1
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
2
|
Suntornsaratoon P, Ferraris RP, Ambat J, Antonio JM, Flores J, Jones A, Su X, Gao N, Li WV. Metabolomic and Transcriptomic Correlative Analyses in Germ-Free Mice Link Lacticaseibacillus rhamnosus GG-Associated Metabolites to Host Intestinal Fatty Acid Metabolism and β-Oxidation. J Transl Med 2024; 104:100330. [PMID: 38242234 DOI: 10.1016/j.labinv.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Intestinal microbiota confers susceptibility to diet-induced obesity, yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, although the underlying mechanisms are unclear. We monocolonized germ-free mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography-mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with germ-free mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and β-oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script-based MEtabolome-TRanscriptome Correlation Analysis algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and β-oxidation gene networks. This high-throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks.
Collapse
Affiliation(s)
- Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Physiology, Mahidol University, Bangkok, Thailand
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| | - Jayanth Ambat
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Juan Flores
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Abigail Jones
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Nan Gao
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, California.
| |
Collapse
|
3
|
Wang S, Zhang J, Li J, Wang J, Liu W, Zhang Z, Yu H. Label-free quantitative proteomics reveals the potential mechanisms of insoluble dietary fiber from okara in improving hepatic lipid metabolism of high-fat diet-induced mice. J Proteomics 2023; 287:104980. [PMID: 37499746 DOI: 10.1016/j.jprot.2023.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The high purity insoluble dietary fiber (IDF) from okara is a natural component with a potentially positive effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, although its regulatory mechanism remains unclear. This study aims to elucidate the potential pathways and key proteins of IDF for the amelioration of hepatic lipid metabolism in mice fed with HFD. Here, we used label-free quantitative proteomics technology to quantity and identify differentially expressed proteins in the liver that are associated with IDF treatment. The differentially expressed proteins were assessed by GO annotation and KEGG pathways. Western blot and qRT-PCR analyses were conducted to validate the potential targets regulated by IDF. In total, 73 differentially expressed proteins were identified, of which 27 were up-regulated (FC > 1.5) and 46 were down-regulated (FC < 0.667). GO analysis suggested that differentially expressed proteins were mainly located in the cell and organelles, regulated biological processes, and were associated with enzyme activity and molecular binding. The KEGG pathway enrichment analysis further demonstrated glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, arginine biosynthesis, alanine, aspartate and glutamate metabolism, and retinol metabolism were affected. The combination of proteomics, Western blot, and qRT-PCR suggested that ACS, ACLY, GOT1, GLS2, NAGS, CYP4A10, CYP3A25, and CYP2A5 in these pathways might be key proteins for IDF intervention. Taken together, our findings elucidate new mechanisms involved in how IDF affects hepatic metabolism, provide important information for the functional food industries, and improve the added value of okara. SIGNIFICANCE: Okara is evidenced as a high-quality by-product with several nutritional components, especially dietary fiber (50-60%) labeled as "The Seventh Nutrient". Previous studies have shown that IDF has a positive potential effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, but its molecular mechanism remains unclear. To elucidate the therapeutic mechanism of IDF at the protein level, a label-free quantitative proteomic analysis was used to identify the dynamic changes of the liver proteome between HIDF and HFD groups in this study. These results provide a new perspective for exploring the therapeutic mechanism of IDF at the protein level and enlightenment for promoting the comprehensive utilization of okara.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd., Liaocheng, Shandong 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China.
| |
Collapse
|
4
|
McCauley HA, Riedman AM, Enriquez JR, Zhang X, Watanabe-Chailland M, Sanchez JG, Kechele DO, Paul EF, Riley K, Burger C, Lang RA, Wells JM. Enteroendocrine Cells Protect the Stem Cell Niche by Regulating Crypt Metabolism in Response to Nutrients. Cell Mol Gastroenterol Hepatol 2023; 15:1293-1310. [PMID: 36608902 PMCID: PMC10140799 DOI: 10.1016/j.jcmgh.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS The intestinal stem cell niche is exquisitely sensitive to changes in diet, with high-fat diet, caloric restriction, and fasting resulting in altered crypt metabolism and intestinal stem cell function. Unlike cells on the villus, cells in the crypt are not immediately exposed to the dynamically changing contents of the lumen. We hypothesized that enteroendocrine cells (EECs), which sense environmental cues and in response release hormones and metabolites, are essential for relaying the luminal and nutritional status of the animal to cells deep in the crypt. METHODS We used the tamoxifen-inducible VillinCreERT2 mouse model to deplete EECs (Neurog3fl/fl) from adult intestinal epithelium and we generated human intestinal organoids from wild-type and NEUROGENIN 3 (NEUROG3)-null human pluripotent stem cells. We used indirect calorimetry, 1H-Nuclear Magnetic Resonance (NMR) metabolomics, mitochondrial live imaging, and the Seahorse bioanalyzer (Agilent Technologies) to assess metabolism. Intestinal stem cell activity was measured by proliferation and enteroid-forming capacity. Transcriptional changes were assessed using 10x Genomics single-cell sequencing. RESULTS Loss of EECs resulted in increased energy expenditure in mice, an abundance of active mitochondria, and a shift of crypt metabolism to fatty acid oxidation. Crypts from mouse and human intestinal organoids lacking EECs displayed increased intestinal stem cell activity and failed to activate phosphorylation of downstream target S6 kinase ribosomal protein, a marker for activity of the master metabolic regulator mammalian target of rapamycin (mTOR). These phenotypes were similar to those observed when control mice were deprived of nutrients. CONCLUSIONS EECs are essential regulators of crypt metabolism. Depletion of EECs recapitulated a fasting metabolic phenotype despite normal levels of ingested nutrients. These data suggest that EECs are required to relay nutritional information to the stem cell niche and are essential regulators of intestinal metabolism.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina.
