1
|
A Review of the Action of Magnesium on Several Processes Involved in the Modulation of Hematopoiesis. Int J Mol Sci 2020; 21:ijms21197084. [PMID: 32992944 PMCID: PMC7582682 DOI: 10.3390/ijms21197084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Magnesium (Mg2+) is an essential mineral for the functioning and maintenance of the body. Disturbances in Mg2+ intracellular homeostasis result in cell-membrane modification, an increase in oxidative stress, alteration in the proliferation mechanism, differentiation, and apoptosis. Mg2+ deficiency often results in inflammation, with activation of inflammatory pathways and increased production of proinflammatory cytokines by immune cells. Immune cells and others that make up the blood system are from hematopoietic tissue in the bone marrow. The hematopoietic tissue is a tissue with high indices of renovation, and Mg2+ has a pivotal role in the cell replication process, as well as DNA and RNA synthesis. However, the impact of the intra- and extracellular disturbance of Mg2+ homeostasis on the hematopoietic tissue is little explored. This review deals specifically with the physiological requirements of Mg2+ on hematopoiesis, showing various studies related to the physiological requirements and the effects of deficiency or excess of this mineral on the hematopoiesis regulation, as well as on the specific process of erythropoiesis, granulopoiesis, lymphopoiesis, and thrombopoiesis. The literature selected includes studies in vitro, in animal models, and in humans, giving details about the impact that alterations of Mg2+ homeostasis can have on hematopoietic cells and hematopoietic tissue.
Collapse
|
2
|
Sun L, Li X, Xu M, Yang F, Wang W, Niu X. In vitro immunomodulation of magnesium on monocytic cell toward anti-inflammatory macrophages. Regen Biomater 2020; 7:391-401. [PMID: 32793384 PMCID: PMC7415003 DOI: 10.1093/rb/rbaa010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2020] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/20/2022] Open
Abstract
Biodegradable magnesium (Mg) has shown great potential advantages over current bone fixation devices and vascular scaffold technologies; however, there are few reports on the immunomodulation of corrosive Mg products, the micron-sized Mg particles (MgMPs). Human monocytic leukemia cell line THP-1 was set as the in vitro cell model to estimate the immunomodulation of MgMPs on cell proliferation, apoptosis, polarization and inflammatory reaction. Our results indicated high-concentration of Mg2+ demoted the proliferation of the THP-1 cells and, especially, THP-1-derived macrophages, which was a potential factor that could affect cell function, but meanwhile, cell apoptosis was almost not affected by Mg2+. In particular, the inflammation regulatory effects of MgMPs were investigated. Macrophages exposed to Mg2+ exhibited down-regulated expressions of M1 subtype markers and secretions of pro-inflammatory cytokines, up-regulated expression of M2 subtype marker and secretion of anti-inflammatory cytokine. These results indicated Mg2+ could convert macrophages from M0 to M2 phenotype, and the bioeffects of MgMPs on human inflammatory cells were most likely due to the Mg2+-induced NF-κB activation reduction. Together, our results proved Mg2+ could be used as a new anti-inflammatory agent to suppress inflammation in clinical applications, which may provide new ideas for studying the immunomodulation of Mg-based implants on human immune system.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Menghan Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Fenghe Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No. 38 XueYuan Road, Haidian District, Beijing 100191, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
|
4
|
Suzuki-Kakisaka H, Sugimoto J, Tetarbe M, Romani AM, Ramirez Kitchen CM, Bernstein HB. Magnesium Sulfate Increases Intracellular Magnesium Reducing Inflammatory Cytokine Release in Neonates. Am J Reprod Immunol 2013; 70:213-20. [DOI: 10.1111/aji.12118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Haruka Suzuki-Kakisaka
