1
|
Richtwerte für Polychlorierte Biphenyle (PCB) in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025; 68:201-218. [PMID: 39806213 DOI: 10.1007/s00103-024-04000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
2
|
Bullert AJ, Wang H, Linahon MJ, Chimenti MS, Adamcakova-Dodd A, Li X, Dailey ME, Klingelhutz AJ, Ankrum JA, Stevens HE, Thorne PS, Lehmler HJ. Effects of 28-day nose-only inhalation of PCB52 (2,2',5,5'-Tetrachlorobiphenyl) on the brain transcriptome. Toxicology 2024; 509:153965. [PMID: 39369937 PMCID: PMC11588532 DOI: 10.1016/j.tox.2024.153965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
A semi-volatile polychlorinated biphenyl (PCB) congener, PCB52, is present in the indoor air of schools; however, the effects of inhaled PCB52 on the brain have not been investigated. This study exposed male Sprague-Dawley rats at 39 days of age and female rats at 42 days of age to PCB52 for 4 hours per day over 28 consecutive days through nose-only inhalation. Neurobehavioral tests were conducted during the last 5 days of exposure. The total estimated PCB52 exposures after 28 days were 1080±20 µg/kg BW for male rats and 1140±10 µg/kg BW for female rats. PCB52 and its metabolites were detected by gas chromatography-tandem mass spectrometry in the brain, lung, and serum, with the lung showing the highest concentrations. PCB52 levels were higher in the brains of females than males. Males showed increased exploratory behavior compared to controls, whereas females exhibited decreased exploratory behavior compared to controls in the same tests. PCB52 exposure did not impact locomotor activity or working memory. Gene expression and pathway analysis in the striatum and cerebellum suggest that PCB52 inhalation causes mitochondrial dysfunction. No significant differences were observed by immunohistochemical evaluation in the density and percent area of total cells, astrocytes, or microglia in the striatum and cerebellar cortex. Our results indicate multilevel effects of inhaled PCB52 on the rat brain, from gene expression to behavioral effects.
Collapse
Affiliation(s)
- Amanda J Bullert
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Morgan J Linahon
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael E Dailey
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Biology, The University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Behan-Bush R, Liszewski JN, Schrodt MV, Vats B, Li X, Lehmler HJ, Klingelhutz AJ, Ankrum JA. Toxicity Impacts on Human Adipose Mesenchymal Stem/Stromal Cells Acutely Exposed to Aroclor and Non-Aroclor Mixtures of Polychlorinated Biphenyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1731-1742. [PMID: 36651682 PMCID: PMC9893815 DOI: 10.1021/acs.est.2c07281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Polychlorinated biphenyl (PCB) accumulates in adipose where it may impact the growth and function of cells within the tissue. This is particularly concerning during adolescence when adipocytes expand rapidly. Herein, we sought to understand how exposure to PCB mixtures found in U.S. schools affects human adipose mesenchymal stem/stromal cell (MSC) health and function. We investigated how exposure to Aroclor 1016 and Aroclor 1254, as well as a newly characterized non-Aroclor mixture that resembles the PCB profile found in cabinets, Cabinet Mixture, affects adipose MSC growth, viability, and function in vitro. We found that exposure to all three mixtures resulted in two distinct types of toxicity. At PCB concentrations >20 μM, the majority of MSCs die, while at 1-10 μM, MSCs remained viable but display numerous alterations to their phenotype. At these sublethal concentrations, the MSC rate of expansion slowed and morphology changed. Further assessment revealed that PCB-exposed MSCs had impaired adipogenesis and a modest decrease in immunosuppressive capabilities. Thus, exposure to PCB mixtures found in schools negatively impacts the health and function of adipose MSCs. This work has implications for human health due to MSCs' role in supporting the growth and maintenance of adipose tissue.
Collapse
Affiliation(s)
- Riley
M. Behan-Bush
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jesse N. Liszewski
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Michael V. Schrodt
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Bhavya Vats
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aloysius J. Klingelhutz
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Microbiology and Immunology, University
of Iowa, Iowa City, Iowa 52242, United States
| | - James A. Ankrum
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Hammel SC, Andersen HV, Knudsen LE, Frederiksen M. Inhalation and dermal absorption as dominant pathways of PCB exposure for residents of contaminated apartment buildings. Int J Hyg Environ Health 2023; 247:114056. [PMID: 36395656 DOI: 10.1016/j.ijheh.2022.114056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022]
Abstract
Applications of polychlorinated biphenyls (PCBs) in buildings and their persistence in indoor environments have led to cases of current and highly elevated exposure in humans, despite the global cease of production decades ago. Personal exposure to PCBs was assessed among residents in a social housing estate in Denmark containing both contaminated (n = 67) and non-contaminated (n = 23) apartments. Samples and estimated daily intakes (EDIs) were assessed for 15 PCB congeners, and body burden, which was limited by the dietary data availability, was compared across 7 indicator PCBs, with its sum (PCBsum7) often applied in European regulation of PCBs. Median PCBsum7 EDI across measured pathways for exposed residents was 101 ng· (kg bodyweight)-1· day-1, with the majority of exposure (60%) coming from inhalation of contaminated indoor air. Calculated from both PCBs measured in indoor air and on hand wipes, dermal absorption estimates showed comparable results and served as a secondary exposure pathway, accounting for 35% of personal exposure and considering selected assumptions and sources of physical-chemical parameters. Estimates revealed that diet was the primary PCB source among the reference group, accounting for over 75% of the PCBsum7 EDI across exposure routes. When evaluating overall EDIs across the two study groups and including dietary estimates, PCB exposure among exposed residents was around 10 times higher than the reference group. Solely within the exposed population, pathway-specific body burdens were calculated to account for exposure across years of residence in contaminated apartments, where lower chlorinated PCBs were dominant in indoor air. Among these dominant congeners, estimated body burdens of PCB-28 and -52 were significantly correlated with measured serum (rs = 0.49, 0.45; p < 0.001). This study demonstrates that inhalation and dermal absorption serve as dominant exposure pathways for residents of apartments contaminated with predominantly lower chlorinated PCBs and suggest that predictions of body burden from indoor environment measurements may be comparable to measured serum PCBs.
Collapse
Affiliation(s)
- Stephanie C Hammel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| | - Helle Vibeke Andersen
- Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, 2400, Copenhagen SV, Denmark
| | - Lisbeth E Knudsen
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1014, Copenhagen K, Denmark
| | - Marie Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
6
|
Wang H, Adamcakova-Dodd A, Lehmler HJ, Hornbuckle KC, Thorne PS. Toxicity Assessment of 91-Day Repeated Inhalation Exposure to an Indoor School Air Mixture of PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1780-1790. [PMID: 34994547 PMCID: PMC9122270 DOI: 10.1021/acs.est.1c05084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
School indoor air contaminated with polychlorinated biphenyls (PCBs) released from older building materials and paint pigments may pose health risks to children, as well as teachers and staff, by inhalation of PCBs. The health effects of long-term inhalation exposure to PCBs are poorly understood. We conducted a comprehensive toxicity assessment of 91-day repeated inhalation exposure to a lab-generated mixture of PCBs designed to emulate indoor school air, combining transcriptomics, metabolomics, and neurobehavioral outcomes. Female Sprague-Dawley rats were exposed to school air mixture (SAM+) at a concentration of 45.5 ± 5.9 μg/m3 ∑209PCB or filtered air 4 h/day, 6 days/week for 13 weeks using nose-only exposure systems. The congener-specific PCB body burden was quantified in major tissues using GC-MS/MS. The generated SAM+ vapor recapitulated the target school air profile with a similarity coefficient, cos θ of 0.91. PCB inhalation yielded 875-9930 ng/g ∑209PCBlipid weight levels in tissues in the following ascending order: brain < liver < lung < serum < adipose tissue. We observed that PCB exposure impaired memory, induced anxiety-like behavior, significantly reduced white blood cell counts, mildly disrupted metabolomics in plasma, and influenced transcription processes in the brain with 274 upregulated and 58 downregulated genes. With relatively high exposure and tissue loading, evidence of toxicity from half the end points tested was seen in the rats.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Yuan B, Tay JH, Padilla-Sánchez JA, Papadopoulou E, Haug LS, de Wit CA. Human Exposure to Chlorinated Paraffins via Inhalation and Dust Ingestion in a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1145-1154. [PMID: 33400865 PMCID: PMC7880561 DOI: 10.1021/acs.est.0c05891] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Very-short- (vSCCPs, C6-9), short- (SCCPs, C10-13), medium- (MCCPs, C14-17), and long-chain chlorinated paraffins (LCCPs, C>17) were analyzed in indoor air and dust collected from the living rooms and personal 24 h air of 61 adults from a Norwegian cohort. Relatively volatile CPs, i.e., vSCCPs and SCCPs, showed a greater tendency to partition from settled indoor dust to paired stationary indoor air from the same living rooms than MCCPs and LCCPs, with median logarithmic dust-air partition ratios of 1.3, 2.9, 4.1, and 5.4, respectively. Using the stationary indoor air and settled indoor dust concentrations, the combined median daily exposures to vSCCPs, SCCPs, MCCPs, and LCCPs were estimated to be 0.074, 2.7, 0.93, and 0.095 ng/kg bw/d, respectively. Inhalation was the predominant exposure pathway for vSCCPs (median 99%) and SCCPs (59%), while dust ingestion was the predominant exposure pathway for MCCPs (75%) and LCCPs (95%). The estimated inhalation exposure to total CPs was ∼ 5 times higher when the personal 24 h air results were used rather than the corresponding stationary indoor air results in 13 paired samples, indicating that exposure situations other than living rooms contributed significantly to the overall personal exposure. The 95th percentile exposure for CPs did not exceed the reference dose.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Eleni Papadopoulou
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public
Health, NO-0213 Oslo, Norway
| | - Line Småstuen Haug
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public
