1
|
Chen S, Huang W, Huang T, Fang C, Zhao K, Zhang Y, Li H, Wu C. Highly sensitive near-infrared fluorescent probe for monitoring peroxynitrite in nonalcoholic fatty liver disease: Toward early diagnosis and therapeutic evaluation. Talanta 2025; 281:126865. [PMID: 39265422 DOI: 10.1016/j.talanta.2024.126865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) poses a significant global health concern, necessitating precise diagnostic tools and effective treatment strategies. Peroxynitrite (ONOO-), a reactive oxygen species, plays a pivotal role in NAFLD pathogenesis, highlighting its potential as a biomarker for disease diagnosis and therapeutic evaluation. This study reports on the development of a near-infrared (NIR) fluorescent probe, designated DRP-O, for the selective detection of ONOO- with high sensitivity and photostability. DRP-O exhibits rapid response kinetics (within 2 min) and an impressive detection limit of 2.3 nM, enabling real-time monitoring of ONOO- dynamics in living cells. Notably, DRP-O demonstrates excellent photostability under continuous laser irradiation, ensuring reliable long-term monitoring in complex biological systems. We apply DRP-O to visualize endogenous ONOO- in living cells, demonstrating its potential for diagnosing and monitoring NAFLD-related oxidative stress. Furthermore, DRP-O effectively evaluates the efficacy of therapeutic drugs in NAFLD cell models, underscoring its potential utility in drug screening studies. Moreover, we confirm DRP-O to enable selective identification of fatty liver tissues in a mouse model of NAFLD, indicating its potential for the early diagnosis of NAFLD. Collectively, DRP-O represents a valuable tool for studying ONOO- dynamics, evaluating drug efficacy, and diagnosing NAFLD, offering insights into novel therapeutic strategies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Shiying Chen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Huang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cong Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Kuicheng Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cuiyan Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
2
|
Effect of Curcumin Nanoemulsions Stabilized with MAG and DAG-MCFAs in a Fructose-Induced Hepatic Steatosis Rat Model. Pharmaceutics 2021; 13:pharmaceutics13040509. [PMID: 33917706 PMCID: PMC8068171 DOI: 10.3390/pharmaceutics13040509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/31/2023] Open
Abstract
Current changes in diet, characterized by an increase in the intake of sweetened beverages, are heavily related to metabolic disorders such as non-alcoholic fatty liver. This condition can produce simple steatosis and, in worse cases, potentially result in steatohepatitis, fibrosis, and cirrhosis, comparable to the damage caused by the consumption of more or less 20–30 g of alcohol per day. The main objective of this research was to evaluate the effect of curcumin (Curcuma longa) nanoemulsions, using mono- and diacylglycerides medium chain fatty acids as stabilizers in an in vivo hepatic steatosis rat model. Pathology was induced by providing 30% fructose intake in the drinking water. Globule sizes under 200 nm that were stable for 4 weeks were obtained; curcumin encapsulated in the nanoemulsion was >70%. The results revealed an improvement regarding body and liver weight in the animals treated with curcumin nanoemulsions. A decrease in total cholesterol, LDL, AST/ALT, and HDL in serum was observed; however, no apparent improvement regarding serum glucose or triacylglycerides values was noted. Histological analysis showed a significant decrease in the extent of steatosis, inflammation, and brown adipose tissue in the treated animals.
