mol Neurobiol 2022; 59:7337-7353. [PMID: 36171479 DOI: 10.1007/s12035-022-03050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Sterile α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is the defining molecule and central executioner of programmed axon death, also known as Wallerian degeneration. SARM1 has a mitochondrial targeting sequence, and it can bind to and stabilize PTEN-induced putative kinase 1 (PINK1) for mitophagy induction, but the deletion of the mitochondrial localization sequence is found to disrupt the mitochondrial localization of SARM1 in neurons without altering its ability to promote axon degeneration after axotomy. The biological significance of SARM1 mitochondrial localization remains elusive. In this study, we observed that the pro-degeneration factor, SARM1, was upregulated in acrylamide (ACR) neuropathy, a slow, Wallerian-like, programmed axonal death process. The upregulated SARM1 accumulated on mitochondria, interfered with mitochondrial dynamics, and activated PINK1-mediated mitophagy. Importantly, rapamycin (RAPA) intervention eliminated mitochondrial accumulation of SARM1 and partly attenuated ACR neuropathy. Thus, mitochondrial localization of SARM1 may contribute to its clearance through the SARM1-PINK1 mitophagy pathway, which inhibits axonal degeneration through a negative feedback loop. The mitochondrial localization of SARM1 complements the coordinated activity of the pro-survival factor, nicotinamide mononucleotide adenyltransferase 2 (NMNAT2), and SARM1 and is part of the self-limiting molecular mechanisms underpinning programmed axon death in ACR neuropathy. Mitophagy clearance of SARM1 is complementary to the coordinated activity of NMNAT2 and SARM1 in ACR neuropathy.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui Yong
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Kang Kang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shu'e Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Haotong Ge
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Poteser M, Laguzzi F, Schettgen T, Vogel N, Weber T, Zimmermann P, Hahn D, Kolossa-Gehring M, Namorado S, Van Nieuwenhuyse A, Appenzeller B, Halldórsson TI, Eiríksdóttir Á, Haug LS, Thomsen C, Barbone F, Rosolen V, Rambaud L, Riou M, Göen T, Nübler S, Schäfer M, Haji Abbas Zarrabi K, Gilles L, Martin LR, Schoeters G, Sepai O, Govarts E, Moshammer H. Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies. TOXICS 2022; 10:481. [PMID: 36006160 PMCID: PMC9415789 DOI: 10.3390/toxics10080481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.
Collapse
Affiliation(s)
- Michael Poteser
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Box 210, 17177 Stockholm, Sweden
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nina Vogel
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | | | - Domenica Hahn
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | | | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | | | - Brice Appenzeller
- Department of Precision Health, Luxembourg Institute of Health (LIH), L-4354 Luxembourg, Luxembourg
| | - Thórhallur I. Halldórsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Ása Eiríksdóttir
- Department of Pharmacology and Toxicology, University of Iceland, 107 Reykjavik, Iceland
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Fabio Barbone
- Department of Medical Area, DAME, University of Udine, 33100 Udine, Italy
| | - Valentina Rosolen
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Loïc Rambaud
- Santé Publique France, French Public Health Agency (ANSP), 94415 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, French Public Health Agency (ANSP), 94415 Saint-Maurice, France
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Moritz Schäfer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Karin Haji Abbas Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, D-91054 Erlangen, Germany
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Hanns Moshammer
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
- Department of Hygiene, Medical University of Karakalpakstan, Nukus 230100, Uzbekistan
| |
Collapse
|
3
|
Trends of Exposure to Acrylamide as Measured by Urinary Biomarkers Levels within the HBM4EU Biomonitoring Aligned Studies (2000–2021). TOXICS 2022; 10:toxics10080443. [PMID: 36006122 PMCID: PMC9415341 DOI: 10.3390/toxics10080443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014–2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000–2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.
Collapse
|
4
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
5
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Liao KW, Chang FC, Chang CH, Huang YF, Pan WH, Chen ML. Associating acrylamide internal exposure with dietary pattern and health risk in the general population of Taiwan. Food Chem 2021; 374:131653. [PMID: 34906800 DOI: 10.1016/j.foodchem.2021.131653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
We determined the urinary levels of acrylamide (AA) metabolites of the general Taiwanese population, explore the association between AA internal exposure and dietary intake frequency, and assess the health risk. Urine samples and dietary questionnaires were collected from the subjects of the Nutrition and Health Survey in Taiwan. AA metabolite [N-acetyl-S-(propionamide)-cysteine (AAMA)] concentrations were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-ToF-MS). Multiple regression was used to examine associations between AA metabolite levels and dietary patterns. A total of 706 subjects were studied. We found that per increase in weekly frequency of sweetened beverages in the 6-11-years group (β = 0.322, p = 0.018) and oily snacks intakes in the 12-18-years group (β = 0.335, p = 0.012) will increase 10β of urinary AAMA concentrations. Assuming that 50% of the AA intake is excreted as urinary AAMA, the Monte Carlo simulation showed that 1.75-19.48% among all age groups have exceeded the reference dose of 2 μg/kg-body weight/day.
Collapse
Affiliation(s)
- Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Fang-Chi Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Huang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Hemgesberg M, Stegmüller S, Cartus A, Hemmer S, Püttmann M, Stockis JP, Schrenk D. Acrylamide-derived DNA adducts in human peripheral blood mononuclear cell DNA: Correlation with body mass. Food Chem Toxicol 2021; 157:112575. [PMID: 34560178 DOI: 10.1016/j.fct.2021.112575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Acrylamide (AA) is a carcinogen formed during thermal food processing and can cause tumors in rodents while its carcinogenic potency in humans is unclear. Metabolic conversion of AA leads to glycidamide (GA) forming N7-GA-guanine (N7-GA-Gua) as the major DNA adduct in rodents while no such adducts were found in human tissues so far. In a cohort of 56 healthy volunteers adduct levels were determined in peripheral blood mononuclear cell (PBMC) DNA and anthropometric, dietary, and biochemical parameters were measured or inquired using a questionnaire. In the majority of PBMC DNA samples the levels found were above one adduct/108 nucleosides not being correlated to dietary habits including coffee consumption, or to blood glucose levels or hemoglobin HbA1c. However, adduct levels were significantly correlated with the body mass index (BMI) and showed a continuous increase over three BMI classes. Our findings indicate a background of AA-derived DNA adducts present in humans in PBMC related to body mass rather than to certain dietary or lifestyle factors.