Health, NO-0213 Oslo, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
8
|
Wang H, Adamcakova-Dodd A, Flor S, Gosse L, Klenov VE, Stolwijk JM, Lehmler HJ, Hornbuckle KC, Ludewig G, Robertson LW, Thorne PS. Comprehensive Subchronic Inhalation Toxicity Assessment of an Indoor School Air Mixture of PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15976-15985. [PMID: 33256405 PMCID: PMC7879961 DOI: 10.1021/acs.est.0c04470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Few in vivo inhalation studies have explored the toxicity of environmentally relevant mixtures of polychlorinated biphenyls (PCBs). The manufacture of industrial PCBs was banned in 1978, but PCBs continue to be formed in industrial and consumer products. Schools represent a significant source of airborne exposures to legacy and nonlegacy PCBs, placing children at risk. To evaluate the impact of these exposures, we generated an airborne mixture of PCBs, called the School Air Mixture (SAM), to match the profile of an older school from our adolescent cohort study. Female Sprague-Dawley rats were exposed either to SAM or filtered air in nose-only exposure systems, 4 h/day for 4 weeks. Congener-specific air and tissue PCB profiles were assessed using gas chromatography with tandem mass spectrometry (GC-MS/MS). PCB exposures recapitulated the target school air profile with a similarity coefficient, cos θ of 0.83. PCB inhalation yielded μg/g ∑209 PCB levels in tissues. Neurobehavioral testing demonstrated a modest effect on spatial learning and memory in SAM-exposed rats. PCB exposure induced oxidative stress in the liver and lungs, affected the maturational stages of hematopoietic stem cells, reduced telomerase activity in bone marrow cells, and altered the gut microbiota. This is the first study to emulate PCB exposures in a school and comprehensively evaluate toxicity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Laura Gosse
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Violet E. Klenov
- Department of Obstetrics and Gynecology, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Jeffrey M. Stolwijk
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
- Department of Civil and Environmental Engineering, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
9
|
Andersen HV, Gunnarsen L, Knudsen LE, Frederiksen M. PCB in air, dust and surface wipes in 73 Danish homes. Int J Hyg Environ Health 2020; 229:113429. [DOI: 10.1016/j.ijheh.2019.113429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
|
10
|
Esser A, Schettgen T, Kraus T. Assessment of a potential PCB exposure among (former) underground miners by hydraulic fluids. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:219-232. [PMID: 32252610 DOI: 10.1080/15287394.2020.1742261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) were used in technical mixtures of different PCB congeners as hydraulic fluids in underground mining in Germany in North Rhine-Westphalia, Ibbenbueren, and Saarland from the mid-1960s to 1986. Mine workers who were involved in maintenance and repair or operation of hydraulically driven machines in underground mines were potentially exposed to liquids containing PCBs. The aim of the present study was to investigate whether this potential exposure which occurred more than 30 years ago was still detectable. Biomonitoring and a structured work anamnesis were conducted on a representative sample of 210 miners. PCBs in plasma were measured by gas chromatography coupled to mass spectrometry with an LOQ of 0.01 µg/L plasma for all congeners. The primary aim was comparison of the number of exceedances of the underlying comparative values for PCB congeners with those of the general population. Secondary endpoint was the question whether there were regional differences in potential PCB exposure. The biomonitoring showed a significant difference for PCB 74 with N= 94 (45%); for PCB 114 with N = 64 (31%) and for PCB 99 and PCB 105 with N = 23 (11%) and N = 19 (9%) of 210 measurements above the reference value compared to the general population (5%). The all over detection frequencies (µg/L plasma median | SD | min |max) of these congeners were as follows:PCB 74: 0.128 | 0.481 | < LOD | 3.098; PCB 99:0.035 | 0.078 | < LOD | 0.582PCB 105: 0.005 | 0.031 | < LOD | 0.307; PCB 114:0.005 | 0.024 | < LOD | 0.140Regional differences were not detectable.
Collapse
Affiliation(s)
- André Esser
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Cao LY, Ren XM, Guo LH. Estrogen-related receptor γ is a novel target for Lower-Chlorinated Polychlorinated Biphenyls and their hydroxylated and sulfated metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113088. [PMID: 31491697 DOI: 10.1016/j.envpol.2019.113088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Airborne lower-chlorinated PCBs are vulnerable to metabolization to PCB sulfates through further sulfation of the hydroxylated metabolites (OH-PCBs). However, studies on the toxic effects and mechanisms of PCB sulfates are still very limited. Here, we investigated for the first time the potential endocrine disruption effects of PCB sulfates through estrogen-related receptor γ (ERRγ) in comparison with their OH-PCBs precursors and PCB parent compounds. The binding affinity of thirteen PCBs/OH-PCBs/PCB sulfates was measured by using fluorescence competitive binding assays based on fluorescence polarization (FP). All of the tested chemicals could bind to ERRγ with the Kd (dissociation constant) values ranging from not available (NA) to 3.2 μM 4'-OH-PCB 12 showed the highest binding affinity with Kd value of 3.2 μM, which was comparable to that of a synthetic ERRγ agonist GSK4716. The effects of the thirteen chemicals on the ERRγ transcriptional activity were determined by using the luciferase reporter gene assay. We found the PCBs/OH-PCBs/PCB sulfates acted as agonists for ERRγ, with the lowest observed effective concentration reaching 3 μM. The binding affinity and agonistic activity of PCBs towards ERRγ were both enhanced after hydroxylation, while further sulfation of OH-PCBs decreased the activity instead. Molecular docking simulation showed that OH-PCBs had lower binding energy than the corresponding PCBs and PCB sulfates, indicating that OH-PCBs had higher binding affinity theoretically. In addition, OH-PCBs could form hydrogen bonds with amino acids Glu316 and Arg247 while PCBs and PCB sulfates could not, which might be the main factor impacting the binding affinity and agonistic activity. Overall, ERRγ is a novel target for lower-chlorinated PCBs and their metabolites.
Collapse
Affiliation(s)
- Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, China.
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, China.
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
12
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tunga Salthammer
- Fachbereich Materialanalytik und Innenluftchemie; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Deutschland
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung (IPA); Institut der Ruhr-Universität Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Deutschland
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
13
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201711023] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Germany
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Institute of the Ruhr-University Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Germany
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
14
|
Li L, Arnot JA, Wania F. Revisiting the Contributions of Far- and Near-Field Routes to Aggregate Human Exposure to Polychlorinated Biphenyls (PCBs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6974-6984. [PMID: 29771504 DOI: 10.1021/acs.est.8b00151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The general population is exposed to polychlorinated biphenyls (PCBs) by consuming food from far-field contaminated agricultural and aquatic environments, and inhalation and nondietary ingestion in near-field indoor or residential environments. Here, we seek to evaluate the relative importance of far- and near-field routes by simulating the time-variant aggregate exposure of Swedish females to PCB congeners from 1930 to 2030. We rely on a mechanistic model, which integrates a food-chain bioaccumulation module and a human toxicokinetic module with dynamic substance flow analysis and nested indoor-urban-rural environmental fate modeling. Confidence in the model is established by successfully reproducing the observed PCB concentrations in Swedish human milk between 1972 and 2016. In general, far-field routes contribute most to total PCB uptake. However, near-field exposure is notable for (i) children and teenagers, who have frequent hand-to-mouth contact, (ii) cohorts born in earlier years, e.g., in 1956, when indoor environments were severely contaminated, and (iii) lighter chlorinated congeners. The relative importance of far- and near-field exposure in a cross-section of individuals of different age sampled at the same time is shown to depend on the time of sampling. The transition from the dominance of near- to far-field exposure that has happened for PCBs may also occur for other chemicals used indoors.
Collapse
Affiliation(s)
- Li Li
- Department of Physical & Environmental Sciences , University of Toronto at Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Jon A Arnot
- Department of Physical & Environmental Sciences , University of Toronto at Scarborough , Toronto , Ontario M1C 1A4 , Canada
- ARC Arnot Research & Consulting , Toronto , Ontario M4M 1W4 , Canada
| | - Frank Wania
- Department of Physical & Environmental Sciences , University of Toronto at Scarborough , Toronto , Ontario M1C 1A4 , Canada
| |
Collapse
|
15
|
Herkert NJ, Hornbuckle KC. Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:757-766. [PMID: 29611590 PMCID: PMC5966328 DOI: 10.1039/c8em00082d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Accurate and precise interpretation of concentrations from polyurethane passive samplers (PUF-PAS) is important as more studies show elevated concentrations of PCBs and other semivolatile air toxics in indoor air of schools and homes. If sufficiently reliable, these samplers may be used to identify local sources and human health risks. Here we report indoor air sampling rates (Rs) for polychlorinated biphenyl congeners (PCBs) predicted for a frequently used double-dome and a half-dome PUF-PAS design. Both our experimentally calibrated (1.10 ± 0.23 m3 d-1) and modeled (1.08 ± 0.04 m3 d-1) Rs for the double-dome samplers compare well with literature reports for similar rooms. We determined that variability of wind speeds throughout the room significantly (P < 0.001) effected uptake rates. We examined this effect using computational fluid dynamics modeling and 3-D sonic anemometer measurements and found the airflow dynamics to have a significant but small impact on the precision of calculated airborne concentrations. The PUF-PAS concentration measurements were within 27% and 10% of the active sampling concentration measurements for the double-dome and half-dome designs, respectively. While the half-dome samplers produced more consistent concentration measurements, we find both designs to perform well indoors.