Collapse
|
3
|
Arozal W, Louisa M, Soetikno V. Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Front Cardiovasc Med 2020; 7:82. [PMID: 32435657 PMCID: PMC7218133 DOI: 10.3389/fcvm.2020.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Increased prevalence of metabolic syndrome (MetS) in the world influences quality of health in all respective countries, including Indonesia. Data from Indonesian Family Life Survey reported in 2019 showed that the prevalence of MetS in Indonesia currently is 21.66%, estimated with the provincial incidence ranging up to 50%; additionally, the most common components of MetS discovered in Indonesia were poor high-density lipoprotein (HDL) cholesterol and hypertension. Management treatment of MetS involves a combination of lifestyle changes and pharmacological interventions to decrease cerebrovascular disease. Various natural substances have been shown to govern any cardiovascular or metabolic disorders through different mechanisms, such as triggering anti-inflammation, lipid profile correction, sensitization of insulin reception, or blood glucose control. In Indonesia, the utilization of natural compounds is part of the nation's culture. The community widely uses them; even though in general, their effectiveness and safety have not been thoroughly assessed by rigorous clinical trials. Scientific evidence suggested that cinnamon, mangosteen, and curcumin, as well as their derived components possess a broad spectrum of pharmacological activity. In this review, an enormous potential of cinnamon, mangosteen, and curcumin, which originated and are commonly used in Indonesia, could be treated against MetS, such as diabetes, hyperlipidemia, hypertension, and obesity. The findings suggested that cinnamon, mangosteen, curcumin and their derivatives may reflect areas of promise in the management of MetS.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
4
|
Khan FA, Lammari N, Muhammad Siar AS, Alkhater KM, Asiri S, Akhtar S, Almansour I, Alamoudi W, Haroun W, Louaer W, Meniai AH, Elaissari A. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine (Lond) 2020; 15:969-980. [PMID: 32223518 DOI: 10.2217/nnm-2019-0429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To synthesize and examine the impact of free Eudragit® RS 100 nanoparticles (LN01), Quantum dots curcumin-loaded Eudragit RS 100 nanoparticles (LN04), and un-encapsulated curcumin nanoparticles (LN06) on cancerous and bacterial cells. Materials & methods: The LN01, LN04, LN06 were synthesized and characterized by Fourier transform infrared, ζ potential, UV-Vis spectroscopy, transmission electron microscopy and scanning electron microscopy and their biological activities were evaluated. Results: LN04 profoundly inhibited the growth of colon (HCT-116) cancerous cells (10.64% cell viability) and breast cancer (MCF-7) cells (10.32% cell viability) with compared to LN01 and LN06. Normal cells (HEK-293) did not show any inhibition after treatments. In addition, LN04 show better inhibitory action on bacterial growth compared with LN01 and LN06. Conclusion: We suggest that LN04 selectively target cancerous and bacterial cells and therefore possess potential anticancer and antibacterial capabilities.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Narimane Lammari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France.,Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Adeeb Shezad Muhammad Siar
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Khulood Mohammed Alkhater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sarah Asiri
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Iman Almansour
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Widyan Alamoudi
- Department of Neuroscience, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Woroud Haroun
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Wahida Louaer
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdelhamid Elaissari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France
| |
Collapse
|
5
|
Mirhafez SR, Rezai A, Dehabeh M, Nobakht M Gh BF, Bidkhori M, Sahebkar A, Hariri M. Efficacy of phytosomal curcumin among patients with non-alcoholic fatty liver disease. INT J VITAM NUTR RES 2019; 91:278-286. [PMID: 31818232 DOI: 10.1024/0300-9831/a000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Scientists proposed that curcumin could be used for treatment of non-alcoholic fatty liver disease (NAFLD). In this article, we aimed to identify the effect of curcumin on NAFLD improvement. Fifty patients with NAFLD, were divided into two groups in this randomized, double-blind, and controlled clinical trial. Patients in the curcumin group received 250 mg/day of phytosomal curcumin, while those in the control group received 250 mg/day of placebo for duration of eight weeks. Anthropometric measurements and fasting blood samples were taken once at the baseline and once at the end of the study. Analysis was performed on 45 patients (curcumin group n = 22, placebo group n = 22). According to between groups analysis, curcumin significantly reduced the carboxymethyl lisine (CML) (148 ± 108 ng/mL vs 197 ± 101 ng/mL, P = 0.04), 8-hydroxy-2' -deoxyguanosine (8-OHdG) (46.9 ± 31.1 ng/mL vs 52.1 ± 43.1 ng/mL P = 0.03), liver enzymes (P < 0.001), weight (P < 0.001), waist circumference (P < 0.001), body fat percent (P < 0.01), and body mass index (BMI) (P < 0.01) in comparison with placebo. However, curcumin supplementation compared to placebo did not reduce soluble receptors for advanced glycation end products (sRAGE), hip circumference, waist/hip, and fat free mass by the end of the study. Our study indicated that phytosamal curcumin might be able to reduce the NAFLD progress by reducing the anthropometric measures, AGEs, and DNA damage. However, we need more studies with longer intervention duration, and larger sample size.