- Department of Reproductive Biology; Case Western Reserve University School of Medicine; Cleveland OH USA
| | - Jun Sugimoto
- Department of Reproductive Biology; Case Western Reserve University School of Medicine; Cleveland OH USA
| | - Manas Tetarbe
- Department of Physiology and Biophysics; Case Western Reserve University School of Medicine; Cleveland OH USA
| | - Andrea M. Romani
- Department of Physiology and Biophysics; Case Western Reserve University School of Medicine; Cleveland OH USA
| | | | - Helene B. Bernstein
- Department of Reproductive Biology; Case Western Reserve University School of Medicine; Cleveland OH USA
- Department of Molecular Biology and Microbiology; Case Western Reserve University School of Medicine; Cleveland OH USA
| |
Collapse
|
5
|
Park SB, Choi SW, Nam AY. Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res 2009; 130:218-28. [PMID: 19221698 DOI: 10.1007/s12011-009-8336-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/19/2009] [Accepted: 02/02/2009] [Indexed: 11/29/2022]
Abstract
Deficiency of minerals causes functional abnormality of enzymes, frequently resulting in metabolic disturbance. We investigated possible relationship between minerals and metabolic syndrome by analysis of hair tissue minerals. We selected 848 subjects older than 20 years of age at Ajou University Hospital from May 2004 to February 2007. We excluded the subjects who had cancers, steroid and thyroid medication, and incomplete record from the study. Finally, 343 subjects were eligible. We performed cross-sectional analysis for the relationship between minerals and metabolic syndrome. The contents of calcium, magnesium, and copper in the metabolic syndrome group were significantly lower than those of the normal group, whereas the amounts of sodium, potassium, and mercury in the metabolic syndrome group were significantly higher than those of the normal group. By dividing the subjects into quartile with the level of calcium, magnesium, and mercury concentrations, we carried out logistic regression analysis to study the subjects and found that the subjects in the third quartile of calcium and magnesium concentrations had significantly lower odds ratio (OR) of the metabolic syndrome compared with that of the lowest quartile group [OR = 0.30, confidence interval (CI) = 0.10-0.89; OR = 0.189, CI = 0.063-0.566] and that the subjects in the highest mercury quartile had significantly higher OR of the metabolic syndrome compared with that of the lowest mercury quartile group (OR = 7.35, CI = 1.73-31.1). As part of the metabolic syndrome, the optimal calcium and magnesium concentrations in hair tissue may reflect decreased risk of metabolic syndrome, whereas high mercury concentration in hair tissue may indicate increased risk of metabolic syndrome.
Collapse
Affiliation(s)
- Sat Byul Park
- School of Medicine, Ajou University, Suwon, South Korea.
| | | | | |
Collapse
|
6
|
Mak IT, Kramer JH, Chmielinska JJ, Khalid MH, Landgraf KM, Weglicki WB. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat. Inflamm Res 2008; 57:300-5. [PMID: 18607539 PMCID: PMC3715053 DOI: 10.1007/s00011-007-7186-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022] Open
Abstract
Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (approximately 50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days +/- NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s.c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal .O(2-) generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21% (p <0.025) and 7% (NS). MgD+PR significantly reduced neutrophil NEP activity by 48% (p <0.02); PR or MgD alone only reduced this activity 26% and 15%, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil .O(2-) production and may promote other inflammatory activities during MgD.