Collapse
Affiliation(s)
- Nicholas J Herkert
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, 4105 SC, Iowa City, IA 52242, USA.
| | | |
Collapse
|
16
|
Kraft M, Sievering S, Grün L, Rauchfuss K. Mono-, di-, and trichlorinated biphenyls (PCB 1-PCB 39) in the indoor air of office rooms and their relevance on human blood burden. INDOOR AIR 2018; 28:441-449. [PMID: 29288536 DOI: 10.1111/ina.12448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) from indoor air can lead to a significant increase in lower chlorinated congeners in human blood. Lower chlorinated congeners with short biological half-lives can exhibit an indirect genotoxic potential via their highly reactive metabolites. However, little is known about their occurrence in indoor air and, therefore, about the effects of possible exposure to these congeners. We analyzed all mono-, di-, and trichlorinated biphenyls in the indoor air of 35 contaminated offices, as well as in the blood of the 35 individuals worked in these offices for a minimum of 2 years. The median concentration of total PCB in the indoor air was 479 ng/m3 . The most prevalent PCBs in the indoor air samples were the trichlorinated congeners PCB 31, PCB 18, and PCB 28, with median levels of 39, 31, and 26 ng/m3 , respectively. PCB 8 was the most prevalent dichlorinated congener (median: 9.1 ng/m3 ). Monochlorinated biphenyls were not detected in relevant concentrations. In the blood samples, the most abundant congener was PCB 28; nearly 90% of all mono-, di-, and trichlorinated congeners were attributed to this congener (median: 12 ng/g blood lipid).
Collapse
Affiliation(s)
- M Kraft
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Recklinghausen, Germany
| | - S Sievering
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Recklinghausen, Germany
| | - L Grün
- eco-Luftqualität + Raumklima, Köln, Germany
| | - K Rauchfuss
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Recklinghausen, Germany
| |
Collapse
|
17
|
Morrison GC, Andersen HV, Gunnarsen L, Varol D, Uhde E, Kolarik B. Partitioning of PCBs from air to clothing materials in a Danish apartment. INDOOR AIR 2018; 28:188-197. [PMID: 28767171 DOI: 10.1111/ina.12411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 05/07/2023]
Abstract
Polychlorinated biphenyl (PCB) contamination of buildings continues to pose an exposure threat, even decades after their application in the form of calks and other building materials. In this research, we investigate the ability of clothing to sorb PCBs from contaminated air and thereby influence exposure. The equilibrium concentration of PCB-28 and PCB-52 was quantified for nine used clothing fabrics exposed for 56 days to air in a Danish apartment contaminated with PCBs. Fabric materials included pure materials such as cotton and polyester, or blends of polyester, cotton, viscose/rayon, and/or elastane. Air concentrations were fairly stable over the experimental period, with PCB-28 ranging from 350 to 430 ng/m3 and PCB-52 ranging from 460 to 550 ng/m3 . Mass accumulated in fabric ranged from below detection limits to 4.5 mg/g of fabric. Cotton or materials containing elastane sorbed more than polyester materials on a mass basis. Mass-normalized partition coefficients above detection limits ranged from 105.7 to 107.0 L/kg. Clothing acts as a reservoir for PCBs that extends dermal exposure, even when outside or in uncontaminated buildings.
Collapse
Affiliation(s)
- G C Morrison
- Missouri University of Science & Technology, Rolla, MO, USA
| | - H V Andersen
- Danish Building Research Institute, Aalborg University Copenhagen, København SV, Denmark
| | - L Gunnarsen
- Danish Building Research Institute, Aalborg University Copenhagen, København SV, Denmark
| | - D Varol
- Fraunhofer WKI, Braunschweig, Germany
| | - E Uhde
- Fraunhofer WKI, Braunschweig, Germany
| | - B Kolarik
- Danish Building Research Institute, Aalborg University Copenhagen, København SV, Denmark
| |
Collapse
|
18
|
Fimm B, Sturm W, Esser A, Schettgen T, Willmes K, Lang J, Gaum PM, Kraus T. Neuropsychological effects of occupational exposure to polychlorinated biphenyls. Neurotoxicology 2017; 63:106-119. [PMID: 28947237 DOI: 10.1016/j.neuro.2017.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
In the context of a health surveillance program for former PCB-exposed workers of a transformer and capacitor recycling company in Germany, their family members, employees of surrounding companies and area residents a broad range of cognitive functions covering attention, executive processing, reasoning, memory and motor performance was examined. The study aimed at identifying potential adverse effects of PCB load on cognitive functions. Detailed analysis of PCB burden of the participants revealed rather high correlations of lower and higher chlorinated as well as dioxin-like PCBs. Nearly one half of the participants exhibited increased burden in all three PCB classes whereas only 33 out of 237 participants did not show any increased PCB burden. Thus, data analysis followed a two-fold strategy: (1) Based on studies providing data on PCB exposure of the German general population the PCB burden of every participant was classified as normal (percentile rank PR <95) or increased (PR ≥95). Increased burden with respect to lower (LPCBs) and higher chlorinated (HPCBs) as well as dioxin-like (dlPCBs) PCBs was assumed if a participant showed at least one congener surpassing the PR95 criterion for the respective congener class and (2) Overall plasma PCB level per congener class was used as measure of PCB load. In a multivariate approach using structural equation modelling and multiple regression analysis we found a significant impact of PCBs on word fluency and sensorimotor processing irrespective of the measure of PCB burden (PR95 criterion or overall plasma level). However, no effect of PCB burden on memory, attention, and cognitive flexibility could be demonstrated. Particularly, an increase of LPCBs was associated with an overall reduction of verbal fluency of letter and semantic word generation as well as word production based on a single or two alternating criteria. In addition, participants with increased burden of LPCBs exhibited a time-on-task effect in terms of a stronger decline of performance with increasing duration of the verbal fluency task. Moreover, we found adverse effects of HPCBs on Aiming and of dlPCBs on Line Tracking. Results are discussed in terms of (1) a decrease of cerebral dopamine (DA) with non-coplanar PCBs resulting in an impact on fronto-striatal cerebral structures subserving verbal fluency and motor processing, (2) a PCB-induced reduction of norepinephrine leading to the time-on-task effect with verbal fluency, and (3) adverse effects of PCBs on dopaminergic receptors in the cerebellum resulting in impaired fine motor function.
Collapse
Affiliation(s)
- B Fimm
- RWTH Aachen University, Department of Neurology, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | - W Sturm
- RWTH Aachen University, Department of Neurology, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - A Esser
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - T Schettgen
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - K Willmes
- RWTH Aachen University, Department of Neurology, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - J Lang
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - P M Gaum
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - T Kraus
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| |
Collapse
|
19
|
Marek RF, Thorne PS, Herkert NJ, Awad AM, Hornbuckle KC. Airborne PCBs and OH-PCBs Inside and Outside Urban and Rural U.S. Schools. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7853-7860. [PMID: 28656752 PMCID: PMC5777175 DOI: 10.1021/acs.est.7b01910] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PCBs appear in school air because many school buildings were built when PCBs were still intentionally added to building materials and because PCBs are also present through inadvertent production in modern pigment. This is of concern because children are especially vulnerable to the toxic effects of PCBs. Here we report indoor and outdoor air concentrations of PCBs and OH-PCBs from two rural schools and four urban schools, the latter near a PCB-contaminated waterway of Lake Michigan in the United States. Samples (n = 108) were collected as in/out pairs using polyurethane foam passive air samplers (PUF-PAS) from January 2012 to November 2015. Samples were analyzed using GC/MS-MS for all 209 PCBs and 72 OH-PCBs. Concentrations inside schools were 1-2 orders of magnitude higher than outdoors and ranged from 0.5 to 194 ng/m3 (PCBs) and from 4 to 665 pg/m3 (OH-PCBs). Congener profiles were similar within each sampling location across season but different between schools and indicated the sources as Aroclors from building materials and individual PCBs associated with modern pigment. This study is the first cohort-specific analysis to show that some children's PCB inhalation exposure may be equal to or higher than their exposure through diet.