Collapse
Affiliation(s)
- Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Azam Rezai
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Dehabeh
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - B Fatemeh Nobakht M Gh
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohammad Bidkhori
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:117-128. [PMID: 30599890 DOI: 10.1016/j.phymed.2018.09.224] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 09/25/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Traditional therapy using natural products, especially flavonoids and alkaloids have been in practice for a long time. Among flavonoids, curcumin, quercetin, berberine, and epigallocatechin have been studied in greater detail in terms of their anticancer and anti-inflammatory activities. Although many studies focused on the PI3K, MAP kinase and NF-κB pathways, a thorough investigation of modulation of players in the apoptotic and Wnt/β-catenin signaling pathway by curcumin and quercetin has not been done. Also, only few studies have been carried out on curcumin and quercetin co-treatment studies. HYPOTHESIS/PURPOSE We hypothesized that the combination of natural products will have synergistic effects and the antiproliferative effect will be attenuated via apoptotic as well as Wnt/β-catenin signaling pathways. STUDY DESIGN AND METHODS To test our hypothesis, we compared potency of natural anticancer agents in four cancer cell lines, A549, HCT116, MCF7, and A375 by MTT and colony proliferation assays and investigated mechanism of anticancer activities by analyzing players in apoptotic and Wnt/β-catenin signaling pathways in A375 cells treated with test agents individually or in combination. RESULTS Epicatechins, up to 100 μM concentration, did not inhibit cancer cell proliferation, while curcumin inhibited proliferation in A549 and HCT116 cancer cell lines with an IC50 of 3 to 8.5 μM. Quercetin showed stronger inhibition of cell proliferation than berberine. Combination study with two most potent agents, curcumin and quercetin, in 4 cancer cell lines, suggested synergistic effect on cell proliferation with several fold decreases in IC50. Further investigation of the mechanism of action of curcumin and quercetin in melanoma cells, A375, suggested that inhibition of cell proliferation occurred through down-regulation of Wnt/β-catenin signaling pathway proteins, DVL2, β-catenin, cyclin D1, Cox2, and Axin2. In addition, both curcumin and quercetin induced apoptosis by down-regulating BCL2 and inducing caspase 3/7 through PARP cleavage. CONCLUSION These results demonstrate that curcumin and quercetin inhibit cancer cell proliferation synergistically and Wnt/β-catenin signaling and apoptotic pathways are partly responsible for antiproliferative activities.
Collapse
Affiliation(s)
| | - Rai Ajit K Srivastava
- Drexel University School of Medicine, Philadelphia, PA, United States; Integrated Pharma Solutions, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-Alcoholic Fatty Liver Disease and Nutritional Implications: Special Focus on Copper. Nutrients 2017; 9:E1137. [PMID: 29057834 PMCID: PMC5691753 DOI: 10.3390/nu9101137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excess lipids in hepatocytes, due to excessive fatty acid influx from adipose tissue, de novo hepatic lipogenesis, in addition to excessive dietary fat and carbohydrate intake. Chronic hepatic lipid overload induces mitochondrial oxidative stress and cellular damage leading the development of NAFLD into a more severe liver disease condition, non-alcoholic steato-hepatitis (NASH). In turn, this can progress to cirrhosis and hepatocellular carcinoma (HCC). Among others, copper is one of the main bio-metals required for the preponderance of the enzymes involved in physiological redox reactions, which primarily occurs during mitochondrial respiration. Thus, copper homeostasis could be considered a target point for counteracting the progression of NAFLD. Accordingly, many diseases are correlated to unbalanced copper levels and, actually, some clinical trials are examining the use of copper chelating agents. Currently, no pharmacological interventions are approved for NAFLD, but nutritional and lifestyle modifications are always recommended. Fittingly, antioxidant food agents recognized to improve NAFLD and its complications have been described in the literature to bind copper. Therefore, this review describes the role of nutrition in the development and progression of NAFLD with a particular focus on copper and copper-binding antioxidant compounds against NAFLD.
Collapse
Affiliation(s)
| | | | - Gino Iannucci
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00185 Rome, Italy.
| | | | | |
Collapse
|
8
|
Inzaugarat ME, De Matteo E, Baz P, Lucero D, García CC, Gonzalez Ballerga E, Daruich J, Sorda JA, Wald MR, Cherñavsky AC. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans. PLoS One 2017; 12:e0172900. [PMID: 28257515 PMCID: PMC5336246 DOI: 10.1371/journal.pone.0172900] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research.