Collapse
Affiliation(s)
- I T Mak
- Department of Biochemistry & Molecular Biology, Division of Experimental Medicine, George Washington University Medical Center, 2300 Eye St. NW, Ross Hall, Rm 443, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Song Y, Li TY, van Dam RM, Manson JE, Hu FB. Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am J Clin Nutr 2007; 85:1068-74. [PMID: 17413107 DOI: 10.1093/ajcn/85.4.1068] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Relations between magnesium intake and systemic inflammation and endothelial dysfunction are not well established. OBJECTIVE The aim of the present study was to examine whether and to what extent magnesium intake is related to inflammatory and endothelial markers. DESIGN We conducted a cross-sectional study of 657 women from the Nurses' Health Study cohort who were aged 43-69 y and free of cardiovascular disease, cancer, and diabetes mellitus when blood was drawn in 1989 and 1990. Plasma concentrations of C-reactive protein (CRP), interleukin 6 (IL-6), soluble tumor necrosis factor alpha receptor 2 (sTNF-R2), E-selectin, soluble intercellular adhesion molecule 1 (sICAM-1), and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured. Estimates from 2 semiquantitative food-frequency questionnaires, administered in 1986 and 1990, were averaged to assess dietary intakes. RESULTS In age-adjusted linear regression analyses, magnesium intake was inversely associated with plasma concentrations of CRP (P for linear trend = 0.003), E-selectin (P = 0.001), and sICAM-1 (P = 0.03). After further adjustment for physical activity, smoking status, alcohol use, postmenopausal hormone use, and body mass index, dietary magnesium intake remained inversely associated with CRP and E-selectin. Multivariate-adjusted geometric means for women in the highest quintile of dietary magnesium intake were 24% lower for CRP (1.70 +/- 0.18 compared with 1.30 +/- 0.10 mg/dL; P for trend = 0.03) and 14% lower for E-selectin (48.5 +/- 1.84 compared with 41.9 +/- 1.58 ng/mL; P for trend = 0.01) than those for women in the lowest quintile. CONCLUSION Magnesium intake from diet is modestly and inversely associated with some but not all markers of systematic inflammation and endothelial dysfunction in apparently healthy women.
Collapse
Affiliation(s)
- Yiqing Song
- Division of Preventive Medicine and Epidemiology, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
8
|
Wolf FI, Maier JAM, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, Cittadini A. Magnesium and neoplasia: From carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys 2007; 458:24-32. [PMID: 16564020 DOI: 10.1016/j.abb.2006.02.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2006] [Revised: 02/16/2006] [Accepted: 02/21/2006] [Indexed: 11/20/2022]
Abstract
Magnesium is involved in a wide range of biochemical reactions that are crucial to cell proliferation, differentiation, angiogenesis, and apoptosis. Changes in magnesium availability have been shown to influence biological responses of immuno-inflammatory cells. Equally plausible seems to be an involvement of magnesium in the multistep and interconnected processes that lead to tumor formation and development; however, the "how" and "when" of such an involvement remain to be defined. Here, we reviewed in vitro and in vivo data that indicated a role for magnesium in many biological and clinical aspects of cancer (from neoplastic transformation to tumor growth and progression or pharmacologic treatment). In adopting this approach we went through a full circle from molecular aspects to observational or epidemiological studies that could reconcile in a unifying picture the otherwise fragmentary or puzzling data currently available on the role of magnesium in cancer.
Collapse
Affiliation(s)
- F I Wolf
- Istituto di Patologia generale, e Centro di Ricerche Oncologiche Giovanni XXIII, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Largo F. Vito, 100168 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Hypomagnesemia has been reported to occur at an increased frequency among patients with type 2 diabetes compared with their counterparts without diabetes. Despite numerous reports linking hypomagnesemia to chronic diabetic complications, attention to this issue is poor among clinicians. This article reviews the literature on the metabolism of magnesium, incidence of hypomagnesemia in patients with type 2 diabetes, implicated contributing factors, and associated complications. Hypomagnesemia occurs at an incidence of 13.5 to 47.7% among patients with type 2 diabetes. Poor dietary intake, autonomic dysfunction, altered insulin metabolism, glomerular hyperfiltration, osmotic diuresis, recurrent metabolic acidosis, hypophosphatemia, and hypokalemia may be contributory. Hypomagnesemia has been linked to poor glycemic control, coronary artery diseases, hypertension, diabetic retinopathy, nephropathy, neuropathy, and foot ulcerations. The increased incidence of hypomagnesemia among patients with type 2 diabetes presumably is multifactorial. Because current data suggest adverse outcomes in association with hypomagnesemia, it is prudent to monitor magnesium routinely in this patient population and treat the condition whenever possible.