Collapse
Affiliation(s)
- Melanie Hemgesberg
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Simone Stegmüller
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Alexander Cartus
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Selina Hemmer
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Michael Püttmann
- Synlab Center for Laboratory Medicine, D-67434, Neustadt/Weinstrasse, Germany.
| | - Jean-Pierre Stockis
- Statistics Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Dieter Schrenk
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Sengul E, Gelen V, Yildirim S, Tekin S, Dag Y. The Effects of Selenium in Acrylamide-Induced Nephrotoxicity in Rats: Roles of Oxidative Stress, Inflammation, Apoptosis, and DNA Damage. Biol Trace Elem Res 2021; 199:173-184. [PMID: 32166561 DOI: 10.1007/s12011-020-02111-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
We sought to determine the effects of selenium (Se) on acrylamide (ACR)-induced nephrotoxicity in rats. In our study, 50 adult male Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups. The control group was given intra-gastric (i.g.) saline (1 mL) for 10 days. The ACR group was given i.g. ACR in saline (38.27 mg/kg titrated to 1 mL) for 10 days. The Se0.5 + ACR and Se1 + ACR groups were administered Se in saline (0.5 and 1 mg/kg, respectively) for 10 days and given i.g. ACR (38.27 mg/kg) one hour after the Se injections. The Se1 group was administered i.g. Se (1 mg/kg) for 10 days. On day 11, intracardiac blood samples were obtained from the rats while they were under anesthesia, after which they were euthanized by decapitation. Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer. Enzyme-linked immunosorbence immunosorbent assay (ELISA) was used to quantify malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), interleukin (IL)-33, IL-6, IL-1β, cyclooxygenase-2 (COX-2), kidney injury molecule-1 (KIM-1), mitogen-activated protein kinase-1 (MAPK-1), and caspase-3 in kidney tissues. Renal tissues were evaluated by histopathological and immunohistochemical examinations for 8-hydroxylo-2'-deoxyguanosin 8-hydroxy-2'-deoxyguanosine (8-OhDG) and Bax. Serum urea and creatinine levels were higher in the ACR group than in the control, and these ACR-induced increases were prevented by high doses of Se. Additionally, ACR induced the renal oxidative stress, inflammation, apoptosis, and damage to DNA and tissue; likewise, these were prevented by high doses of Se. Taken with ACR, Se confers protection against ACR-induced nephrotoxicity in rats by reducing oxidative stress, inflammation, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey.
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary, Kafkas University, Kars, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Mojska H, Gielecińska I, Jasińska-Melon E, Winiarek J, Sawicki W. Are AAMA and GAMA Levels in Urine after Childbirth a Suitable Marker to Assess Exposure to Acrylamide from Passive Smoking during Pregnancy?-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207391. [PMID: 33050564 PMCID: PMC7599647 DOI: 10.3390/ijerph17207391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Introduction: Acrylamide (AA) is a “probably carcinogenic to humans” monomer that can form in heated starchy food and in tobacco smoke. N-Acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), acrylamide metabolites in urine, are recognized as good markers of exposure to acrylamide. Aim: The aim of the study is a preliminary assessment whether the levels of AAMA and GAMA in urine after childbirth are good markers of acrylamide exposure due to passive smoking during pregnancy. Material and method: The study group consisted 67 non-smokers and 10 passive-smoker women during pregnancy. AAMA and GAMA levels in urine samples were determined using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Results: The median AAMA levels in urine of non-smoking and passively smoking women were 30.7 μg/g creatinine and 25.2 μg/g creatinine, respectively. Much lower values were determined for GAMA: 11.4 μg/g creatinine and 10.3 μg/g creatinine, respectively. There is no significant difference between AAMA and GAMA content in urine samples between both groups of women as well as in the anthropometric parameters of newborns between those two groups of mothers. Conclusion: Our pilot study did not confirm that postpartum AAMA and GAMA concentrations in urine are good markers of exposure to acrylamide from passive smoking during pregnancy. It is probably due to the different ways of acrylamide absorption from tobacco smoke by active and passive smokers. Exposure of pregnant women to acrylamide from passive smoking requires further research.
Collapse
Affiliation(s)
- Hanna Mojska
- Department of Nutrition and the Nutritional Value of Food, National Institute of Public Health-National Instutute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Correspondence:
| | - Iwona Gielecińska
- Department of Food Safety National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
| | - Edyta Jasińska-Melon
- Department of Nutrition and the Nutritional Value of Food, National Institute of Public Health-National Instutute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
| | - Joanna Winiarek
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology of Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (J.W.); (W.S.)
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology of Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (J.W.); (W.S.)
| |
Collapse
|
10
|
Dasari S, Gonuguntla S, Yellanurkonda P, Nagarajan P, Meriga B. Sensitivity of glutathione S-transferases to high doses of acrylamide in albino wistar rats: Affinity purification, biochemical characterization and expression analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109416. [PMID: 31301596 DOI: 10.1016/j.ecoenv.2019.109416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The main objectives of this study were to purify the glutathione S-transfereses (GSTs) and assess the effect of high doses of acrylamide (ACR) on male albino Wistar rat liver, kidney, testis and bran GST activities, and expression analysis of GST. ACR (50 mg/300 ml) was ingested for 40 days (20 doses) in drinking water on alternative days, on 40 day post ingestion the control and treated tissues were collected for GST purification by affinity column and biochemical characterization of GSTs by substrate specificities, and GST expression by immuno dot blots. In the analysis of the purified GSTs, we observed that liver GSTs were resolved in to three bands known as Yc, Yb and Ya; kidney GSTs were resolved in to two bands known as Yc and Ya; testis and brain GSTs were resolved as four bands known as Yc, Yb, Yβ and Yδ on 12.5% sodium dodecyl sulfate polyacrylamide gel (SDS PAGE). In the analysis of biochemical characterization, we observed a significant decrease (p < 0.05) in the specific activities of liver GST isoforms with the substrates 1-chloro 2,4-dinitrobenzene (CDNB), bromosulfophthalein (BSP), p-nitrophenyl acetate (pNPA), p-nitrobenzyl chloride (pNBC) and cumene hydroperoxide (CHP), but showed no activity with ethacrynic acid (ECA) and significant decrease (p < 0.05) in the specific activities of kidney GST isoforms with the substrates CDNB, pNPA, pNBC and CHP, but showed no activity with BSP and ECA, and a significant decrease (p < 0.05) in the specific activities of testis and brain GST isoforms with the substrates CDNB, BSP, pNPA, pNBC, ECA and CHP. In the analysis of immuno dot blots, we observed a decreased expression of liver, kidney, testis and brain GSTs. Through the affinity purification and biochemical characterization, we observed a tissue specific distribution of GSTs that is liver GSTs possess Yc, Yb and Ya sub units known as alpha (α) and mu (μ) class GSTs; kidney GSTs possess Yc and Ya sub units known as (α) alpha class GST; testis and brain GSTs possess Yc, Yb, Yβ and Yδ sub units known as alpha (α), mu (μ) and pi (π) class GSTs. Purification studies, biochemical characterization and immuno dot blot analysis were revealed the GSTs were sensitive to high doses of ACR and the high level exposure to ACR cause the damage of detoxification function of GST due to decreased expression and hence lead to cellular dysfunction of vital organs.