Collapse
Affiliation(s)
- María Eugenia Inzaugarat
- Instituto de Inmunología, Genética y Metabolismo-CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elena De Matteo
- Hospital de Niños “Dr. R. Gutiérrez”, Servicio de Patología, Buenos Aires, Argentina
| | - Placida Baz
- Instituto de Inmunología, Genética y Metabolismo-CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Lucero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica - Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Arterioesclerosis, Buenos Aires, Argentina
| | - Cecilia Claudia García
- Instituto de Inmunología, Genética y Metabolismo-CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban Gonzalez Ballerga
- Universidad de Buenos Aires, Hospital de Clínicas "José de San Martin"- División de Gastroenterología, Buenos Aires, Argentina
| | - Jorge Daruich
- Universidad de Buenos Aires, Hospital de Clínicas "José de San Martin"- División de Gastroenterología, Buenos Aires, Argentina
| | - Juan Antonio Sorda
- Universidad de Buenos Aires, Hospital de Clínicas "José de San Martin"- División de Gastroenterología, Buenos Aires, Argentina
| | - Miriam Ruth Wald
- Instituto de Investigaciones Biomédicas (BIOMED)- Universidad católica Argentina-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Alejandra Claudia Cherñavsky
- Instituto de Inmunología, Genética y Metabolismo-CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Sripradha R, Badhe B. Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats. PHARMACEUTICAL BIOLOGY 2016; 54:2857-2863. [PMID: 27241764 DOI: 10.1080/13880209.2016.1187179] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
CONTEXT Curcumin, an active principal of Curcuma longa Linn. (Zingiberaceae), has potent antioxidant and anti-inflammatory properties. OBJECTIVES This study investigated the effects of curcumin on hyperlipidemia and hepatic steatosis in high-fructose-fed Wistar rats. MATERIALS AND METHODS Forty male Wistar rats were divided into four groups with 10 rats in each. Two groups were fed with standard rodent diet and the other two with 60% high-fructose diet for 10 weeks. Curcumin (200 mg/kg body weight) was administered along with the diets simultaneously to each of the aforementioned diet groups. After 10 weeks of experiment, blood samples were collected from tail vein. Liver, adipose and epididymal tissues were collected after sacrifice of the animals and stored for further analyses. RESULTS Administration of curcumin reduced body weight (280.6 ± 7.4 g), liver weight (2.5 ± 0.2 g/100 g BW), adipose weight (1.4 ± 0.3 g/100 g BW), plasma levels of TAG (86.1 ± 13.5 mg/dL), VLDL-C (17.2 ± 2.7 mg/dL), lipid ratios and increased HDL-C (28.4 ± 4.5 mg/dL) in fructose-fed rats. Curcumin supplementation significantly lowered TAG content and decreased the protein expression of LXR-α (43%) and SREBP1c (59%) in the liver. Furthermore, curcumin suppressed the expression of lipogenic enzymes, ACLY (95%), ACC (50%) and FAS (77%) in rats fed with high-fructose diet. No significant change was found in the expression of PPAR-α. DISCUSSION AND CONCLUSION Curcumin prevented the high-fructose induced hyperlipidemia and hepatic steatosis.