Collapse
Affiliation(s)
- Phuong-Chi T Pham
- Olive View-UCLA Medical Center, 14445 Olive View Drive, Department of Medicine, 2B-182, Nephrology Division, Sylmar, CA 91342, USA.
| | | | | | | | | |
Collapse
|
10
|
Mazur A, Maier JAM, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 2006; 458:48-56. [PMID: 16712775 DOI: 10.1016/j.abb.2006.03.031] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2006] [Revised: 03/25/2006] [Accepted: 03/29/2006] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to summarize experimental findings showing that magnesium modulates cellular events involved in inflammation. Experimental magnesium deficiency in the rat induces after a few days a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, release of inflammatory cytokines and acute phase proteins, excessive production of free radicals. Increase in extracellular magnesium concentration, decreases inflammatory response while reduction in the extracellular magnesium results in cell activation. Because magnesium acts as a natural calcium antagonist, the molecular basis for inflammatory response is probably the result of modulation of intracellular calcium concentration. The priming of phagocytic cells, the opening calcium channel and activation of N-methyl-d-aspartate (NMDA) receptors, the activation of nuclear factor-kappa B (NFkappaB) have been considered as potential mechanisms. Moreover, magnesium deficiency induces a systemic stress response by activation of neuro endocrinological pathways. As nervous and immune systems interact bidirectionally, the roles of neuromediators have also been considered. Magnesium deficiency contributes to an exaggerated response to immune stress and oxidative stress is the consequence of the inflammatory response. Inflammation contributes to the pro-atherogenic changes in lipoprotein metabolism, endothelial dysfunction, thrombosis, hypertension and explains the aggravating effect of magnesium deficiency on the development of metabolic syndrome. Further studies are still needed to assess more accurately the role of magnesium in immune response in humans, but these experimental findings in animal models suggest that inflammation is the missing link to explain the role of magnesium in many pathological conditions.
Collapse
Affiliation(s)
- Andrzej Mazur
- Equipe Stress Métabolique et Micronutriments, Unité de Nutrition Humaine UMR 1019, Centre de Recherche en Nutrition Humaine d'Auvergne, INRA, Theix, St. Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
11
|
Tejero-Taldo MI, Kramer JH, Mak IT, Komarov AM, Weglicki WB. The nerve-heart connection in the pro-oxidant response to Mg-deficiency. Heart Fail Rev 2006; 11:35-44. [PMID: 16819576 DOI: 10.1007/s10741-006-9191-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
Abstract
Magnesium is a micronutrient essential for the normal functioning of the cardiovascular system, and Mg deficiency (MgD) is frequently associated in the clinical setting with chronic pathologies such as CHF, diabetes, hypertension, and other pathologies. Animal models of MgD have demonstrated a systemic pro-inflammatory/pro-oxidant state, involving multiple tissues/organs including neuronal, hematopoietic, cardiovascular, and gastrointestinal systems; during later stages of MgD, a cardiomyopathy develops which may result from a cascade of inflammatory events. In rodent models of dietary MgD, a significant rise in circulating levels of proinflammatory neuropeptides such as substance P (SP) and calcitonin gene-related peptide among others, was observed within days (1-7) of initiating the Mg-restricted diet, and implicated a neurogenic trigger for the subsequent inflammatory events; this early "neurogenic inflammation" phase may be mediated in part, by the Mg-gated N: -methyl-D-aspartate (NMDA) receptor/channel complex. Deregulation of the NMDA receptor may trigger the abrupt release of neuronal SP from the sensory-motor C-fibers to promote the subsequent pro-inflammatory changes: elevations in circulating inflammatory cells, inflammatory cytokines, histamine, and PGE(2) levels, as well as formation of nitric oxide, reactive oxygen species, lipid peroxidation products, and depletion of key endogenous antioxidants. Concurrent elevations of tissue CD14, a high affinity receptor for lipopolyssacharide, suggest that intestinal permeability may be compromised leading to endotoxemia. If exposure to these early (1-3 weeks MgD) inflammatory/pro-oxidant events becomes prolonged, this might lead to impaired cardiac function, and when co-existing with other pathologies, may enhance the risk of developing chronic heart failure.