Collapse
Affiliation(s)
- Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
| | - Sailaja Gonuguntla
- College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - Prabhusaran Nagarajan
- Research Laboratory of Leptospirosis and Medical Nanotechnology, SRM Medical College Hospital and Research Centre, Tiruchirapalli, Tamilnadu, India
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
11
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tunga Salthammer
- Fachbereich Materialanalytik und Innenluftchemie; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Deutschland
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung (IPA); Institut der Ruhr-Universität Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Deutschland
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
12
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201711023] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Germany
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Institute of the Ruhr-University Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Germany
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
13
|
Rietjens IMCM, Dussort P, Günther H, Hanlon P, Honda H, Mally A, O'Hagan S, Scholz G, Seidel A, Swenberg J, Teeguarden J, Eisenbrand G. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch Toxicol 2018; 92:15-40. [PMID: 29302712 PMCID: PMC5773647 DOI: 10.1007/s00204-017-2143-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - P Dussort
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| | - Helmut Günther
- Mondelēz International, Postfach 10 78 40, 28078, Bremen, Germany
| | - Paul Hanlon
- Abbott Nutrition, 3300 Stelzer Road, Dept. 104070, Bldg. RP3-2, Columbus, OH, 43219, USA
| | - Hiroshi Honda
- KAO Corporation, R&D Safety Science Research, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321 3497, Japan
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Sue O'Hagan
- PepsiCo Europe, 4 Leycroft Road, Leicester, LE4 1ET, UK
| | - Gabriele Scholz
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens Prof. Dr. Gernot Grimmer-Foundation, Lurup 4, 22927, Grosshansdorf, Germany
| | - James Swenberg
- Environmental Science and Engineering, UNC-Chapel Hill Cancer Genetics, 253c Rosenau Hall, Chapel Hill, NC, USA
| | - Justin Teeguarden
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| |
Collapse
|
14
|
Dortaj H, Anvari M, Yadegari M, Hosseini Sharifabad M, Abbasi Sarcheshmeh A. Stereological Survey of the Effect of Vitamin C on Neonatal Rat Kidney Tissue Treated With Acrylamide. ACTA ACUST UNITED AC 2017. [DOI: 10.30699/mmlj17.1.2.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Goempel K, Tedsen L, Ruenz M, Bakuradze T, Schipp D, Galan J, Eisenbrand G, Richling E. Biomarker monitoring of controlled dietary acrylamide exposure indicates consistent human endogenous background. Arch Toxicol 2017; 91:3551-3560. [PMID: 28534225 PMCID: PMC5696489 DOI: 10.1007/s00204-017-1990-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to explore the relation of controlled dietary acrylamide (AA) intake with the excretion of AA-related urinary mercapturic acids (MA), N-acetyl-S-(carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA). Excretion kinetics of these short-term exposure biomarkers were monitored under strictly controlled conditions within a duplicate diet human intervention study. One study arm (group A, n = 6) ingested AA via coffee (0.15–0.17 µg/kg bw) on day 6 and in a meal containing an upper exposure level of AA (14.1–15.9 μg/kg bw) on day 10. The other arm (group B) was on AA minimized diet (washout, 0.05–0.06 µg/kg bw) throughout the whole 13-day study period. On day 6, these volunteers ingested 13C3D3-AA (1 μg/kg bw). In both arms, urinary MA excretion was continuously monitored and blood samples were taken to determine hemoglobin adducts. Ingestion of four cups of coffee resulted in a slightly enhanced short-term biomarker response within the background range of group B. At the end of the 13-day washout period, group B excreted an AAMA baseline level of 0.14 ± 0.10 µmol/d although AA intake was only about 0.06 µmol/d. This sustained over-proportional AAMA background suggested an endogenous AA baseline exposure level of 0.3–0.4 µg/kg bw/d. The excretion of 13C3D3-AA was practically complete within 72–96 h which rules out delayed release of AA (or any other MA precursor) from deep body compartments. The results provide compelling support for the hypothesis of a sustained endogenous AA formation in the human body.
Collapse
Affiliation(s)
- Katharina Goempel
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Laura Tedsen
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Meike Ruenz
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Tamara Bakuradze
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Dorothea Schipp
- , ds-statistik.de, Pirnaer Straße 1, 01824, Rosenthal-Bielatal, Germany
| | - Jens Galan
- , Hochgewanne 19, 67269, Grünstadt, Germany
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Elke Richling
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Straße 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
16
|
Mojska H, Gielecińska I, Zielińska A, Winiarek J, Sawicki W. Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:288-295. [PMID: 25827310 DOI: 10.1038/jes.2015.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
We determined metabolites of acrylamide and glycidamide concentrations (AAMA and GAMA, respectively) in urine of 93 women within the first days after delivery, using LC-MS/MS. The median AAMA and GAMA levels in urine were 20.9 μg/l (2.3÷399.0 μg/l) and 8.6 μg/l (1.3÷85.0 μg/l), respectively. In smokers we found significantly (P<0.01) higher levels of metabolites in comparison with the non-smoking women. As demonstrated by the 24-h dietary recall, acrylamide intake was low (median: 7.04 μg/day). Estimated exposure to acrylamide based on AAMA and GAMA levels in the whole group of women was 0.16 μg/kg b.w./day (1.15 μg/kg b.w./day, P95). We found significantly (P<0.05) higher exposure in women who consumed higher amount of acrylamide in the diet (≥10 μg/day vs <10 μg/day). A weak but significant positive correlation between acrylamide intake calculated on the basis of urinary levels of AAMA and GAMA and estimated on the basis of 24-h dietary recall (r=0.26, P<0.05) was found. The estimated margin of exposure values were below 10 000 and ranged from 156 for 95th percentile to 1938 for median acrylamide intake. Our results have shown that even a low dietary acrylamide intake may be associated with health risk.
Collapse
Affiliation(s)
- Hanna Mojska
- Department of Food and Food Supplements, National Food and Nutrition Institute, Warsaw, Poland
| | - Iwona Gielecińska
- Department of Food and Food Supplements, National Food and Nutrition Institute, Warsaw, Poland
| | - Aleksandra Zielińska
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Winiarek
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Włodzimierz Sawicki
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Duan X, Wang QC, Chen KL, Zhu CC, Liu J, Sun SC. Acrylamide toxic effects on mouse oocyte quality and fertility in vivo. Sci Rep 2015; 5:11562. [PMID: 26108138 PMCID: PMC4479821 DOI: 10.1038/srep11562] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/15/2015] [Indexed: 11/09/2022] Open
Abstract
Acrylamide is an industrial chemical that has attracted considerable attention due to its presumed carcinogenic, neurotoxic, and cytotoxic effects. In this study we investigated possible acrylamide reproductive toxic effects in female mice. Mice were fed an acrylamide-containing diet for 6 weeks. Our results showed the following effects of an acrylamide-containing diet. (1) Ovary weights were reduced in acrylamide-treated mice and oocyte developmental competence was also reduced, as shown by reduced GVBD and polar body extrusion rates. (2) Acrylamide feeding resulted in aberrant oocyte cytoskeletons, as shown by an increased abnormal spindle rate and confirmed by disrupted γ-tubulin and p-MAPK localization. (3) Acrylamide feeding resulted in oxidative stress and oocyte early stage apoptosis, as shown by increased ROS levels and p-MAPK expression. (4) Fluorescence intensity analysis showed that DNA methylation levels were reduced in acrylamide-treated oocytes and histone methylation levels were also altered, as H3K9me2, H3K9me3, H3K4me2, and H3K27me3 levels were reduced after acrylamide treatment. (5) After acrylamide feeding, the litter sizes of acrylamide-treated mice were significantly smaller compared to thus of control mice. Thus, our results indicated that acrylamide might affect oocyte quality through its effects on cytoskeletal integrity, ROS generation, apoptosis induction, and epigenetic modifications.