Collapse
Affiliation(s)
| | - Magadi Gopalakrishna Sridhar
- a Department of Biochemistry , Jawaharlal Institute of Postgraduate Medical Education and Research , Pondicherry , India
| | | | - Ramalingam Sripradha
- a Department of Biochemistry , Jawaharlal Institute of Postgraduate Medical Education and Research , Pondicherry , India
| | - Bhawana Badhe
- c Department of Pathology , Jawaharlal Institute of Postgraduate Medical Education and Research , Pondicherry , India
| |
Collapse
|
10
|
Chen WJ, Cai B, Chen HT, Cao CY, Du YL, Li YY, Nie YQ, Zhou YJ. The role of ADIPOQ methylation in curcumin-administrated experimental nonalcoholic fatty liver disease. J Dig Dis 2016; 17:829-836. [PMID: 27860427 DOI: 10.1111/1751-2980.12431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/29/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the role of adiponectin precursor (ADIPOQ) DNA methylation in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the effect of curcumin on the development of NAFLD using rat models. METHODS Male Sprague-Dawley rats were divided into the control, NAFLD and curcumin-treated groups. The genetic and epigenetic features of each rat were measured and recorded. Real-time polymerase chain reaction (PCR), Western blot and bisulfite sequencing PCR (BSP) were used to quantify the ADIPOQ mRNA and protein expressions, and DNA methylation status, respectively. RESULTS Serum levels of alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC) and fasting blood glucose in the NAFLD group were significantly increased compared with the control group. The genetic and epigenetic features were reversed after curcumin treatment. The ADIPOQ mRNA and protein expressions in the livers of the NAFLD rats was lower compared with the control and the curcumin-treated groups. ADIPOQ methylation rate in the NAFLD group was significantly higher than in the control group, which was declined slightly following curcumin treatment. A negative correlation was found between the degrees of DNA methylation and ADIPOQ mRNA expression. ALT, TC, TG and homeostatic model assessment insulin resistance index had a positive correlation with ADIPOQ DNA methylation, showing that curcumin might affect the gene expression involved in lipid and glucose metabolism by influencing ADIPOQ DNA methylation modifications, which contributed to alleviation of NAFLD. CONCLUSION Altering the DNA methylation of ADIPOQ is one of the mechanisms by which curcumin executes its hepatoprotective function in NAFLD.
Collapse
Affiliation(s)
- Wen Ji Chen
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bing Cai
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hui Ting Chen
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuang Yu Cao
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yan Lei Du
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yu Yuan Li
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yu Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yong Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, Sahebkar A. Treatment of Non-alcoholic Fatty Liver Disease with Curcumin: A Randomized Placebo-controlled Trial. Phytother Res 2016; 30:1540-8. [PMID: 27270872 DOI: 10.1002/ptr.5659] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem. Although many aspects of NAFLD pathogenesis have been understood, there is a paucity of effective treatments to be used as the second line when lifestyle modification is insufficient. Curcumin, a natural polyphenol from turmeric, has been shown to be effective against development of hepatic steatosis and its progression to steatohepatitis, yet these beneficial effects have not been explored in clinical practice. The aim of this study is to investigate the effects of curcumin on hepatic fat content as well as biochemical and anthropometric features of patients with NAFLD. In this randomized double-blind placebo-controlled trial, patients with ultrasonographic evidence of NAFLD were randomly assigned to receive an amorphous dispersion curcumin formulation (500 mg/day equivalent to 70-mg curcumin) or matched placebo for a period of 8 weeks. Liver fat content (assessed through ultrasonography), glycemic and lipid profile, transaminase levels, and anthropometric indices were evaluated at baseline and at the end of follow-up period. The clinical trial protocol was registered under the Iranian Registry of Clinical Trials ID: IRCT2014110511763N18. Compared with placebo, curcumin was associated with a significant reduction in liver fat content (78.9% improvement in the curcumin vs 27.5% improvement in the placebo group). There were also significant reductions in body mass index and serum levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, glucose, and glycated hemoglobin compared with the placebo group. Curcumin was safe and well tolerated during the course of trial. Findings of the present proof-of-concept trial suggested improvement of different features of NAFLD after a short-term supplementation with curcumin. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sepideh Rahmani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahtab Keshvari