Collapse
Affiliation(s)
- Rachel F. Marek
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding authors’ contact information: Rachel F. Marek: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, , (319) 335-5585, FAX (319) 335-5660; Keri C. Hornbuckle: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, ; (319) 384-0789, FAX: (319) 335-5660; Peter S. Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242, , (319) 335-4216, FAX: (319) 384-4138
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding authors’ contact information: Rachel F. Marek: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, , (319) 335-5585, FAX (319) 335-5660; Keri C. Hornbuckle: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, ; (319) 384-0789, FAX: (319) 335-5660; Peter S. Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242, , (319) 335-4216, FAX: (319) 384-4138
| | - Nicholas J. Herkert
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
| | - Andrew M. Awad
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
| | - Keri C. Hornbuckle
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding authors’ contact information: Rachel F. Marek: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, , (319) 335-5585, FAX (319) 335-5660; Keri C. Hornbuckle: 103 S. Capitol St., 4105 SC, Iowa City, IA 52242, ; (319) 384-0789, FAX: (319) 335-5660; Peter S. Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242, , (319) 335-4216, FAX: (319) 384-4138
| |
Collapse
|
20
|
Quantification of all 209 PCB congeners in blood—Can indicators be used to calculate the total PCB blood load? Int J Hyg Environ Health 2017; 220:201-208. [DOI: 10.1016/j.ijheh.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022]
|
21
|
Rodriguez EA, Li X, Lehmler HJ, Robertson LW, Duffel MW. Sulfation of Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-Binding Sites of Human Serum Albumin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5320-7. [PMID: 27116425 PMCID: PMC4883002 DOI: 10.1021/acs.est.6b00484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The disposition of toxicants is often affected by their binding to serum proteins, of which the most abundant in humans is serum albumin (HSA). There is increasing interest in the toxicities of environmentally persistent polychlorinated biphenyls (PCBs) with lower numbers of chlorine atoms (LC-PCBs) due to their presence in both indoor and outdoor air. PCB sulfates derived from metabolic hydroxylation and sulfation of LC-PCBs have been implicated in endocrine disruption due to high affinity-binding to the thyroxine-carrying protein, transthyretin. Interactions of these sulfated metabolites of LC-PCBs with HSA, however, have not been previously explored. We have now determined the relative HSA-binding affinities for a group of LC-PCBs and their hydroxylated and sulfated derivatives by selective displacement of the fluorescent probes 5-dimethylamino-1-naphthalenesulfonamide and dansyl-l-proline from the two major drug-binding sites on HSA (previously designated as Site I and Site II). Values for half-maximal displacement of the probes indicated that the relative binding affinities were generally PCB sulfate ≥ OH-PCB > PCB, although this affinity was site- and congener-selective. Moreover, specificity for Site II increased as the numbers of chlorine atoms increased. Thus, hydroxylation and sulfation of LC-PCBs result in selective interactions with HSA which may affect their overall retention and toxicity.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Michael W. Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, USA
- Address correspondence to Michael W. Duffel, Ph.D., Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, 115 South Grand Ave, S325, Iowa City, IA, 52246. Telephone: 319-335-8840. Fax: 319-335-8766.
| |
Collapse
|
22
|
Bräuner EV, Andersen ZJ, Frederiksen M, Specht IO, Hougaard KS, Ebbehøj N, Bailey J, Giwercman A, Steenland K, Longnecker MP, Bonde JP. Health Effects of PCBs in Residences and Schools (HESPERUS): PCB - health Cohort Profile. Sci Rep 2016; 6:24571. [PMID: 27090775 PMCID: PMC4835792 DOI: 10.1038/srep24571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/31/2016] [Indexed: 11/23/2022] Open
Abstract
Polychlorinated-biphenyls (PCBs) were introduced in the late 1920s and used until the 1970s when they were banned in most countries due to evidence of environmental build-up and possible adverse health effects. However they still persist in the environment, indoors and in humans. Indoor air in contaminated buildings may confer airborne exposure markedly above background regional PCB levels. To date, no epidemiological studies have assessed the health effects from exposure to semi-volatile PCBs in the indoor environment. Indoor air PCBs are generally less chlorinated than PCBs that are absorbed via the diet, or via past occupational exposure; therefore their health effects require separate risk assessment. Two separate cohorts of individuals who have either attended schools (n = 66,769; 26% exposed) or lived in apartment buildings (n = 37,185; 19% exposed), where indoor air PCB concentrations have been measured were created. An individual estimate of long-term airborne PCB exposure was assigned based on measurements. The cohorts will be linked to eight different national data sources on mortality, school records, residential history, socioeconomic status, and chronic disease and reproductive outcomes. The linking of indoor air exposures with health outcomes provides a dataset unprecedented worldwide. We describe a project, called HESPERUS (Health Effects of PCBs in Residences and Schools), which will be the first study of the long term health effects of the lower-chlorinated, semi-volatile PCBs in the indoor environment.
Collapse
Affiliation(s)
- Elvira Vaclavik Bräuner
- Research Center of Prevention and Health, Center of Health, Capital region of Denmark, Rigshospital - Glostrup, Copenhagen University, Denmark.,Department of Occupational and Environmental Medicine, Bispebjerg - Frederiksberg Hospital, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Department of Public Health, Center for Epidemiology and Screening, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Marie Frederiksen
- Department of Energy, Environment and Indoor Climate, Danish Building Research Institute, Aalborg University, Denmark
| | - Ina Olmer Specht
- Department of Occupational and Environmental Medicine, Bispebjerg - Frederiksberg Hospital, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg - Frederiksberg Hospital, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Janice Bailey
- Department of Animal Sciences, Centre de Recherche en Biologie de la Reproduction, Université Laval, Canada
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Sweden
| | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Matthew Paul Longnecker
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, USA
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg - Frederiksberg Hospital, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Liu X, Guo Z, Krebs KA, Greenwell DJ, Roache NF, Stinson RA, Nardin JA, Pope RH. Laboratory study of PCB transport from primary sources to settled dust. CHEMOSPHERE 2016; 149:62-69. [PMID: 26849196 DOI: 10.1016/j.chemosphere.2016.01.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Dust is an important sink for indoor air pollutants, such as polychlorinated biphenyls (PCBs) that were used in building materials and products. In this study, two types of dust, house dust and Arizona Test Dust, were tested in a 30-m(3) stainless steel chamber with two types of panels. The PCB-containing panels were aluminum sheets coated with a PCB-spiked primer or caulk. The PCB-free panels were coated with the same materials but without PCBs. The dust evenly spread on each panel was collected at different times to determine its PCB content. The data from the PCB panels were used to evaluate the PCB migration from the source to the dust through direct contact, and the data from the PCB-free panels were used to evaluate the sorption of PCBs through the dust/air partition. Settled dust can adsorb PCBs from air. The sorption concentration was dependent on the congener concentration in the air and favored less volatile congeners. When the house dust was in direct contact with the PCB-containing panel, PCBs migrated into the dust at a much faster rate than the PCB transfer rate due to the dust/air partition. The dust/source partition was not significantly affected by the congener's volatility. For a given congener, the ratio between its concentration in the dust and in the source was used to estimate the dust/source partition coefficient. The estimated values ranged from 0.04 to 0.16. These values are indicative of the sink strength of the tested house dust being in the middle or lower-middle range.
Collapse
Affiliation(s)
- Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division Research Triangle Park, NC 27711, United States.
| | - Zhishi Guo
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division Research Triangle Park, NC 27711, United States
| | - Kenneth A Krebs
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division Research Triangle Park, NC 27711, United States
| | - Dale J Greenwell
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division Research Triangle Park, NC 27711, United States
| | - Nancy F Roache
- ARCADIS, US Inc., 4915 Prospectus Dr., Suite F, Durham, NC 27709, United States
| | - Rayford A Stinson
- ARCADIS, US Inc., 4915 Prospectus Dr., Suite F, Durham, NC 27709, United States
| | - Joshua A Nardin
- ARCADIS, US Inc., 4915 Prospectus Dr., Suite F, Durham, NC 27709, United States
| | - Robert H Pope
- ARCADIS, US Inc., 4915 Prospectus Dr., Suite F, Durham, NC 27709, United States
| |
Collapse
|
24
|
Egsmose EL, Bräuner EV, Frederiksen M, Mørck TA, Siersma VD, Hansen PW, Nielsen F, Grandjean P, Knudsen LE. Associations between plasma concentrations of PCB 28 and possible indoor exposure sources in Danish school children and mothers. ENVIRONMENT INTERNATIONAL 2016; 87:13-19. [PMID: 26638015 DOI: 10.1016/j.envint.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/07/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are ubiquitously present in the environment and are suspected of carcinogenic, neurotoxic and immunotoxic effects. Significantly higher plasma concentrations of the congener PCB 28 occur in children compared to adults. Exposure in schools may contribute to this difference. OBJECTIVE To determine whether increased blood plasma concentrations of PCB 28 in Danish school children and mothers are associated with living in homes or attending schools constructed in the PCB period (1959-1977). METHODS PCB 28 was analyzed in plasma samples from 116 children aged 6-11years and 143 mothers living in an urban and a rural area in Denmark and participating in the European pilot project DEMOCOPHES (Demonstration of a study to COordinate and Perform Human Biomonitoring on a European Scale). In Denmark, PCBs were used in construction in the period 1950-1977, and year of construction or renovation of the homes and schools was used as a proxy for indoor PCB exposure. Linear regression models were used to assess the association between potential PCB exposure from building materials and lipid adjusted concentrations of PCB 28 in plasma, with and without adjustment for potential confounders. RESULTS Among the 116 children and 143 mothers, we were able to specify home construction period in all but 4 children and 5 mothers leaving 111 children and 138 mothers for our analyses. The median lipid adjusted plasma PCB 28 concentration was 3 (range: 1-28) ng/g lipid in the children and 2 (range: 1-8) ng/g lipid in the mothers. Children living in homes built in the PCB period had significantly higher lipid adjusted plasma PCB 28 concentrations compared to children living in homes built before or after the PCB period. Following adjustment for covariates, PCB 28 concentrations in children were 40 (95% CI: 13; 68) percent higher than concentrations of children living in homes constructed at other times. Furthermore, children attending schools built or substantially refurbished in the PCB period also had significantly higher (46%, 95% CI: 22; 70) PCB 28 concentrations compared to children attending schools constructed before or after the PCB period, while their mothers had similar concentrations. Adjustment for the most prevalent congener, PCB 153, did not change this effect of home or school construction. When both home and school construction year were included in the models, the increase in lipid adjusted plasma PCB 28 for children living in or attending schools from the PCB period was no longer statistically significant. The individual effect of home and school construction periods could not be evaluated further with the available data. CONCLUSION Our results suggest that PCB exposure in the indoor environment in schools and homes constructed during the PCB period may contribute significantly to children's plasma PCB 28 concentration. Efforts to minimize PCB exposure in indoor environments should be considered.