Collapse
Affiliation(s)
- Maria Isabel Tejero-Taldo
- Dept. of Biochemistry & Molecular Biology, Div. of Experimental Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
12
|
Tejero-Taldo MI, Chmielinska JJ, Gonzalez G, Mak IT, Weglicki WB. N-Methyl-d-aspartate Receptor Blockade Inhibits Cardiac Inflammation in the Mg2+-Deficient Rat. J Pharmacol Exp Ther 2004; 311:8-13. [PMID: 15169828 DOI: 10.1124/jpet.104.070003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Elevated plasma levels of the neuropeptide substance P (SP) precede the perivascular inflammatory infiltrate seen in hearts of Mg(2+)-deficient (MgD) animals. The N-methyl-d-aspartate (NMDA) receptor is found in neurons, and activation of this receptor participates in SP release; under normal circumstances, this release can be blocked by Mg(2+). Therefore, we reasoned that blockade of the NMDA receptor with dizolcipine maleate (a noncompetitive NMDA receptor antagonist) would prevent SP release from C-fibers due to MgD. In this study, animals were implanted with slow-release pellets containing dizolcipine or placebo and were fed with diet sufficient in Mg(2+) or deficient with only 9% of USDA-recommended Mg(2+). SP immunostaining of dorsal root ganglia showed a time-dependent depletion of SP in the MgD animals, with a dramatic decrease of SP by week 2; this depletion was prevented by pretreatment with dizolcipine maleate. The significant increase in plasma prostaglandin E(2) levels during MgD was prevented by dizolcipine, and the loss of total red blood cell glutathione content was significantly attenuated by NMDA blockade after 3 weeks of MgD (p < 0.01 versus controls). Immunohistochemical and Western blot analyses of ventricular tissue demonstrated that NMDA receptor blockade abolished MgD-related increase of endothelium adhesion molecule CD54 (weeks 1 and 2; p < 0.05), and of monocyte/macrophage surface protein CD11b expression (week 3; p < 0.05). We conclude that NMDA receptor blockade with dizolcipine maleate prevented SP depletion and reduced perivascular inflammatory infiltrates, thus decreasing cardiac injury due to Mg(2+) deficiency.
Collapse
Affiliation(s)
- M Isabel Tejero-Taldo
- Division of Experimental Medicine, Department of Biochemistry and Molecular Biology, George Washington University Medical Center, 2300 I St., NW, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
13
|
Kramer JH, Mak IT, Phillips TM, Weglicki WB. Dietary magnesium intake influences circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress. Exp Biol Med (Maywood) 2003; 228:665-73. [PMID: 12773697 DOI: 10.1177/153537020322800604] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
Severe dietary Mg restriction (Mg(9), 9% of recommended daily allowance [RDA], plasma Mg = 0.25 mM) induces a pro-inflammatory neurogenic response in rats (substance P [SP]), and the associated increases in oxidative stress in vivo and cardiac susceptibility to ischemia/reperfusion (I/R) injury were previously shown to be attenuated by SP receptor blockade and antioxidant treatment. The present study assessed if less severe dietary Mg restriction modulates the extent of both the neurogenic/oxidative responses in vivo and I/R injury in vitro. Male Sprague-Dawley rats maintained on Mg(40) (40% RDA, plasma Mg = 0.6 mM) or Mg(100) (100% RDA, plasma Mg = 0.8 mM) diets were assessed for plasma SP levels (CHEM-ELISA) during the first 3 weeks and were compared with the Mg(9) group; red blood cell (RBC) glutathione and plasma malondialdehyde levels were compared at 3 weeks in Mg(9), Mg(20) (plasma Mg = 0.4 mM), Mg(40), and Mg(100) rats; and 40-min global ischemia/30-min reperfusion hearts from 7-week-old Mg(20), Mg(40), and Mg(100) rats were compared with respect to functional recovery (cardiac work, and diastolic, systolic, and developed pressures), tissue LDH release, and free radical production (ESR spectroscopy and alpha-phenyl-N-tert butylnitrone [PBN; 3 mM] spin trapping). The Mg(40) diet induced smaller elevations in plasma SP (50% lower) compared with Mg(9), but with a nearly identical time course. RBC glutathione and plasma malondialdehyde levels revealed a direct relationship between the severity of oxidative stress and hypomagnesemia. The dominant lipid free radical species detected in all I/R groups was the alkoxyl radical (PBN/alkoxyl: alpha(H) = 1.93 G, alpha(N) = 13.63 G); however, Mg(40) and Mg(20) hearts exhibited 2.7- and 3.9-fold higher alkoxyl levels, 40% and 65% greater LDH release, and lower functional recovery (Mg(20) < Mg(40)) compared with Mg(100). Our data suggest that varying dietary Mg intake directly influences the magnitude of the neurogenic/oxidative responses in vivo and the resultant myocardial tolerance to I/R stress.