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Hatamipour
- Neurogenic Inflammation Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
13
|
Turmeric (Curcuma longa) whole powder reduces accumulation of visceral fat mass and increases hepatic oxidative stress in rats fed a high-fat diet. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-014-0036-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
14
|
Pan MH, Lai CS, Tsai ML, Ho CT. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 2013; 58:147-71. [PMID: 24302567 DOI: 10.1002/mnfr.201300522] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a wide spectrum of liver disease that is not from excess alcohol consumption, but is often associated with obesity, type 2 diabetes, and metabolic syndrome. NAFLD pathogenesis is complicated and involves oxidative stress, lipotoxicity, mitochondrial damage, insulin resistance, inflammation, and excessive dietary fat intake, which increase hepatic lipid influx and de novo lipogenesis and impair insulin signaling, thus promoting hepatic triglyceride accumulation and ultimately NAFLD. Overproduction of proinflammatory adipokines from adipose tissue also affects hepatic metabolic function. Current NAFLD therapies are limited; thus, much attention has been focused on identification of potential dietary substances from fruits, vegetables, and edible plants to provide a new strategy for NAFLD treatment. Dietary natural compounds, such as carotenoids, omega-3-PUFAs, flavonoids, isothiocyanates, terpenoids, curcumin, and resveratrol, act through a variety of mechanisms to prevent and improve NAFLD. Here, we summarize and briefly discuss the currently known targets and signaling pathways as well as the role of dietary natural compounds that interfere with NAFLD pathogenesis.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
15
|
Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 2013; 232:40-51. [PMID: 24401215 DOI: 10.1016/j.atherosclerosis.2013.10.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/04/2013] [Accepted: 10/17/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Consuming curcumin may benefit health by modulating lipid metabolism and suppressing atherogenesis. Fatty acid binding proteins (FABP-4/aP2) and CD36 expression are key factors in lipid accumulation in macrophages and foam cell formation in atherogenesis. Our earlier observations suggest that curcumin's suppression of atherogenesis might be mediated through changes in aP2 and CD36 expression in macrophages. Thus, this study aimed to further elucidate the impact of increasing doses of curcumin on modulation of these molecular mediators on high fat diet-induced atherogenesis, inflammation, and steatohepatosis in Ldlr(-/-) mice. METHODS Ldlr(-/-) mice were fed low fat (LF) or high fat (HF) diet supplemented with curcumin (500 HF + LC; 1000 HF + MC; 1500 HF + HC mg/kg diet) for 16 wks. Fecal samples were analyzed for total lipid content. Lipids accumulation in THP-1 cells and expression of aP2, CD36 and lipid accumulation in peritoneal macrophages were measured. Fatty streak lesions and expression of IL-6 and MCP-1 in descending aortas were quantified. Aortic root was stained for fatty and fibrotic deposits and for the expression of aP2 and VCAM-1. Total free fatty acids, insulin, glucose, triglycerides, and cholesterol as well as several inflammatory cytokines were measured in plasma. The liver's total lipids, cholesterol, triglycerides, and HDL content were measured, and the presence of fat droplets, peri-portal fibrosis and glycogen was examined histologically. RESULTS Curcumin dose-dependently reduced uptake of oxLDL in THP-1 cells. Curcumin also reduced body weight gain and body fat without affecting fat distribution. During early intervention, curcumin decreased fecal fat, but at later stages, it increased fat excretion. Curcumin at medium doses of 500-1000 mg/kg diet was effective at reducing fatty streak formation and suppressing aortic expression of IL-6 in the descending aorta and blood levels of several inflammatory cytokines, but at a higher dose (HF + HC, 1500 mg/kg diet), it had adverse effects on some of these parameters. This U-shape like trend was also present when aortic root sections were examined histologically. However, at a high dose, curcumin suppressed development of steatohepatosis, reduced fibrotic tissue, and preserved glycogen levels in liver. CONCLUSION Curcumin through a series of complex mechanisms, alleviated the adverse effects of high fat diet on weight gain, fatty liver development, dyslipidemia, expression of inflammatory cytokines and atherosclerosis in Ldlr(-/-) mouse model of human atherosclerosis. One of the mechanisms by which low dose curcumin modulates atherogenesis is through suppression of aP2 and CD36 expression in macrophages, which are the key players in atherogenesis. Overall, these effects of curcumin are dose-dependent; specifically, a medium dose of curcumin in HF diet appears to be more effective than a higher dose of curcumin.