Collapse
Affiliation(s)
- Emilie Lund Egsmose
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Elvira Vaclavik Bräuner
- Department of Construction and Health, Danish Building Research Institute, Aalborg University, Denmark
| | - Marie Frederiksen
- Department of Construction and Health, Danish Building Research Institute, Aalborg University, Denmark
| | - Thit Aarøe Mørck
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Volkert Dirk Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Winton Hansen
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Flemming Nielsen
- Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Philippe Grandjean
- Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lisbeth E Knudsen
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Xiao W, Sarsour EH, Wagner BA, Doskey CM, Buettner GR, Domann FE, Goswami PC. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes. Arch Toxicol 2016; 90:319-32. [PMID: 25417049 PMCID: PMC4441874 DOI: 10.1007/s00204-014-1407-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/04/2014] [Indexed: 12/27/2022]
Abstract
Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.
Collapse
Affiliation(s)
- Wusheng Xiao
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Claire M Doskey
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Frederick E Domann
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
26
|
Brown KW, Minegishi T, Cummiskey CC, Fragala MA, Hartman R, MacIntosh DL. PCB remediation in schools: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1986-1997. [PMID: 25994266 DOI: 10.1007/s11356-015-4689-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods.
Collapse
Affiliation(s)
- Kathleen W Brown
- Environmental Health & Engineering, Inc., 117 Fourth Avenue, Needham, MA, 02494, USA.
| | - Taeko Minegishi
- Environmental Health & Engineering, Inc., 117 Fourth Avenue, Needham, MA, 02494, USA
| | | | - Matt A Fragala
- Environmental Health & Engineering, Inc., 117 Fourth Avenue, Needham, MA, 02494, USA
| | - Ross Hartman
- Strategic Environmental Services, Inc., Sutton, MA, USA
| | - David L MacIntosh
- Environmental Health & Engineering, Inc., 117 Fourth Avenue, Needham, MA, 02494, USA.
- Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
27
|
Schettgen T, Alt A, Esser A, Kraus T. Current data on the background burden to the persistent organochlorine pollutants HCB, p,p′-DDE as well as PCB 138, PCB 153 and PCB 180 in plasma of the general population in Germany. Int J Hyg Environ Health 2015; 218:380-5. [DOI: 10.1016/j.ijheh.2015.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
|
28
|
Pedersen EB, Ebbehøj NE, Göen T, Meyer HW, Jacobsen P. Exposure to 27 polychlorinated biphenyls in the indoor environment of a workplace: a controlled bio-monitoring study. Int Arch Occup Environ Health 2015; 89:43-7. [PMID: 25893464 DOI: 10.1007/s00420-015-1050-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/01/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the exposure to a broad-spectrum of polychlorinated biphenyl congeners (PCBs) from the indoor environment through bio-monitoring of people working in a building with PCB-containing materials and elevated PCB levels in the indoor air. METHODS A cross-sectional study comparing the plasma concentration of 27 PCB congeners in 15 people working in a PCB-contaminated building and 30 matched controls. RESULTS Median concentration of eight low-chlorinated PCB congeners was significantly higher in the exposed than in the control group. The sum of median concentrations of tri + tetra-chlorinated PCB was almost ten times higher in the exposed group than in the unexposed, and sums of dioxin-like and non-dioxin-like PCB were both relatively increased by 60 % in the exposed group. CONCLUSIONS The occupational indoor environment may significantly add to PCB exposure, especially to the lower-chlorinated congeners. Health effect from this little-acknowledged exposure has not yet been documented, but data supporting lack of effect are sparse and research generating information on effect of exposure to specific congeners including at levels relevant for the indoor environment should be encouraged.
Collapse
Affiliation(s)
- Ellen Bøtker Pedersen
- Department of Occupational and Environmental Medicine, Copenhagen University, Bispebjerg Hospital, 2400, Copenhagen NV, Denmark.
| | - N E Ebbehøj
- Department of Occupational and Environmental Medicine, Copenhagen University, Bispebjerg Hospital, 2400, Copenhagen NV, Denmark
| | - T Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - H W Meyer
- Department of Occupational and Environmental Medicine, Copenhagen University, Bispebjerg Hospital, 2400, Copenhagen NV, Denmark
| | - P Jacobsen
- Department of Occupational and Environmental Medicine, Copenhagen University, Bispebjerg Hospital, 2400, Copenhagen NV, Denmark.
| |
Collapse
|
29
|
Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertson LW. Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 2015; 45:245-72. [PMID: 25629923 PMCID: PMC4383295 DOI: 10.3109/10408444.2014.999365] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022]
Abstract
Abstract The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity, and thereby on the assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general, and in humans in particular. The aim of this document is to provide an overview of PCB metabolism, and to identify the metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed.
Collapse
Affiliation(s)
- FA Grimm
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa
| | - D Hu
- Department of Civil and Environmental Engineering, University of Iowa
| | - I Kania-Korwel
- Department of Occupational & Environmental Health, University of Iowa
| | - HJ Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| | - G Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| | - KC Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, University of Iowa
| | - MW Duffel
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa
| | - A Bergman
- Swedish Toxicology Sciences Research Center (SWETOX), Forskargatan 20, SE-151 36 Södertälje, SWEDEN
| | - LW Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Department of Occupational & Environmental Health, University of Iowa
| |
Collapse
|
30
|
Ampleman MD, Martinez A, DeWall J, Rawn DK, Hornbuckle KC, Thorne PS. Inhalation and dietary exposure to PCBs in urban and rural cohorts via congener-specific measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1156-64. [PMID: 25510359 PMCID: PMC4303332 DOI: 10.1021/es5048039] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of 209 persistent organic pollutants, whose documented carcinogenic, neurological, and respiratory toxicities are expansive and growing. However, PCB inhalation exposure assessments have been lacking for North American ambient conditions and lower-chlorinated congeners. We assessed congener-specific inhalation and dietary exposure for 78 adolescent children and their mothers (n = 68) in the Airborne Exposure to Semi-volatile Organic Pollutants (AESOP) Study. Congener-specific PCB inhalation exposure was modeled using 293 measurements of indoor and outdoor airborne PCB concentrations at homes and schools, analyzed via tandem quadrupole GS-MS/MS, combined with questionnaire data from the AESOP Study. Dietary exposure was modeled using Canadian Total Diet Survey PCB concentrations and National Health and Nutrition Examination Survey (NHANES) food ingestion rates. For ∑PCB, dietary exposure dominates. For individual lower-chlorinated congeners (e.g., PCBs 40+41+71, 52), inhalation exposure was as high as one-third of the total (dietary+inhalation) exposure. ∑PCB inhalation (geometric mean (SE)) was greater for urban mothers (7.1 (1.2) μg yr(–1)) and children (12.0 (1.2) μg yr(–1)) than for rural mothers (2.4 (0.4) μg yr(–1)) and children (8.9 (0.3) μg yr(–1)). Schools attended by AESOP Study children had higher indoor PCB concentrations than did homes, and account for the majority of children’s inhalation exposure.
Collapse
Affiliation(s)
- Matt D. Ampleman
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City,
Iowa, United States, 52242
- Department
of Civil & Environmental Engineering, The University of Iowa, Iowa City,
Iowa, United States 52242, United States
| | - Andrés Martinez
- Department
of Civil & Environmental Engineering, The University of Iowa, Iowa City,
Iowa, United States 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, Iowa City, Iowa, United States, 52242
| | - Jeanne DeWall
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City,
Iowa, United States, 52242
| | | | - Keri C. Hornbuckle
- Department
of Civil & Environmental Engineering, The University of Iowa, Iowa City,
Iowa, United States 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, Iowa City, Iowa, United States, 52242
- (K.C.H.) Phone: (319) 384-0789; fax: (319) 335-5660; e-mail:
| | - Peter S. Thorne
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City,
Iowa, United States, 52242
- (P.S.T.) Phone: (319) 335-4216; fax: (319) 384-4138; e-mail:
| |
Collapse
|
31
|
Zhong Y, Guo P, Wang X, An J. Aroclor 1254 inhibits cell viability and induces apoptosis of human A549 lung cancer cells by modulating the intracellular Ca(2+) level and ROS production through the mitochondrial pathway. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:806-813. [PMID: 26030686 DOI: 10.1080/10934529.2015.1019797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To study the acute toxic effects of PCBs on airway exposure, the cell viability, apoptosis and mitochondrial functions of human lung cancer cell line A549 were measured and compared after Aroclor 1254 exposure for different time. The results showed that Aroclor 1254 could inhibit cell viability and increase cell apoptosis in a concentration- and time-dependent manner. The mitochondrial apoptosis pathway was confirmed playing an important role. ROS elevation was an early response within 1h treatment of Aroclor 1254. Then after 4 h of Aroclor 1254 exposure, the intracellular calcium level increased and mitochondrial transmembrane potential (ΔΨm) collapsed, accompanying with Cytochrome c (Cyt-c) leakage, boosting expression of Bax, Apaf-1 and miRNA155, which were involved in the mitochondrial apoptosis pathway. After 24 h of Aroclor 1254 exposure, ROS returned to normal level, but cell apoptosis rate was higher than that at 4 h with ΔΨm continued collapsing and intracellular calcium increased. In conclusion, Aroclor 1254 could suppress cell viability and induce apoptosis in A549 cells, which was associated with ROS over-production and elevated cellular Ca(2+) level, which may result in mitochondrial dysfunction, inducing expression of Bax/Cyt-c/Apaf-1 and miRNA155.