Collapse
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng-Cheng Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
|
19
|
Zhou S, Wang D, Zhang C, Zhao Y, Zhao M, Wu Y. A novel interaction mode between acrylamide and its specific antibody. J Immunoassay Immunochem 2014; 36:295-311. [PMID: 25215894 DOI: 10.1080/15321819.2014.947432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the discovery of high-level acrylamide (Acr) contamination in food, extensive international studies have focused on its toxicity and detection. By using a novel antigen synthetic strategy, we have successfully obtained a specific antibody towards acrylamide (Acr-Ab). Herein, the Acr-Ab and its interactions with Acr were characterized. Enzyme-linked immunosorbent assay (ELISA) and dynamic light scattering (DLS) investigations revealed that the conformational structure of Acr-Ab was sensitive to buffers. It showed a satisfied immunoreactivity in phosphate buffered saline (PBS), but denatured in water. In natural state, Acr-Ab had a trend of getting aggregation through their complementarity determining regions (CDRs). Adding Acr leaded to their disassembling. While mixed with Acr, Acr-Ab exhibits not only a fast, high-specific, and reversible non covalent binding (by surface plasmon resonance, SPR), but also a covalent alkylation with Acr through cysteine and histidine residues on its surface, as demonstrated by high-performance liquid chromatography (HPLC). Neither of the two reactions involves conformational change in secondary or tertiary structures as shown in circular dichroism spectra (CD). These special properties of Acr-Ab and the entirely new interaction mode with Acr will extend our knowledge of Acr related biosystem and facilitate the development of new detection strategies for Acr.
Collapse
Affiliation(s)
- Shuang Zhou
- a Beijing National Laboratory for Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering, Peking University , Beijing , China
| | | | | | | | | | | |
Collapse
|
20
|
Wei Q, Li J, Li X, Zhang L, Shi F. Reproductive toxicity in acrylamide-treated female mice. Reprod Toxicol 2014; 46:121-8. [PMID: 24747376 DOI: 10.1016/j.reprotox.2014.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/06/2014] [Accepted: 03/15/2014] [Indexed: 11/25/2022]
Abstract
We investigated the reproductive toxicity of acrylamide in female mice. The results from immunohistochemistry provided evidence that nitric oxide synthase (NOS) signaling was involved in the process of follicular development and atresia. Oral administration of acrylamide to female mice led to significantly reduced body weights, organ weights and the number of corpora lutea (P<0.05). Serum progesterone concentrations were significantly reduced (P<0.05) concomitant with the increasing doses of acrylamide; however, 17β-estradiol (E2) concentrations were unchanged with treatment. Measurement of NOS activities indicated that total NOS (TNOS), iNOS and eNOS activities were significantly increased (P<0.05) with increasing doses of acrylamide. The results from in vitro study indicated that acrylamide reduced the viability of mouse granulosa cells in a dose-dependent manner. In summary, acrylamide affected bodily growth and development, as well as reproductive organs, the number of corpora lutea and progesterone production in female mice, possibly acting through the NOS signaling pathway.
Collapse
Affiliation(s)
- Quanwei Wei
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xingmei Li
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhang
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, Shi J. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 2014; 69:1-12. [PMID: 24713263 DOI: 10.1016/j.fct.2014.03.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Acrylamide (AA) was firstly detected in food in 2002, and since then, studies on AA analysis, occurrence, formation, toxicity, risk assessment and mitigation have been extensively carried out, which have greatly advanced understanding of this particular biohazard at both academic and industrial levels. There is considerable variation in the levels of AA in different foods and different brands of the same food; therefore, so far, a general upper limit for AA in food is not available. In addition, the link of dietary AA to human cancer is still under debate, although AA has been known as a potential cause of various toxic effects including carcinogenic effects in experimental animals. Furthermore, the oxidized metabolite of AA, glycidamide (GA), is more toxic than AA. Both AA and GA can form adducts with protein, DNA, and hemoglobin, and some of those adducts can serve as biomarkers for AA exposure; their potential roles in the linking of AA to human cancer, reproductive defects or other diseases, however, are unclear. This review addresses the state-of-the-art understanding of AA, focusing on risk assessment, mechanism of formation and strategies of mitigation in foods. The potential application of omics to AA risk assessment is also discussed.
Collapse
Affiliation(s)
- Yi Xu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China
| | - Bo Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China
| | - Ran Ran
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ying Liu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Huaping Chen
- College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China
| | - Guoyin Kai
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China.
| | - Jianxin Shi
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
22
|
Abstract
Acrylamide, a food contaminant, belongs to a large class of structurally similar toxic chemicals, 'type-2 alkenes', to which humans are widely exposed. Besides, occupational exposure to acrylamide has received wide attention through the last decades. It is classified as a neurotoxin and there are three important hypothesis considering acrylamide neurotoxicity: inhibition of kinesin-based fast axonal transport, alteration of neurotransmitter levels, and direct inhibition of neurotransmission. While many researchers believe that exposure of humans to relatively low levels of acrylamide in the diet will not result in clinical neuropathy, some neurotoxicologists are concerned about the potential for its cumulative neurotoxicity. It has been shown in several studies that the same neurotoxic effects can be observed at low and high doses of acrylamide, with the low doses simply requiring longer exposures. This review is focused on the neurotoxicity of acrylamide and its possible outcomes.
Collapse
|
23
|
DeWoskin R, Sweeney L, Teeguarden J, Sams R, Vandenberg J. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. Food Chem Toxicol 2013; 58:506-21. [DOI: 10.1016/j.fct.2013.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
24
|
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 2012; 131:2733-53. [PMID: 22961407 DOI: 10.1002/ijc.27827] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 12/15/2022]
Abstract
Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
Collapse
Affiliation(s)
- David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London, United Kingdom.
| | | |
Collapse
|
25
|
Chen MJ, Hsu HT, Lin CL, Ju WY. A statistical regression model for the estimation of acrylamide concentrations in French fries for excess lifetime cancer risk assessment. Food Chem Toxicol 2012; 50:3867-76. [DOI: 10.1016/j.fct.2012.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 06/27/2012] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
|
26
|
Vikström AC, Warholm M, Paulsson B, Axmon A, Wirfält E, Törnqvist M. Hemoglobin adducts as a measure of variations in exposure to acrylamide in food and comparison to questionnaire data. Food Chem Toxicol 2012; 50:2531-9. [PMID: 22525869 DOI: 10.1016/j.fct.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Measurement of haemoglobin (Hb) adducts from acrylamide (AA) and its metabolite glycidamide (GA) is a possibility to improve the exposure assessment in epidemiological studies of AA intake from food. This study aims to clarify the reliability of Hb-adduct measurement from individual single samples for exposure assessment of dietary AA intake. The intra-individual variations of AA- and GA-adduct levels measured in blood samples collected over 20 months from 13 non-smokers were up to 2-fold and 4-fold, respectively. The corresponding interindividual variations observed between 68 non-smokers, with large differences in AA intake, were 6-fold and 8-fold, respectively. The intra-individual variation of the GA-to-AA-adduct level ratio was up to 3-fold, compared to 11-fold between individuals (n = 68). From AA-adduct levels the average AA daily intake (n = 68) was calculated and compared to that estimated from dietary history methodology: 0.52 and 0.67 μg/kg body weight and day, respectively. At an individual level the measures showed low association (Rs = 0.39). CONCLUSIONS Dietary AA is the dominating source to measured AA-adduct levels and corresponding inter- and intra-individual variations in non-smokers. Measurements from single individual samples are useful for calculation of average AA intake and its variation in a cohort, and for identification of individuals only from extreme intake groups.