Collapse
Affiliation(s)
- S T Hasan
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - J-M Zingg
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - P Kwan
- Department of Pathology, Tufts School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| | - T Noble
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - D Smith
- Comparative Biology Unit, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - M Meydani
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
16
|
Messner DJ, Rhieu BH, Kowdley KV. Iron overload causes oxidative stress and impaired insulin signaling in AML-12 hepatocytes. Dig Dis Sci 2013; 58:1899-908. [PMID: 23558563 PMCID: PMC3700657 DOI: 10.1007/s10620-013-2648-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 03/13/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iron overload is associated with increased severity of nonalcoholic fatty liver disease (NAFLD) including progression to nonalcoholic steatohepatitis and hepatocellular carcinoma. AIMS To identify potential role(s) of iron in NAFLD, we measured its effects on pathways of oxidative stress and insulin signaling in AML-12 mouse hepatocytes. METHODS Rapid iron overload was induced with 50 μM ferric ammonium citrate and 8-hydroxyquinoline. Insulin response was measured by Western blot of phospho-protein kinase B. Lipid content was determined by staining with Oil Red O. Reactive oxygen species (ROS) were measured by flow cytometry using 5-(and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate. Oxidative stress was measured by Western blots for phospho-jnk and phospho-p38. RESULTS Iron increased ROS (p < 0.001) and oxidative stress (p < 0.001) and decreased insulin signaling by 33 % (p < 0.001). Treatment with stearic or oleic acids (200 μM) increased cellular lipid content and differentially modulated effects of iron. Stearic acid potentiated iron-induced ROS levels by two-fold (p < 0.05) and further decreased insulin response 59 % (p < 0.05) versus iron alone. In contrast, cells treated with oleic acid were protected against iron-mediated injury; ROS levels were decreased by half (p < 0.01) versus iron alone while insulin response was restored to control (untreated) levels. The anti-oxidant curcumin reduced effects of iron on insulin signaling, ROS, and oxidative stress (p < 0.01). Curcumin was similarly effective in cells treated with both stearic acid and iron. CONCLUSIONS An in vitro model of NAFLD progression is described in which iron-induced oxidative stress inhibits insulin signaling. Pathophysiological effects of iron were increased by saturated fat and decreased by curcumin.
Collapse
Affiliation(s)
- Donald J Messner
- Bastyr University, 14500 Juanita Drive NE, Kenmore, WA 98028-4966, USA.
| | | | | |
Collapse
|
17
|
Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors 2013; 39:101-21. [PMID: 23339042 DOI: 10.1002/biof.1072] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/19/2012] [Indexed: 12/14/2022]
Abstract
Recent evidence suggests potential benefits from phytochemicals and micronutrients in reducing the elevated oxidative and lipid-mediated stress associated with inflammation, obesity, and atherosclerosis. These compounds may either directly scavenge reactive oxygen or nitrogen species or they may modulate the activity of signal transduction enzymes leading to changes in the expression of antioxidant genes. Alternatively, they may reduce plasma lipid levels by modulating lipid metabolic genes in tissues and thus reduce indirectly lipid-mediated oxidative and endoplasmic reticulum stress through their hypolipidemic effect. Here we review the proposed molecular mechanisms by which curcumin, a polyphenol present in the rhizomes of turmeric (Curcuma longa) spice, influences oxidative and lipid-mediated stress in the vascular system. At the molecular level, mounting experimental evidence suggests that curcumin may act chemically as scavenger of free radicals and/or influences signal transduction (e.g., Akt, AMPK) and modulates the activity of specific transcription factors (e.g., FOXO1/3a, NRF2, SREBP1/2, CREB, CREBH, PPARγ, and LXRα) that regulate the expression of genes involved in free radicals scavenging (e.g., catalase, MnSOD, and heme oxygenase-1) and lipid homeostasis (e.g., aP2/FABP4, CD36, HMG-CoA reductase, and carnitine palmitoyltransferase-I (CPT-1)). At the cellular level, curcumin may induce a mild oxidative and lipid-metabolic stress leading to an adaptive cellular stress response by hormetic stimulation of these cellular antioxidant defense systems and lipid metabolic enzymes. The resulting lower oxidative and lipid-mediated stress may not only explain the beneficial effects of curcumin on inflammation, cardiovascular, and neurodegenerative disease, but may also contribute to the increase in maximum life-span observed in animal models.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
18
|
Alisi A, Pastore A, Ceccarelli S, Panera N, Gnani D, Bruscalupi G, Massimi M, Tozzi G, Piemonte F, Nobili V. Emodin prevents intrahepatic fat accumulation, inflammation and redox status imbalance during diet-induced hepatosteatosis in rats. Int J Mol Sci 2012; 13:2276-2289. [PMID: 22408453 PMCID: PMC3292022 DOI: 10.3390/ijms13022276] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/14/2022] Open
Abstract
High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis) or be associated with necro-inflammation and fibrosis (steatohepatitis). Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD) for 15 weeks, or a high-fat/high-fructose diet (HFD/HF). After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF)-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN). In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis.