Collapse
Affiliation(s)
- Yufang Zhong
- a Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering , Shanghai University , Shanghai , P. R. China
| | | | | | | |
Collapse
|
32
|
Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11951-11972. [PMID: 24943885 DOI: 10.1007/s11356-014-3136-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
In recent years, attention has been directed to chemicals with possible endocrine-disrupting properties. Polychlorinated biphenyls (PCBs) and their metabolites belong to one group of environmental contaminants that have been shown to interact with the endocrine system in mammals, including humans. Although recent developments have been made in terms of determination of PCB metabolites in blood samples, still limited number of studies have been able to elucidate their profiles and toxicological and health effects in humans. This review aims to evaluate and compare the levels of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs) in blood and their relationship to parent compounds and also address the potential risks and adverse health effects in humans. Levels of OH-PCBs varied between 0.0002 and 1.6 ng g(-1) w/w in human serum/plasma from the selected literature, correlating well with ∑PCBs. In contrast, ∑OH-PCB/∑PCB ratio in animals did not show a significant correlation, which might suggest that the bioaccumulation plays an even more important role in the concentration of OH-PCBs compared to PCB metabolism. Highest levels of MeSO2-PCBs were reported in marine mammals with high selectivity retention in the liver. Health effects of PCB metabolites included carcinogenicity, reproductive impairment, and developmental neurotoxicity, being more efficiently transferred to the brain and across the placenta from mother to fetus in comparison to the parent PCBs. Based on the lack of knowledge on the occurrence and distribution of lower chlorinated OH-PCBs in humans, further studies to identify and assess the risks associated to human exposure are essential.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
33
|
Dhakal K, Uwimana E, Adamcakova-Dodd A, Thorne PS, Lehmler HJ, Robertson LW. Disposition of phenolic and sulfated metabolites after inhalation exposure to 4-chlorobiphenyl (PCB3) in female rats. Chem Res Toxicol 2014; 27:1411-20. [PMID: 24988477 PMCID: PMC4137987 DOI: 10.1021/tx500150h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PCBs, such as PCB3, are air contaminants in buildings and outdoors. Metabolites of PCB3 are potential endocrine disrupting chemicals and genotoxic agents. We studied the disposition of phenolic and sulfated metabolites after acute nose-only inhalation exposure to airborne PCB3 for 2 h in female rats. Inhalation exposure was carried out in three groups. In the first group, rats exposed to an estimated dose of 26 μg/rat were euthanized at 0, 1, 2, and 4 h after exposure. Highest concentrations of phenols and sulfates were observed at 0 h, and the values were 7 ± 1 and 560 ± 60 ng/mL in serum, 213 ± 120 and 842 ± 80 ng/g in liver, 31 ± 27 and 22 ± 7 ng/g in lung, and 27 ± 6 and 3 ± 0 ng/g in brain, respectively. First-order serum clearance half-lives of 0.5 h for phenols and 1 h for sulfates were estimated. In the second group, rats exposed to an estimated dose of 35 μg/rat were transferred to metabolism cages immediately after exposure for the collection of urine and feces over 24 h. Approximately 45 ± 5% of the dose was recovered from urine and consisted mostly of sulfates; the 18 ± 5% of the dose recovered from feces was exclusively phenols. Unchanged PCB3 was detected in both urine and feces but accounted for only 5 ± 3% of the dose. Peak excretion of metabolites in both urine and feces occurred within 18 h postexposure. In the third group, three bile-cannulated rats exposed to an estimated dose of 277 μg/rat were used for bile collection. Bile was collected for 4 h immediately after 2 h exposure. Biliary metabolites consisted mostly of sulfates, some glucuronides, and lower amounts of the free phenols. Control rats in each group were exposed to clean air. Clinical serum chemistry values, serum T4 level, and urinary 8-hydroxy-2'-deoxyguanosine were similar in treated and control rats. These data show that PCB3 is rapidly metabolized to phenols and conjugated to sulfates after inhalation and that both of these metabolites are distributed to liver, lungs, and brain. The sulfates elaborated into bile are either reabsorbed or hydrolyzed in the intestine and excreted in the feces as phenols.
Collapse
Affiliation(s)
- Kiran Dhakal
- Interdisciplinary Graduate Program in Human Toxicology and ‡Department of Occupational and Environmental Health, The University of Iowa , Iowa City, Iowa 52242-5000, United States
| | | | | | | | | | | |
Collapse
|
34
|
Plasma polychlorinated biphenyls in residents of 91 PCB-contaminated and 108 non-contaminated dwellings—An exposure study. Int J Hyg Environ Health 2013; 216:755-62. [DOI: 10.1016/j.ijheh.2013.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 11/19/2022]
|
35
|
Schettgen T, Alt A, Preim D, Keller D, Kraus T. Biological monitoring of indoor-exposure to dioxin-like and non-dioxin-like polychlorinated biphenyls (PCB) in a public building. Toxicol Lett 2012; 213:116-21. [DOI: 10.1016/j.toxlet.2011.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
36
|
MacIntosh DL, Minegishi T, Fragala MA, Allen JG, Coghlan KM, Stewart JH, McCarthy JF. Mitigation of building-related polychlorinated biphenyls in indoor air of a school. Environ Health 2012; 11:24. [PMID: 22490055 PMCID: PMC3353159 DOI: 10.1186/1476-069x-11-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/10/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sealants and other building materials sold in the U.S. from 1958 - 1971 were commonly manufactured with polychlorinated biphenyls (PCBs) at percent quantities by weight. Volatilization of PCBs from construction materials has been reported to produce PCB levels in indoor air that exceed health protective guideline values. The discovery of PCBs in indoor air of schools can produce numerous complications including disruption of normal operations and potential risks to health. Understanding the dynamics of building-related PCBs in indoor air is needed to identify effective strategies for managing potential exposures and risks. This paper reports on the efficacy of selected engineering controls implemented to mitigate concentrations of PCBs in indoor air. METHODS Three interventions (ventilation, contact encapsulation, and physical barriers) were evaluated in an elementary school with PCB-containing caulk and elevated PCB concentrations in indoor air. Fluorescent light ballasts did not contain PCBs. Following implementation of the final intervention, measurements obtained over 14 months were used to assess the efficacy of the mitigation methods over time as well as temporal variability of PCBs in indoor air. RESULTS Controlling for air exchange rates and temperature, the interventions produced statistically significant (p < 0.05) reductions in concentrations of PCBs in indoor air of the school. The mitigation measures remained effective over the course of the entire follow-up period. After all interventions were implemented, PCB levels in indoor air were associated with indoor temperature. In a "broken-stick" regression model with a node at 20 °C, temperature explained 79% of the variability of indoor PCB concentrations over time (p < 0.001). CONCLUSIONS Increasing outdoor air ventilation, encapsulating caulk, and constructing a physical barrier over the encapsulated material were shown to be effective at reducing exposure concentrations of PCBs in indoor air of a school and also preventing direct contact with PCB caulk. In-place management methods such as these avoid the disruption and higher costs of demolition, disposal and reconstruction required when PCB-containing building materials are removed from a school. Because of the influence of temperature on indoor air PCB levels, risk assessment results based on short-term measurements, e.g., a single day or season, may be erroneous and could lead to sub-optimal allocation of resources.