Collapse
Affiliation(s)
- Jay H Kramer
- Department of Physiology, George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
14
|
Koga T, Sato K, Shimada Y, Takahashi K, Kikuchi I, Okazaki Y, Katsuta M, Iwata M. Essential role of magnesium ion in water for colonization of Helicobacter pylori in 2-week-old miniature pigs. Microbiol Res 2003; 158:69-75. [PMID: 12608582 DOI: 10.1078/0944-5013-00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
This study was designed to determine whether magnesium ion in water would influence the colonization of Helicobacter pylori in 2-week-old miniature pigs. Groups A (2 pigs) and B (1 pig) were both fed a milk diet dissolved in drinking water, Group C (2 pigs) was fed a milk diet dissolved in deionized distilled water (DDW), and Group D (1 pig) was fed a milk diet dissolved in DDW supplemented with MgCl2. Groups B, C, and D were all challenged with H. pylori, and Group A was not. Necropsy was performed on the pigs on postinfection Day 5, and biopsy specimens were taken from 16 sites of the stomach. H. pylori were recovered from 11 of 16 sites in Group B, 1 of 32 sites in Group C, and 13 of 16 sites in Group D. On the other hand, the degree of lymphocyte infiltration increased in the order of Group A < Group B < Group C < Group D. These observations suggest that magnesium ion in drinking water is essential for the colonization of H. pylori in the pig stomach. Possible mechanisms for the lymphocyte infiltration are discussed.
Collapse
Affiliation(s)
- Tetsufumi Koga
- Biological Research Laboratories, Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zimowska W, Girardeau JP, Kuryszko J, Bayle D, Rayssiguier Y, Mazur A. Morphological and immune response alterations in the intestinal mucosa of the mouse after short periods on a low-magnesium diet. Br J Nutr 2002; 88:515-22. [PMID: 12425732 DOI: 10.1079/bjn2002696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
The importance of Mg for the immune function is well recognized; however, there is no information available about the effect of Mg intake on the modulation of local immune response in the intestine. Thus, in the present study the hypothesis that short periods of Mg deprivation can affect intestinal mucosa and local immune response was tested. For this purpose, OF1 female mice were fed a semipurified diet (1000 mg Mg/kg diet). For 3 d before immunization and 1 d after, half of the animals were fed a Mg-deficient diet (30 mg Mg/kg diet), three immunizations per os were performed every 3 weeks with Escherichia coli producing the CS31A capsule-like protein (1010 or bacteria per animal). Mice were killed 10 d after the last immunization. The level of specific anti CS31A immunoglobulin (Ig) G and IgA in the serum and secretory IgA in the intestinal secretions and faeces were measured by ELISA. The results indicated that administration of a high dose of immunogen with a low-Mg diet led to lower specific IgA levels in the intestinal mucus and serum. Administration of a low dose of immunogen with a low-Mg diet led to lower IgA and IgG levels in the serum and secretory IgA coproantibodies. To assess alterations of intestinal mucosa caused by a low-Mg diet for a short period, histological and scanning electron microscopy analyses were performed on samples from mice (not submitted to the vaccination protocol) after 3 d on the Mg-deficient diet. These analyses showed several alterations, suggesting perturbations in the growth of the intestinal mucosa. These changes were accompanied by modifications in the expression of several genes involved in cell growth and stress response. From this present work, it may be concluded that short periods of Mg deprivation can affect the intestinal mucosa and local immune response of the intestine.