Collapse
Affiliation(s)
- Anna C Vikström
- Department of Materials and Environmental Chemistry, Environmental Chemistry Unit, Stockholm University, SE-104 05 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Moorman WJ, Reutman SS, Shaw PB, Blade LM, Marlow D, Vesper H, Clark JC, Schrader SM. Occupational exposure to acrylamide in closed system production plants: air levels and biomonitoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:100-111. [PMID: 22129237 DOI: 10.1080/15287394.2011.615109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate biomarkers of acrylamide exposure, including hemoglobin adducts and urinary metabolites in acrylamide production workers. Biomarkers are integrated measures of the internal dose, and it is total acrylamide dose from all routes and sources that may present health risks. Workers from three companies were studied. Workers potentially exposed to acrylamide monomer wore personal breathing-zone air samplers. Air samples and surface-wipe samples were collected and analyzed for acrylamide. General-area air samples were collected in chemical processing units and control rooms. Hemoglobin adducts were isolated from ethylenediamine teraacetic acid (EDTA)-whole blood, and adducts of acrylamide and glycidamide, at the N-terminal valines of hemoglobin, were cleaved from the protein chain by use of a modified Edman reaction. Full work-shift, personal breathing zone, and general-area air samples were collected and analyzed for particulate and acrylamide monomer vapor. The highest general-area concentration of acrylamide vapor was 350 μg/cm(3) in monomer production. Personal breathing zone and general-area concentrations of acrylamide vapor were found to be highest in monomer production operations, and lower levels were in the polymer production operations. Adduct levels varied widely among workers, with the highest in workers in the monomer and polymer production areas. The acrylamide adduct range was 15-1884 pmol/g; glycidamide adducts ranged from 17.8 to 1376 p/mol/g. The highest acrylamide and glycidamide adduct levels were found among monomer production process operators. The primary urinary metabolite N-acetyl-S-(2-carbamoylethyl) cysteine (NACEC) ranged from the limit of detection to 15.4 μg/ml. Correlation of workplace exposure and sentinel health effects is needed to determine and control safe levels of exposure for regulatory standards.
Collapse
|
28
|
Hogervorst JGF, Baars BJ, Schouten LJ, Konings EJM, Goldbohm RA, van den Brandt PA. The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research. Crit Rev Toxicol 2010; 40:485-512. [PMID: 20170357 DOI: 10.3109/10408440903524254] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since 2002, it is known that the probable human carcinogen acrylamide is present in commonly consumed carbohydrate-rich foods, such as French fries and potato chips. In this review, the authors discuss the body of evidence on acrylamide carcinogenicity from both epidemiological and rodent studies, including variability, strengths and weaknesses, how both types of evidence relate, and possible reasons for discrepancies. In both rats and humans, increased incidences of various cancer types were observed. In rats, increased incidences of mammary gland, thyroid tumors and scrotal mesothelioma were observed in both studies that were performed. In humans, increased risks of ovarian and endometrial cancers, renal cell cancer, estrogen (and progesterone) receptor-positive breast cancer, and oral cavity cancer (the latter in non-smoking women) were observed. Some cancer types were found in both rats and humans, e.g., endometrial cancer (observed in one of the two rat studies), but there are also some inconsistencies. Interestingly, in humans, some indications for inverse associations were observed for lung and bladder cancers in women, and prostate and oro- and hypopharynx cancers in men. These latter observations indicate that genotoxicity may not be the only mechanism by which acrylamide causes cancer. The estimated risks based on the epidemiological studies for the sites for which a positive association was observed were considerably higher than those based on extrapolations from the rat studies. The observed pattern of increased risks in the rat and epidemiological studies and the decreased risks in the epidemiological studies suggests that acrylamide might influence hormonal systems, for which rodents may not be good models.
Collapse
Affiliation(s)
- Janneke G F Hogervorst
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Contaminants are a vast subject area of food safety and quality and can be present in our food chain from raw materials to finished products. Acrylamide, an α,β-unsaturated (conjugated) reactive molecule, can be detected as a contaminant in several foodstuffs including baby foods and infant formulas. It is anticipated that children will generally have intakes that are two to three times those of adults when expressed on a body-weight basis. Though exposure to acrylamide is inevitable, it is necessary to protect infant and children from high exposure. The present review focuses on the several adverse health effects of acrylamide including mutagenicity, genotoxicity, carcinogenicity, neurotoxicity and reproductive toxicity, and the possible outcomes of childhood exposure from baby foods and infant formulas.
Collapse
|
30
|
Acrylamide as environmental noxious agent. Int J Hyg Environ Health 2009; 212:470-80. [DOI: 10.1016/j.ijheh.2009.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
|
31
|
Kütting B, Göen T, Schwegler U, Fromme H, Uter W, Angerer J, Drexler H. Monoarylamines in the general population – A cross-sectional population-based study including 1004 Bavarian subjects. Int J Hyg Environ Health 2009; 212:298-309. [DOI: 10.1016/j.ijheh.2008.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/16/2008] [Accepted: 07/23/2008] [Indexed: 11/24/2022]
|
32
|
Wilson KM, Vesper HW, Tocco P, Sampson L, Rosén J, Hellenäs KE, Törnqvist M, Willett WC. Validation of a food frequency questionnaire measurement of dietary acrylamide intake using hemoglobin adducts of acrylamide and glycidamide. Cancer Causes Control 2009; 20:269-78. [PMID: 18855107 PMCID: PMC3147248 DOI: 10.1007/s10552-008-9241-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Acrylamide, a probable human carcinogen, is formed during high-heat cooking of many common foods. The validity of food frequency questionnaire (FFQ) measures of acrylamide intake has not been established. We assessed the validity of acrylamide intake calculated from an FFQ using a biomarker of acrylamide exposure. METHODS We calculated acrylamide intake from an FFQ in the Nurses' Health Study II. We measured hemoglobin adducts of acrylamide and its metabolite, glycidamide, in a random sample of 342 women. Correlation and regression analyses were used to assess the relationship between acrylamide intakes and adducts. RESULTS The correlation between acrylamide intake and the sum of acrylamide and glycidamide adducts was 0.31 (95% CI: 0.20-0.41), adjusted for laboratory batch, energy intake, and age. Further adjustment for BMI, alcohol intake, and correction for random within-person measurement error in adducts gave a correlation of 0.34 (CI: 0.23-0.45). The intraclass correlation coefficient for the sum of adducts was 0.77 in blood samples collected 1-3 years apart in a subset of 45 women. Intake of several foods significantly predicted adducts in multiple regression. CONCLUSIONS Acrylamide intake and hemoglobin adducts of acrylamide and glycidamide were moderately correlated. Within-person consistency in adducts was high over time.