Collapse
Affiliation(s)
- David L MacIntosh
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| | - Taeko Minegishi
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| | - Matthew A Fragala
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| | - Joseph G Allen
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| | - Kevin M Coghlan
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| | - James H Stewart
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| | - John F McCarthy
- Environmental Health & Engineering, Inc, 117 Fourth Avenue, Needham, MA 02494-2705, USA
| |
Collapse
|
37
|
Schettgen T, Gube M, Esser A, Alt A, Kraus T. Plasma polychlorinated biphenyls (PCB) levels of workers in a transformer recycling company, their family members, and employees of surrounding companies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:414-422. [PMID: 22686300 DOI: 10.1080/15287394.2012.674905] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In spring 2010, high internal exposures (up to 236 μg/L plasma) for the sum of indicator polychlorinated biphenyls (PCB) were discovered in workers in a transformer recycling company in Germany, where PCB-contaminated material was not handled according to proper occupational hygiene. The release of PCB from this company raised growing concerns regarding possible adverse human health effects correlated with this exposure. This provided a basis for a large biological monitoring study in order to examine the internal exposure to PCB in individuals working in that recycling company, their family members, and relatives, as well as subjects working or living in the surroundings of this company. Blood samples from 116 individuals (formerly) employed in the transformer recycling company and 45 direct relatives of these persons were obtained. Further, blood samples of 190 subjects working in close vicinity of the recycling plant, 277 persons working in the larger area, and 41 residents of the area were investigated. Plasma samples were analyzed for the 6 indicator PCB (PCB 28, 52, 101, 138, 153, 180) and 12 dioxin-like PCB using gas chromatography/mass spectroscopy (GC/MS; limit of detection [LOD] at 0.01 μg/L). Median concentrations (maximum) for the sum of the 6 indicator PCB in blood of the employees, their relatives, individuals working in close vicinity, persons working in the larger area, and the residents were 3.68 (236.3), 1.86 (22.8), 1.34 (22.9), 1.19 (6.42), and 0.85 (7.22) μg/L plasma, respectively. The (former) employees of the transformer recycling plant partly showed the highest plasma PCB levels determined thus far in Germany. Even family members displayed highly elevated levels of PCB in blood due to contaminations of their homes by laundering of contaminated clothes. Vicinity to the recycling plant including reported contact with possibly contaminated scrap was the main contributor to the PCB levels of the workers of the surrounding companies. Residents of the area did not show significantly elevated blood PCB levels compared to the general population. Our biomonitoring results served as a basis for individual risk communication and successful risk management.
Collapse
Affiliation(s)
- Thomas Schettgen
- Institute for Occupational and Social Medicine, Aachen University, Aachen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Wilson LR, Palmer PM, Belanger EE, Cayo MR, Durocher LA, Hwang SAA, Fitzgerald EF. Indoor air polychlorinated biphenyl concentrations in three communities along the Upper Hudson River, New York. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 61:530-8. [PMID: 21136249 DOI: 10.1007/s00244-010-9627-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/22/2010] [Indexed: 05/21/2023]
Abstract
Indoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Indoor air PCB concentrations in the study area homes were not significantly different than in the comparison area homes. Total PCB concentrations in the study area homes ranged from 0.3 to 114.3 ng/m(3) (median 7.9). For the comparison area homes, concentrations ranged from 0.3 to 233.3 ng/m(3) (median 6.8). No correlations were found between PCB concentrations in indoor and outdoor air, with indoor concentrations generally 20 times higher than outdoor concentrations. Of the home characteristics cataloged, the presence of fluorescent lights was significantly associated with total PCB concentration in the study area only. The indoor PCB concentrations measured in this study are similar to those in other communities with known PCB-contaminated sites and similar to levels reported in other locations from the northeastern United States.
Collapse
Affiliation(s)
- Lloyd R Wilson
- Center for Environmental Health, New York State Department of Health, Troy, NY 12180-2216, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Fitzgerald EF, Shrestha S, Palmer PM, Wilson LR, Belanger EE, Gomez MI, Cayo MR, Hwang SA. Polychlorinated biphenyls (PCBs) in indoor air and in serum among older residents of upper Hudson River communities. CHEMOSPHERE 2011; 85:225-231. [PMID: 21724230 DOI: 10.1016/j.chemosphere.2011.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/15/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
A study was conducted to evaluate the association between PCBs in residential indoor air and in the serum of older, long time residents of three upper Hudson River communities. Samples of indoor air and of serum were collected from 170 persons 55 to 74 years of age, and analyzed for PCBs using glass capillary gas chromatography. After adjusting for age, BMI, cigarette smoking, and Hudson River fish consumption with multiple linear regression analysis, the results indicated statistically significant associations between concentrations in indoor air and serum for PCB-28, a lightly chlorinated congener common in air that accumulates in serum, and PCB-105. Duration of exposure was an important factor, since among persons who had lived in their home for 39 years or more, 11 of the 12 most commonly detected congeners were significantly correlated, as was their sum (∑ PCB). Significant associations between indoor air and serum PCB concentrations also were more likely when collected in cooler months and if the two samples were collected within 20 d of each other. The study is among the first to indicate that PCB concentrations characteristic of residential indoor air are associated with a detectable increase in body burden.
Collapse
Affiliation(s)
- Edward F Fitzgerald
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, United States
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pilot study on the exposure of the German general population to non-dioxin-like and dioxin-like PCBs. Int J Hyg Environ Health 2011; 214:319-25. [DOI: 10.1016/j.ijheh.2011.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/12/2011] [Accepted: 04/15/2011] [Indexed: 11/21/2022]
|
41
|
Herrick RF, Meeker JD, Altshul L. Serum PCB levels and congener profiles among teachers in PCB-containing schools: a pilot study. Environ Health 2011; 10:56. [PMID: 21668970 PMCID: PMC3136408 DOI: 10.1186/1476-069x-10-56] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/13/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND PCB contamination in the built environment may result from the release of PCBs from building materials. The significance of this contamination as a pathway of human exposure is not well-characterized, however. This research compared the serum PCB concentrations, and congener profiles between 18 teachers in PCB-containing schools and referent populations. METHODS Blood samples from 18 teachers in PCB-containing schools were analyzed for 57 PCB congeners. Serum PCB concentrations and congener patterns were compared between the teachers, to the 2003-4 NHANES (National Health and Nutrition Examination Survey) data, and to data from 358 Greater Boston area men. RESULTS Teachers at one school had higher levels of lighter (PCB 6-74) congeners compared to teachers from other schools. PCB congener 47 contributed substantially to these elevated levels. Older teachers (ages 50-64) from all schools had higher total (sum of 33 congeners) serum PCB concentrations than age-comparable NHANES reference values. Comparing the teachers to the referent population of men from the Greater Boston area (all under age 51), no difference in total serum PCB levels was observed between the referents and teachers up to 50 years age. However, the teachers had significantly elevated serum concentrations of lighter congeners (PCB 6-74). This difference was confirmed by comparing the congener-specific ratios between groups, and principal component analysis showed that the relative contribution of lighter congeners differed between the teachers and the referents. CONCLUSIONS These findings suggest that the teachers in the PCB-containing buildings had higher serum levels of lighter PCB congeners (PCB 6-74) than the referent populations. Examination of the patterns, as well as concentrations of individual PCB congeners in serum is essential to investigating the contributions from potential environmental sources of PCB exposure.
Collapse
Affiliation(s)
- Robert F Herrick
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109, USA
| | - Larisa Altshul
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
42
|
Senthilkumar PK, Klingelhutz AJ, Jacobus JA, Lehmler H, Robertson LW, Ludewig G. Airborne polychlorinated biphenyls (PCBs) reduce telomerase activity and shorten telomere length in immortal human skin keratinocytes (HaCat). Toxicol Lett 2011; 204:64-70. [PMID: 21530622 DOI: 10.1016/j.toxlet.2011.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/17/2022]
Abstract
PCBs, a group of 209 individual congeners, are ubiquitous environmental pollutants and classified as probable human carcinogens. One major route of exposure is by inhalation of these industrial compounds, possibly daily from inner city air and/or indoor air in contaminated buildings. Hallmarks of aging and carcinogenesis are changes in telomere length and telomerase activity. We hypothesize that semi-volatile PCBs, like those found in inner city air, are capable of disrupting telomerase activity and altering telomere length. To explore this possibility, we exposed human skin keratinocytes to a synthetic Chicago Airborne Mixture (CAM) of PCBs, or the prominent airborne PCB congeners, PCB28 or PCB52 for up to 48 days and determined telomerase activity, telomere length, cell proliferation, and cell cycle distribution. PCBs 28, 52 and CAM significantly reduced telomerase activity from days 18-48. Telomere length was shortened by PCB 52 from day 18 and PCB 28 and CAM from days 30 on. All PCBs decreased cell proliferation from day 18; only PCB 52 produced a small increase of cells in G0/G1 of the cell cycle. This significant inhibition of telomerase activity and reduction of telomere length by PCB congeners suggest a potential mechanism by which these compounds could lead to accelerated aging and cancer.
Collapse
Affiliation(s)
- P K Senthilkumar
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, United States
| | | | | | | | | | | |
Collapse
|
43
|
Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Kania-Korwel I, Hornbuckle KC, Thorne PS. Time course of congener uptake and elimination in rats after short-term inhalation exposure to an airborne polychlorinated biphenyl (PCB) mixture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6893-900. [PMID: 20698547 PMCID: PMC3408216 DOI: 10.1021/es101274b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite the continued presence of PCBs in indoor and ambient air, few studies have investigated the inhalation route of exposure. While dietary exposure has declined, inhalation of the semivolatile, lower-chlorinated PCBs has risen in importance. We measured the uptake, distribution, and time course of elimination of inhaled PCB congeners to characterize the pulmonary route after short-term exposure. Vapor-phase PCBs were generated from Aroclor 1242 to a nose-only exposure system and characterized for congener levels and profiles. Rats were exposed via inhalation acutely (2.4 mg/m3 for 2 h) or subacutely (8.2 mg/m3, 2 hx10 days), after which pulmonary immune responses and PCB tissue levels were measured. Animals acutely exposed were euthanized at 0, 1, 3, 6, and 12 h post exposure to assess the time course of PCB uptake and elimination. Following rapid absorption and distribution, PCBs accumulated in adipose tissue but decayed in other tissues with half-lives increasing in liver (5.6 h)<lung (8.2 h)<brain (8.5 h)<blood (9.7 h). PCB levels were similar in lung, liver, and adipose tissue, lower in brain, and lowest in blood. Inhalation of the airborne PCB mixture contributed significantly to the body burden of lower-chlorinated congeners. Congeners detected in tissue were mostly ortho-substituted ranging from mono- to pentachlorobiphenyls. Selective uptake and elimination led to accumulation of a distinct congener spectrum in tissue. Minimal evidence of toxicity was observed.