Collapse
Affiliation(s)
- W Zimowska
- CRNH, Unité Maladies Métaboliques et Micronutriments, Unité Microbiologie, INRA, Theix, France
| | | | | | | | | | | |
Collapse
|
16
|
McCoy MA, Young PB, Edgar HWJ, McCarville EM, Davison G, Fitzpatrick DA, Kennedy DG. Biochemical changes induced by hypomagnesaemia in lactating cows and ewes. Vet Rec 2002; 150:176-81. [PMID: 11890174 DOI: 10.1136/vr.150.6.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Severe hypomagnesaemia was induced in lactating cows and lactating sheep by feeding them magnesium-deficient diets for 17 and 14 days, respectively. Hypomagnesaemia in cows was associated with abnormally high rates of change in the numbers of leucocytes, neutrophils, monocytes and platelets. There were increases in the concentration of iron in the liver of the hypomagnesaemic ewes and in the heart of the hypomagnesaemic cows, which were not associated with a haemolytic process. The percentage of some of the peroxidisable fatty acids was lower in the heart tissue of hypomagnesaemic cows, but the reduction was not associated with significant lipid peroxidation.
Collapse
Affiliation(s)
- M A McCoy
- Department of Agriculture and Rural Development for Northern Ireland, Stormont, Belfast
| | | | | | | | | | | | | |
Collapse
|
17
|
Bussière FI, Gueux E, Rock E, Girardeau JP, Tridon A, Mazur A, Rayssiguier Y. Increased phagocytosis and production of reactive oxygen species by neutrophils during magnesium deficiency in rats and inhibition by high magnesium concentration. Br J Nutr 2002; 87:107-13. [PMID: 11895162 DOI: 10.1079/bjn2001498] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Recent studies underline the importance of the immunoinflammatory processes in the pathology of Mg deficiency. Neutrophils possess a superoxide anion-generating NADPH oxidase and its inappropriate activation may result in tissue damage. The aim of the present study was to assess the effect of experimental Mg deficiency in the rat on polymorphonuclear leucocytes (PMN) activity and the role of increasing extracellular Mg. Weaning male Wistar rats were fed either a Mg-deficient or a control diet for 8 d. In Mg-deficient rats, the characteristic inflammatory response was accompanied by a marked increase in the number of PMN. Higher plasma interleukin 6 and NO concentrations and increased lipid peroxidation in the heart were found in Mg-deficient rats as compared with control rats. As shown by chemiluminescence studies, basal neutrophil activity from Mg-deficient rats was significantly elevated when compared with neutrophils from control rats. Moreover, the chemiluminescence of PMN from Mg-deficient rats was significantly higher than that of control rats following phorbol myristate acetate or opsonized zymosan activation. PMN from Mg-deficient rats also showed an increased activity of phagocytosis in comparison with neutrophils from control animals. Increasing extracellular Mg concentration in the incubating medium of PMN (0.8 v. 8.0 mM) decreased the chemiluminescence activity of PMN from control rats following opsonized zymosan activation. Chemiluminescence activities of PMN from Mg-deficient rats following phorbol myristate acetate or opsonized zymosan challenge were also decreased by high extracellular Mg concentration. From this work, it appears that PMN activation is an early consequence of Mg deficiency and that high extracellular Mg concentration inhibits free radicals generation.