Collapse
Affiliation(s)
- Kathryn M Wilson
- Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Acrylamide in children – exposure assessment via urinary acrylamide metabolites as biomarkers. Int J Hyg Environ Health 2009; 212:135-41. [DOI: 10.1016/j.ijheh.2008.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/22/2022]
|
34
|
Hartmann EC, Boettcher MI, Schettgen T, Fromme H, Drexler H, Angerer J. Hemoglobin adducts and mercapturic acid excretion of acrylamide and glycidamide in one study population. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6061-6068. [PMID: 18624428 DOI: 10.1021/jf800277h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this study was to determine the relationship between the oxidative and reductive metabolic pathways of acrylamide (AA) in the nonsmoking general population. For the first time both the blood protein adducts and the urinary metabolites of AA and glycidamide (GA) were quantified in an especially designed study group with even distribution of age and gender. The hemoglobin adducts N-carbamoylethylvaline (AAVal) and N-( R, S)-2-hydroxy-2-carbamoylethylvaline (GAVal) were detected by GC-MS/MS in all blood samples with median levels of 30 and 34 pmol/g of globin, respectively. Concentrations ranged from 15 to 71 pmol/g of globin for AAVal and from 14 to 66 pmol/g of globin for GAVal. The ratio GAVal/AAVal was 0.4-2.7 (median = 1.1). The urinary metabolites were determined by LC-MS/MS. Of all urine samples examined 99% of N-acetyl- S-(2-carbamoylethyl)- l-cysteine (AAMA) levels and 73% of N-( R/ S)-acetyl- S-(2-carbamoyl-2-hydroxyethyl)- l-cysteine (GAMA) levels were above the LOD (1.5 microg/L). Concentrations ranged from <LOD to 229 microg/L (median = 29 microg/L) for AAMA and from <LOD to 85 microg/L (median = 7 microg/L) for GAMA. The ratio of GAMA/AAMA varied from 0.004 to 1.4 (median = 0.3). Using hemoglobin adduct levels in blood and mercapturic acid excretion in urine for calculation of daily AA intake gave practically identical values. The median daily intakes were 0.43 (0.21-1.04) microg/kg of body weight(bw)/day using Hb adducts and 0.51 (<LOD-2.32) microg/kg of bw/day using mercapturic acids for calculations. Children take up approximately 1.3-1.5 times more AA per kilogram of body weight than adults. The ratio GAMA/AAMA is significantly higher in the group of young children (6-10 years) with a median level of 0.5. A gender-related difference in internal exposure and metabolism was not observed.
Collapse
Affiliation(s)
- Eva C Hartmann
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, D-91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Vesper HW, Slimani N, Hallmans G, Tjønneland A, Agudo A, Benetou V, Bingham S, Boeing H, Boutron-Ruault MC, Bueno-de-Mesquita HB, Chirlaque D, Clavel-Chapelon F, Crowe F, Drogan D, Ferrari P, Johansson I, Kaaks R, Linseisen J, Lund E, Manjer J, Mattiello A, Palli D, Peeters PHM, Rinaldi S, Skeie G, Trichopoulou A, Vineis P, Wirfält E, Overvad K, Strömberg U. Cross-sectional study on acrylamide hemoglobin adducts in subpopulations from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6046-53. [PMID: 18624432 DOI: 10.1021/jf703750t] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acrylamide exposure was investigated in subgroups of the EPIC study population (510 subjects from 9 European countries, randomly selected and stratified by age, gender, and smoking status) using hemoglobin adducts of acrylamide (HbAA) and its primary metabolite glycidamide (HbGA). Blood samples were analyzed for HbAA and HbGA by HPLC/MS/MS. Statistical models for HbAA and HbGA were developed including body mass index (BMI), educational level, and physical activity. A large variability in acrylamide exposure and metabolism between individuals and country groups was observed with HbAA and HbGA values ranging between 15-623 and 8-377 pmol/g of Hb, respectively. Both adducts differed significantly by country, sex, and smoking status. HbGA values were significantly lower in high alcohol consumers than in moderate consumers. With increasing BMI, HbGA in nonsmokers and HbAA in smokers decreased significantly. In the assessment of potential health effects related to acrylamide exposure, country of origin, BMI, alcohol consumption, sex, and smoking status should be considered.
Collapse
Affiliation(s)
- Hubert W Vesper
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sánchez J, Cabrer JM, Rosselló CA, Palou A, Picó C. Formation of hemoglobin adducts of acrylamide after its ingestion in rats is dependent on age and sex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5096-5101. [PMID: 18540624 DOI: 10.1021/jf800171c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of fiber and fat contents of food and of age and sex of animals on the formation of hemoglobin adducts of acrylamide (AA-Hb) in blood has been studied. The results suggest that the absorption of acrylamide (AA) present in food is not affected by the fiber or fat contents of food. However, AA-Hb resulting from the intake of an aqueous solution of AA is dependent on the age and sex of rats: AA-Hb levels were higher in females than in males (3.53- and 2.55-fold higher, respectively, for AA doses of 25 and 100 mg/kg) and in younger than in older rats (30.1% higher in 1.5 month old as compared to 14 month old rats). In males, AA-Hb levels found after the oral administration of AA in an aqueous solution were significantly lower than those found after dietary or intravenous administration. In conclusion, these results show the existence of significant differences in AA bioavailability from an aqueous solution depending on the sex and age of animals. If similar differences also occur in humans, they would be relevant to assess the exposure of different subpopulations to AA.
Collapse
Affiliation(s)
- Juana Sánchez
- University of the Balearic Islands (UIB), Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), Cra. Valldemossa Km 7.5, Palma de Mallorca-07122, Spain
| | | | | | | | | |
Collapse
|
37
|
Thonning Olesen P, Olsen A, Frandsen H, Frederiksen K, Overvad K, Tjønneland A. Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health Study. Int J Cancer 2008; 122:2094-100. [DOI: 10.1002/ijc.23359] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Acrylamid und Human-Biomonitoring. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008; 51:98-108. [DOI: 10.1007/s00103-008-0424-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Kütting B, Uter W, Drexler H. The association between self-reported acrylamide intake and hemoglobin adducts as biomarkers of exposure. Cancer Causes Control 2007; 19:273-81. [PMID: 17985202 DOI: 10.1007/s10552-007-9090-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 10/19/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND The validity of epidemiological studies assessing a lifetime cancer risk due to environmental factors, such as nutrition or smoking behavior strongly depends on the validity of the patient's history. OBJECTIVES This study assesses whether a standardized questionnaire is a valid tool to identify exposure with acrylamide by relating the self-reported food and smoking history with a biomarker, namely hemoglobin-adduct levels of acrylamide. METHODS Objective parameters of previous exposure, such as hemoglobin-adduct levels of acrylamide and of the smoking-specific acrylonitrile, respectively, were related to self-reported data in 1,008 volunteers of the general population in bivariate analyses and a multiple linear regression analysis using the log-transformed biomarker levels as outcome. RESULTS Smoking was significantly associated with adduct levels of acrylamide (p < 0.0001) and had a main contribution to the internal burden with acrylamide. In cigarette smokers a strong correlation between the number of cigarettes smoked daily and the corresponding biomarkers was observed. Focusing on non-smokers (n = 828), a significant but weak correlation was found in bivariate analyses (Spearman rank correlation coefficient: 0.178 (95% CI: 0.089-0.268) in females and 0.168 (95% CI: 0.063-0.273) in males. A multiple linear regression analysis similarly yielded evidence of a significant association between the highest intake category and adduct levels; however, explained variability was very small (R(2) = 0.08). CONCLUSION Self-reported data concerning smoking behavior were highly valid, while self-reported food intake is apparently not as useful for estimating food-related acrylamide exposure.