Collapse
Affiliation(s)
- Anna Alisi
- Liver Unit of “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (S.C.); (N.P.); (D.G.); (V.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-68592186; Fax: +39-06-68592904
| | - Anna Pastore
- Laboratory of Biochemistry, of “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mail:
| | - Sara Ceccarelli
- Liver Unit of “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (S.C.); (N.P.); (D.G.); (V.N.)
| | - Nadia Panera
- Liver Unit of “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (S.C.); (N.P.); (D.G.); (V.N.)
| | - Daniela Gnani
- Liver Unit of “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (S.C.); (N.P.); (D.G.); (V.N.)
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology “C. Darwin”, “La Sapienza” University, Rome 00185, Italy; E-Mail:
| | - Mara Massimi
- Department of Basic and Applied Biology, University of L’Aquila, L’Aquila 67010, Italy; E-Mail:
| | - Giulia Tozzi
- Neuromuscular and Neurodegenerative Disease Unit, “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (G.T.); (F.P.)
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Disease Unit, “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (G.T.); (F.P.)
| | - Valerio Nobili
- Liver Unit of “Bambino Gesù” Children’s Hospital, IRCCS, Rome 00165, Italy; E-Mails: (S.C.); (N.P.); (D.G.); (V.N.)
| |
Collapse
|
19
|
Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology 2010; 51:1555-66. [PMID: 20222050 DOI: 10.1002/hep.23524] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED High consumption of dietary fructose is an important contributory factor in the development of hepatic steatosis in insulin or leptin resistance. We investigated the effects of curcumin on fructose-induced hypertriglyceridemia and liver steatosis and explored its preventive mechanisms in rats. Curcumin reduced serum insulin and leptin levels in fructose-fed rats. This compound could increase phosphorylation of insulin receptor and insulin receptor substrate 1 to enhance Akt and extracellular signal-regulated kinase1/2 (ERK1/2) activation in the liver of fructose-fed rats. Moreover, curcumin increased phosphorylation of hepatic janus-activated kinase-signal transducer 2 and subsequently also stimulated Akt and ERK1/2 activation in this model. Suppression of curcumin on leptin signaling overstimulation in tyrosine1138 phosphorylation of the long form of leptin receptor and signal transducer and activator of transcription 3 resulted in down-regulation of suppressor of cytokine signaling 3 in the liver of fructose-fed rats. Thus, improvement of insulin and leptin signaling transduction and subsequently elevation of peroxisome proliferator-activated receptor alpha expression by curcumin led to reduction of very-low-density lipoprotein overproduction and triglyceride hypersynthesis. Furthermore, overexpression and hyperactivity of hepatic protein tyrosine phosphatase 1B (PTP1B) associated with defective insulin and leptin signaling were observed in fructose-fed rats. Additionally, curcumin was found to significantly reduce hepatic PTP1B expression and activity in this model. CONCLUSION Our data indicate that the mechanisms by which curcumin protects against fructose-induced hypertriglyceridemia and hepatic steatosis are its inhibition on PTP1B and subsequently improvement of insulin and leptin sensitivity in the liver of rats. This PTP1B inhibitory property may be a promising therapeutic strategy for curcumin to treat fructose-induced hepatic steatosis driven by hepatic insulin and leptin resistance.
Collapse
Affiliation(s)
- Jian-Mei Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | |
Collapse
|
20
|
Potterat O, Hamburger M. Drug discovery and development with plant-derived compounds. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 65:45, 47-118. [PMID: 18084913 DOI: 10.1007/978-3-7643-8117-2_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview is given on current efforts in drug development based on plant-derived natural products. Emphasis is on projects which have advanced to clinical development. Therapeutic areas covered include cancer, viral infections including HIV, malaria, inflammatory diseases, nociception and vaccine adjuvants, metabolic disorders, and neurodegenerative diseases. Aspects which are specific to plant-based drug discovery and development are also addressed, such as supply issues in the commercial development, and the Convention on Biological Diversity.
Collapse
Affiliation(s)
- Olivier Potterat
- University of Basel, Institute of Pharmaceutical Biology, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | |
Collapse
|
21
|
Bender DA. Editorial: vitamins and hormones. Nutr Res Rev 2005; 18:173-4. [PMID: 19079902 DOI: 10.1079/nrr2005114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|