Collapse
Affiliation(s)
- Françoise I Bussière
- Centre de Recherches en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, INRA, Theix, St-Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Malpuech-Brugère C, Nowacki W, Daveau M, Gueux E, Linard C, Rock E, Lebreton J, Mazur A, Rayssiguier Y. Inflammatory response following acute magnesium deficiency in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1501:91-8. [PMID: 10838183 DOI: 10.1016/s0925-4439(00)00018-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
The importance of inflammatory processes in the pathology of Mg deficiency has been recently reconsidered but the sequence of events leading to the inflammatory response remains unclear. Thus, the purpose of the present study was to characterize more precisely the acute phase response following Mg deficiency in the rat. Weaning male Wistar rats were pair-fed either a Mg-deficient or a control diet for either 4 or 8 days. The characteristic allergy-like crisis of Mg-deficient rats was accompanied by a blood leukocyte response and changes in leukocytes subpopulations. A significant increase in interleukin-6 (IL-6) plasma level was observed in Mg-deficient rats compared to rats fed a control diet. The inflammatory process was accompanied by an increase in plasma levels of acute phase proteins. The concentrations of alpha2-macroglobulin and alpha1-acid glycoprotein in the plasma of Mg-deficient rats were higher than in control rats. This was accompanied in the liver by an increase in the level of mRNA coding for these proteins. Moreover, Mg-deficient rats showed a significant increase in plasma fibrinogen and a significant decrease in albumin concentrations. Macrophages found in greater number in the peritoneal cavity of Mg-deficient rats were activated endogenously and appeared to be primed for superoxide production following phorbol myristate acetate stimulation. A high plasma level of IL-6 could be detected as early as day 4 for the Mg-deficient diet. Substance P does not appear to be the initiator of inflammation since IL-6 increase was observed without plasma elevation of this neuropeptide. The fact that the inflammatory response was an early consequence of Mg deficiency suggests that reduced extracellular Mg might be responsible for the activated state of immune cells.
Collapse
Affiliation(s)
- C Malpuech-Brugère
- Centre de Recherches en Nutrition Humaine, Unité Maladies Métaboliques et Micronutriments, INRA, Theix, St. Genès Champanelle, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Manuel y Keenoy B, Moorkens G, Vertommen J, Noe M, Nève J, De Leeuw I. Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. J Am Coll Nutr 2000; 19:374-82. [PMID: 10872900 DOI: 10.1080/07315724.2000.10718934] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Magnesium deficiency and oxidative stress have both been identified as pathogenic factors in aging and in several age-related diseases. The link between these two factors is unclear in humans although, in experimental animals, severe Mg deficiency has been shown to lead to increased oxidative stress. METHODS The relationship between Mg body stores, dietary intakes and supplements on the one hand and parameters of the oxidant-antioxidant balance on the other was investigated in human subjects. RESULTS The study population consisted of 93 patients with unexplained chronic fatigue (median age 38 years, 25% male, 16% smokers and 54% with Chronic Fatigue Syndrome (CFS). Mg deficient patients (47%) had lower total antioxidant capacity in plasma (p=0.007) which was related to serum albumin. Mg deficient patients whose Mg body stores did not improve after oral supplementation with Mg (10 mg/kg/day) had persistently lower blood glutathione levels (p=0.003). In vitro production of thiobarbituric acid reactive substances (TBARS) by non-HDL lipoproteins incubated with copper was related to serum cholesterol (p<0.001) but not to Mg or antioxidants and did not improve after Mg supplementation. In contrast, velocity of formation of fluorescent products of peroxidation (slope) correlated with serum vitamin E (p<0.001), which was, in turn, related to Mg dietary intakes. Both slope and serum vitamin E improved after Mg supplementation (p<0.001). CONCLUSIONS These results show that the lower antioxidant capacity found in moderate Mg deficiency was not due to a deficit in Mg dietary intakes and was not accompanied by increased lipid susceptibility to in vitro peroxidation. Nevertheless, Mg supplementation was followed by an improvement in Mg body stores, in serum vitamin E and its interrelated stage of lipid peroxidation.
Collapse
|
20
|
|