Collapse
Affiliation(s)
- Birgitta Kütting
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Schillerstrasse 25 + 29, Erlangen, Germany.
| | | | | |
Collapse
|
40
|
Vesper HW, Bernert JT, Ospina M, Meyers T, Ingham L, Smith A, Myers GL. Assessment of the Relation between Biomarkers for Smoking and Biomarkers for Acrylamide Exposure in Humans. Cancer Epidemiol Biomarkers Prev 2007; 16:2471-8. [DOI: 10.1158/1055-9965.epi-06-1058] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Chevolleau S, Jacques C, Canlet C, Tulliez J, Debrauwer L. Analysis of hemoglobin adducts of acrylamide and glycidamide by liquid chromatography–electrospray ionization tandem mass spectrometry, as exposure biomarkers in French population. J Chromatogr A 2007; 1167:125-34. [PMID: 17826786 DOI: 10.1016/j.chroma.2007.07.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 11/15/2022]
Abstract
The determination of biomarkers of acrylamide exposure in humans from general French population by measurement of hemoglobin adduct levels of acrylamide (AA) and glycidamide (GA) is presented. The analytical procedure included modified Edman degradation and LC-ESI-MS/MS analysis of the final derivatives using deuterated internal standards. Method performances were evaluated in terms of linearity, precision, accuracy, and sensitivity. The method was firstly assessed on rat blood samples and then applied to the study of background adducts levels of AA and GA in 68 human hemoglobin samples, showing mean levels of 33 and 23 pmol/g globin for AA and GA adducts, respectively.
Collapse
|
42
|
Boettcher MI, Bolt HM, Angerer J. Acrylamide exposure via the diet: influence of fasting on urinary mercapturic acid metabolite excretion in humans. Arch Toxicol 2007; 80:817-9. [PMID: 16783545 DOI: 10.1007/s00204-006-0123-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Acrylamide (AA) is carcinogenic in animals and classified by the International Agency for Research on Cancer as probably carcinogenic in humans. Regarding the AA contents of food the diet significantly contributes to the overall AA burden of the general population. However, it is unclear to which degree the diet, apart from smoking, contributes to the internal AA exposure. Therefore the influence of an AA-free diet on the excretion of urinary mercapturic acid metabolites derived from AA in three healthy volunteers fasting for 48 h was examined. Urinary AA mercapturic acid metabolites were considerably reduced after 48 h of fasting. The levels were even well below the median level in non-smokers. This confirms that the diet is the main source of environmental AA exposure in humans, apart from smoking. Other possible AA sources could be of minor quantitative importance only.
Collapse
Affiliation(s)
- Melanie I Boettcher
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, 91054 Erlangen, Germany
| | | | | |
Collapse
|
43
|
Eriksson S, Karlsson P, Törnqvist M. Measurement of evaporated acrylamide during heat treatment of food and other biological materials. Lebensm Wiss Technol 2007. [DOI: 10.1016/j.lwt.2006.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Aureli F, Di Pasquale M, Lucchetti D, Aureli P, Coni E. An absorption study of dietary administered acrylamide in swine. Food Chem Toxicol 2007; 45:1202-9. [PMID: 17303301 DOI: 10.1016/j.fct.2006.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/06/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Acrylamide is a food toxicant suspected to be carcinogenic to humans. It is formed in the heat processing of carbohydrate-rich food. A current issue in food safety is whether acrylamide actually represents a risk for human health. At present, available information is insufficient to reach any conclusions. Inter alias, a still unclear matter is the fraction of acrylamide ingested by food that is absorbed and metabolized. This study compared the in vivo relative absorption of acrylamide formed in cooked food with that of the pure compound dissolved in drinking water using the pig (25 Italian Large White females) as the animal model. Acrylamide intakes of about 0.8 and 8 microg kg(-1) pig body wt day(-1) equal to one and ten times, respectively, the maximum average acrylamide daily intake for humans from the diet (expressed on a body wt basis) in industrialized countries, were chosen for the study. Adducts with the N-terminal valine of haemoglobin formed by acrylamide and its epoxide metabolite glycidamide, were used as exposure markers. Analyses were carried out by gas chromatography/mass spectrometry following in-house method validation. Both for the low and the high dose regimen, the glycidamide adduct levels in swine globins were lower of the limit of quantification of the method. As concerns acrylamide adducts, it was found that the relative absorption of acrylamide from feed and water was the same and that there is a direct proportionality between the adduct concentration and acrylamide intake.
Collapse
Affiliation(s)
- Federica Aureli
- National Center for Food Quality and Risk Assessment, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
45
|
Vesper HW, Ospina M, Meyers T, Ingham L, Smith A, Gray JG, Myers GL. Automated method for measuring globin adducts of acrylamide and glycidamide at optimized Edman reaction conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:959-64. [PMID: 16479554 DOI: 10.1002/rcm.2396] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The general population is exposed to acrylamide, a potential human carcinogen, through food and cigarette smoke. The assessment of human exposure to acrylamide is important in the evaluation of health risks associated with this chemical. Hemoglobin adducts of acrylamide (AA-Hb) and its primary metabolite glycidamide (GA-Hb) are established biomarkers of acrylamide exposure and methods to measure these biomarkers using modified Edman reaction are described. Only limited information about the optimal Edman reaction conditions such as pH or temperature is available for these adducts and the existing methods do not allow automation needed in biomonitoring studies. In this study, the yield of Edman products of AA-Hb and GA-Hb between pH 3-10 and at 35-55 degrees C at different time intervals, and the applicability of liquid-liquid extraction on diatomaceous earth for analyte extraction, were assessed and results were used in a new optimized method. The applicability of our optimized method was assessed by comparing results obtained with a convenience sample from 96 individuals with a conventional method. Maximum yield of Edman products was obtained between pH 6-7, heating the reaction solution at 55 degrees C for 2 h resulted in the same yields as with conventional conditions, and use of diatomaceous earth was found suitable for automated analyte extraction. Using these conditions, no difference was observed between our optimized and a conventional method. The median globin adduct values in the convenience sample are 129 pmol/g globin (range: 27-453 pmol/g globin) and 97 pmol/g globin (range: 27-240 pmol/g globin) for AA-Hb and GA-Hb, respectively. The GA-Hb/AA-Hb ratio decreases significantly with increasing AA-Hb values indicating that measurement of AA-Hb as well as GA-Hb are needed to appropriately assess human exposure to acrylamide.