Collapse
Affiliation(s)
- Xin Hu
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Dingfei Hu
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242
| | - Keri C Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242
- Corresponding Author: Peter S. Thorne, Ph.D., University of Iowa, 100 University Research Park, IREH, Iowa City, Iowa 52242-5000 USA., TEL: (319)335-4216, FAX: (319)335-4006,
| |
Collapse
|
44
|
Abstract
The issue of polychlorinated biphenyls (PCB) exposures resulting from occupancy of PCB-contaminated buildings is not new, but the contribution of building materials to that contamination is largely unrecognized. A rapidly emerging base of evidence shows that PCBs can be widely found in caulking and paint in masonry buildings constructed or renovated from about 1950 to the late 1970s. These materials can cause extensive PCB contamination of the building interiors and surrounding soil, and people who teach, live, or attend school in these buildings can have elevated serum PCB levels. The potential risk associated with this source of PCB exposure is not known; however, it is worth noting that the specific PCB congeners found at high levels in the building environments, and in biological samples from the occupants, include some that are suspected of being potent neurotoxins. The U. S. Environmental Protection Agency (EPA) is moving to address this issue in schools; however, the costs of remediating contaminated buildings will pose a formidable obstacle to most school districts.
Collapse
Affiliation(s)
- Robert F Herrick
- Harvard School of Public Health, Dept. of Environmental Health, Landmark Center, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Fernandes ECA, Hendriks HS, van Kleef RGDM, van den Berg M, Westerink RHS. Potentiation of the human GABA(A) receptor as a novel mode of action of lower-chlorinated non-dioxin-like PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2864-9. [PMID: 20014829 DOI: 10.1021/es902321a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PCBs are still ubiquitous pollutants despite the ban on their industrial and commercial use. To date, risk characterization and assessment of non-dioxin-like PCBs (NDL-PCBs), especially with respect to neurotoxicity, is hampered by a lack of data. Therefore, the effects of six common NDL congeners (PCB28, 52, 101, 138, 153 and 180) on human GABA(A) receptors, expressed in Xenopus oocytes, were investigated using the two-electrode voltage-clamp technique. When coapplied with GABA (at EC(20)), PCB28 and PCB52 concentration-dependently potentiate the GABA(A) receptor-mediated ion current. Though the LOEC for both PCB28 and PCB52 is 0.3 microM, PCB28 is more potent than PCB52 (maximum potentiation at 10 muM amounting to 98.3 +/- 12.5% and 25.5 +/- 1.4%, respectively). Importantly, coapplication of PCB28 (0.3 microM) and PCB52 (10 microM) resulted in an apparently additive potentiation of the GABA(A) response, whereas coapplication of PCB28 (0.3 microM) and PCB153 (10 microM) attenuated the PCB28-induced potentiation. The present results suggest that the potentiation of human GABA(A) receptor function is specific for lower-chlorinated NDL-PCBs and that higher molecular weight PCBs may attenuate this potentiation as a result of competitive binding to human GABA(A) receptors. Nonetheless, this novel mode of action could (partly) underlie the previously recognized NDL-PCB-induced neurobehavioral alterations.
Collapse
Affiliation(s)
- Elsa C Antunes Fernandes
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Takigami H, Suzuki G, Hirai Y, Sakai SI. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan. CHEMOSPHERE 2009; 76:270-7. [PMID: 19361833 DOI: 10.1016/j.chemosphere.2009.03.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/19/2009] [Accepted: 03/01/2009] [Indexed: 05/22/2023]
Abstract
This study analyzed polyhalogenated compounds (PHCs) such as brominated flame retardants (BFRs) in indoor air and dust samples from two modern homes in Japan. Concentrations of polychlorinated biphenyls (PCBs) and 2,4,6-tribromophenol (2,4,6-TBP) in exhaust and indoor air of two houses were detected at 10(2)-10(3)pgm(-3) order, which were well above those in outdoor air. For dust samples, the detected polybrominated diphenyl ether (PBDE) and polybrominated dibenzo-p-dioxins/furan concentrations resembled values found in our past study. Interestingly, compared to PBDE concentrations, two orders of magnitude higher concentration (13000 ng g(-1)) was observed for hexabromocyclododecanes (HBCDs) in a dust sample from one house. Based on the calculation of air/dust partition ratio values (Kad), low Kad values (log Kad <or=0) were obtained for high brominated PBDEs (pentaBDEs - decaBDE), tetrabromobisphenol A (TBBPA), and HBCDs, although indoor air contained higher contents of low chlorinated PCBs, low brominated PBDEs, and 2,4,6-TBP. Attention should be given to exposure to 2,4,6-TBP through inhalation of air as well as dust ingestion. Results of X-ray fluorescence analysis show high bromine concentrations in curtain and roll screen samples possessing a high product loading factor. Furthermore, a preliminary estimation was made of the likely magnitude of inhabitants' exposure to PHCs via inhalation and dust ingestion in the two houses.
Collapse
Affiliation(s)
- Hidetaka Takigami
- Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | |
Collapse
|
47
|
Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2009; 43:170-181. [PMID: 20047015 PMCID: PMC2677823 DOI: 10.1016/j.atmosenv.2008.09.025] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals-that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting effects is currently underway, so questions remain as to the health impacts of these exposures.
Collapse
|
48
|
Analysis of industrial contaminants in indoor air: Part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. J Chromatogr A 2009; 1216:540-66. [DOI: 10.1016/j.chroma.2008.10.117] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 10/27/2008] [Accepted: 10/31/2008] [Indexed: 11/20/2022]
|
49
|
Glynn A, Thuvander A, Aune M, Johannisson A, Darnerud PO, Ronquist G, Cnattingius S. Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study. Environ Health 2008; 7:62. [PMID: 19055819 PMCID: PMC2637846 DOI: 10.1186/1476-069x-7-62] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/04/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and p,p'-DDE in infants. METHODS Prenatal exposure to PCBs and p,p'-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age. RESULTS Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-ortho PCB (CB-105, CB-118, CB-156, CB-167) and di-ortho PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-ortho PCB, and p,p'-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to p,p'-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and p,p'-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders. CONCLUSION This hypothesis generating study suggests that background exposure to PCBs and p,p'-DDE early in life modulate immune system development. Strong correlations between mono- and di-ortho PCBs, and p,p'-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and p,p'-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.
Collapse
Affiliation(s)
- Anders Glynn
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
| | - Ann Thuvander
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
- The National Board of Health and Welfare, SE-106 30 Stockholm, Sweden
| | - Marie Aune
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
| | - Anders Johannisson
- Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, PO Box 7070, SE- 750 07 Uppsala, Sweden
| | - Per Ola Darnerud
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
| | - Gunnar Ronquist
- Department of Medical Sciences, Clinical Chemistry, University Hospital of Uppsala, SE- 751 85, Uppsala, Sweden
| | - Sven Cnattingius
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
50
|
Broding HC, Schettgen T, Hillert A, Angerer J, Göen T, Drexler H. Subjective complaints in persons under chronic low-dose exposure to lower polychlorinated biphenyls (PCBs). Int J Hyg Environ Health 2008; 211:648-57. [PMID: 18396099 DOI: 10.1016/j.ijheh.2008.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 01/31/2008] [Accepted: 02/04/2008] [Indexed: 11/26/2022]
Abstract
Polychlorinated biphenyls (PCBs) have been in widespread industrial use in the 1960s and 1970s. Despite a worldwide reduction, environmental exposure remains an issue especially in contaminated buildings. Due to the ubiquitous presence and poor degradation of PCBs, public health concerns continue to exist; however, evidence on the actual health effects of chronic low-dose exposure is scanty. The objective of the present study is an assessment of subjective complaints of exposed subjects in comparison to a non-exposed control group and their inter-relation to plasma levels of PCB congeners. The plasma concentrations of PCB congeners were measured in 583 subjects who had worked for an average of 14.7+/-9.6 years in a contaminated building in Germany, and 205 control subjects working in a non-contaminated building. Subjective complaints were assessed with the 24-item 'Giessen Subjective Complaints List' (GSCL-24). The subjects under chronic low-dose exposure scored significantly higher values on all the GSCL subscales except 'stomach complaints' in comparison to the non-exposed subjects and a 'normal' sample derived from the literature. However, thorough statistical analysis revealed no correlation of symptoms and PCB congener plasma concentration; the scores on the subscale 'exhaustion were even higher in subjects with low PCB concentration. Subjects working in a PCB-contaminated building report more subjective complaints in comparison to non-exposed subjects, but the complaints are not related to current PCB plasma concentrations.
Collapse
Affiliation(s)
- Horst Christoph Broding
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nuremberg, Schillerstrasse 25 & 29, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|