Collapse
Affiliation(s)
- Hubert W Vesper
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE (MS F-25), USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Boettcher MI, Bolt HM, Drexler H, Angerer J. Excretion of mercapturic acids of acrylamide and glycidamide in human urine after single oral administration of deuterium-labelled acrylamide. Arch Toxicol 2005; 80:55-61. [PMID: 16180013 DOI: 10.1007/s00204-005-0011-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/22/2005] [Indexed: 11/27/2022]
Abstract
We investigated the human metabolism of AA to the mercapturic acids N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-(R/S)-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L: -cysteine (GAMA) which are derived from AA itself and from its oxidative genotoxic metabolite glycidamide (GA), respectively. A healthy male volunteer received a single dose of about 1 mg deuterium-labelled acrylamide (d(3)-AA), representing 13 microg/kg body weight, in drinking water. Urine samples before dosing and within 46 h after the dose were analysed for d(3)-AAMA and d(3)-GAMA by LC-ESI-MS/MS. A first phase of increase in urinary concentration was found to last 18 h with a broad plateau between 8 and 18 h for AAMA, and 22 h for GAMA. Elimination half-lives of both AAMA and GAMA were estimated to be approximately 3.5 h for the first phase and more than 10 h up to few days for the second phase. Total recovery in urine after 24 h was about 51% as the sum of AAMA and GAMA and hereby well in accordance with former studies in rats. After 2 days AAMA, accounting for altogether 52% of the total AA dose, was the major metabolite of AA in humans. GAMA, accounting for 5%, appeared as a minor metabolite of AA. In humans we found a urinary ratio of 0.1 for GAMA/AAMA compared to previously reported values of 0.2 for rats and 0.5 for mice. Therefore, the metabolic fate of AA in humans was more similar to that in rats than in mice as already demonstrated in terms of the haemoglobin adducts. Consequently a genotoxic potency of AA mediated by GA could be supposed to be comparable in rats and humans.
Collapse
Affiliation(s)
- Melanie I Boettcher
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, Erlangen 91054, Germany
| | | | | | | |
Collapse
|
47
|
Kütting B, Schettgen T, Beckmann MW, Angerer J, Drexler H. Influence of Diet on Exposure to Acrylamide – Reflections on the Validity of a Questionnaire. ANNALS OF NUTRITION AND METABOLISM 2005; 49:173-7. [PMID: 16006786 DOI: 10.1159/000086881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 12/28/2004] [Indexed: 11/19/2022]
Abstract
AIM This pilot study attempts to assess how far the standardized questionnaires are a valid tool to detect the food-related burden of acrylamide. Acrylamide is a toxic substance classified by the International Agency of Research on Cancer, as well as the Deutsche Forschungsgemeinschaft, as a probable human carcinogen. METHODS A venous blood sample was taken in order to determine the smoking-specific acrylnitrile adduct N-cyanoethylvaline and the acrylamide adduct N-2-carbamoylethylvaline in a female study population expecting delivery soon. A standardized questionnaire was used to determine the consumption of acrylamide-contaminated food. The results of our questionnaire were transferred to a linear evaluation system. Finally, anamnestic data of the questionnaire were correlated to objective parameters such as blood levels of hemoglobin adducts of acrylamide and acrylonitrile. RESULTS A positive correlation between the acrylamide intake and the levels of hemoglobin adducts in our study population was not proven. CONCLUSIONS Evaluation of food-related exposure to acrylamide is difficult due to several reasons. Firstly, the validity of anamnestic data strongly depends on the patient's ability to remember precisely all consumed food (quality as well as quantity) over a 3-month period. In addition, the contamination of acrylamide in food varies from one product to another; even the contamination of the same product is variable. Therefore, the missing correlation between the questionnaire and hemoglobin adduct rates is rather due to restricted validity of anamnestic data.
Collapse
Affiliation(s)
- Birgitta Kütting
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friederich Alexander University, Erlangen-Nuremberg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Manson J, Brabec MJ, Buelke-Sam J, Carlson GP, Chapin RE, Favor JB, Fischer LJ, Hattis D, Lees PSJ, Perreault-Darney S, Rutledge J, Smith TJ, Tice RR, Working P. NTP-CERHR expert panel report on the reproductive and developmental toxicity of acrylamide. ACTA ACUST UNITED AC 2005; 74:17-113. [PMID: 15729727 DOI: 10.1002/bdrb.20030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeanne Manson
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li CM, Hu CW, Wu KY. Quantification of urinary N-acetyl-S- (propionamide)cysteine using an on-line clean-up system coupled with liquid chromatography/tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:511-515. [PMID: 15712353 DOI: 10.1002/jms.823] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acrylamide has been reported to be present in high-temperature processed foods and normal processed food intake could lead to significant acrylamide exposure. Acrylamide in vivo can be conjugated with glutathione in the presence of glutathione transferase. This conjugation product is further metabolized and excreted as N-acetyl-S-(propionamide)cysteine (NASPC) in the urine. NASPC could be considered a biomarker for acrylamide exposure. The objective of this study was to develop a highly specific, rapid and sensitive method to quantify urinary NASPC, serving as a biomarker for acrylamide exposure assessment. Isotope-labeled [13C3]NASPC was successfully synthesized and used as an internal standard. This urine mixture was directly analyzed using a newly developed liquid chromatographic/tandem mass spectrometric method coupled with an on-line clean-up system. The detection limit for this method was estimated as < 5 microg l(-1)(0.4 pmol) on-column. The method was applied to measure the urinary level of NASPC in 70 apparently health subjects. The results showed that the NASPC urinary level was highly associated with smoking. Smokers had a significantly higher urinary NASPC level (135 +/- 88 microg g(-1) creatinine) than non-smokers (76 +/- 30 microg g(-1) creatinine). A highly sensitive and selective LC/MS/MS isotope dilution method was successfully established. With an on-line clean-up system, this system is capable of routine high-throughput analysis and accurate quantitation of NASPC in urine. This could be a useful tool for health surveillance for acrylamide exposure in a population for future study.
Collapse
Affiliation(s)
- Chien-Ming Li
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Koahsiung, Taiwan
| | | | | |
Collapse
|
50
|
Dybing E, Farmer PB, Andersen M, Fennell TR, Lalljie SPD, Müller DJG, Olin S, Petersen BJ, Schlatter J, Scholz G, Scimeca JA, Slimani N, Törnqvist M, Tuijtelaars S, Verger P. Human exposure and internal dose assessments of acrylamide in food. Food Chem Toxicol 2005; 43:365-410. [PMID: 15680675 DOI: 10.1016/j.fct.2004.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/09/2004] [Indexed: 11/21/2022]
Abstract
This review provides a framework contributing to the risk assessment of acrylamide in food. It is based on the outcome of the ILSI Europe FOSIE process, a risk assessment framework for chemicals in foods and adds to the overall framework by focusing especially on exposure assessment and internal dose assessment of acrylamide in food. Since the finding that acrylamide is formed in food during heat processing and preparation of food, much effort has been (and still is being) put into understanding its mechanism of formation, on developing analytical methods and determination of levels in food, and on evaluation of its toxicity and potential toxicity and potential human health consequences. Although several exposure estimations have been proposed, a systematic review of key information relevant to exposure assessment is currently lacking. The European and North American branches of the International Life Sciences Institute, ILSI, discussed critical aspects of exposure assessment, parameters influencing the outcome of exposure assessment and summarised data relevant to the acrylamide exposure assessment to aid the risk characterisation process. This paper reviews the data on acrylamide levels in food including its formation and analytical methods, the determination of human consumption patterns, dietary intake of the general population, estimation of maximum intake levels and identification of groups of potentially high intakes. Possible options and consequences of mitigation efforts to reduce exposure are discussed. Furthermore the association of intake levels with biomarkers of exposure and internal dose, considering aspects of bioavailability, is reviewed, and a physiologically-based toxicokinetic (PBTK) model is described that provides a good description of the kinetics of acrylamide in the rat. Each of the sections concludes with a summary of remaining gaps and uncertainties.
Collapse
Affiliation(s)
- E Dybing
- Norwegian Institute of Public Health, Division of Environmental Medicine, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|