| | - Anne Marie Riedman
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xinghao Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe-Chailland
- Nuclear Magnetic Resonance-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Emily F Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kayle Riley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Postbaccalaureate Research Education Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Courtney Burger
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
5
|
Beaumont M, Blachier F. Amino Acids in Intestinal Physiology and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:1-20. [PMID: 32761567 DOI: 10.1007/978-3-030-45328-2_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary protein digestion is an efficient process resulting in the absorption of amino acids by epithelial cells, mainly in the jejunum. Some amino acids are extensively metabolized in enterocytes supporting their high energy demand and/or production of bioactive metabolites such as glutathione or nitric oxide. In contrast, other amino acids are mainly used as building blocks for the intense protein synthesis associated with the rapid epithelium renewal and mucin production. Several amino acids have been shown to support the intestinal barrier function and the intestinal endocrine function. In addition, amino acids are metabolized by the gut microbiota that use them for their own protein synthesis and in catabolic pathways releasing in the intestinal lumen numerous metabolites such as ammonia, hydrogen sulfide, branched-chain amino acids, polyamines, phenolic and indolic compounds. Some of them (e.g. hydrogen sulfide) disrupts epithelial energy metabolism and may participate in mucosal inflammation when present in excess, while others (e.g. indole derivatives) prevent gut barrier dysfunction or regulate enteroendocrine functions. Lastly, some recent data suggest that dietary amino acids might regulate the composition of the gut microbiota, but the relevance for the intestinal health remains to be determined. In summary, amino acid utilization by epithelial cells or by intestinal bacteria appears to play a pivotal regulator role for intestinal homeostasis. Thus, adequate dietary supply of amino acids represents a key determinant of gut health and functions.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| |
Collapse
|
6
|
The gaseous gastrointestinal tract of a seawater teleost, the English sole (Parophrys vetulus). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110743. [PMID: 32531535 DOI: 10.1016/j.cbpa.2020.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
There has been considerable recent progress in understanding the respiratory physiology of the gastrointestinal tract (GIT) in teleosts, but the respiratory conditions inside the GIT remain largely unknown, particularly the luminal PCO2 and PO2 levels. The GIT of seawater teleosts is of special interest due to its additional function of water absorption linked to HCO3- secretion, a process that may raise luminal PCO2 levels. Direct measurements of GIT PCO2 and PO2 using micro-optodes in the English sole (Parophrys vetulus; anaesthetized, artificially ventilated, 10-12 °C) revealed extreme luminal gas levels. Luminal PCO2 was 14-17 mmHg in the stomach and intestinal segments of fasted sole, considerably higher than arterial blood levels of 5 mmHg. Moreover, feeding, which raised intestinal HCO3- concentration, also raised luminal PCO2 to 34-50 mmHg. All these values were higher than comparable measurements in freshwater teleosts, and also greater than environmental CO2 levels of concern in aquaculture or global change scenarios. The PCO2 values in subintestinal vein blood draining the GIT of fed fish (28 mmHg) suggested some degree of equilibration with high luminal PCO2, whereas subintestinal vein PO2 levels were relatively low (9 mmHg). All luminal sections of the GIT were virtually anoxic (PO2 ≤ 0.3 mmHg), in both fasted and fed animals, a novel finding in teleosts.
Collapse
|
7
|
Qi M, Wang J, Tan B, Li J, Liao S, Liu Y, Yin Y. Dietary glutamine, glutamate, and aspartate supplementation improves hepatic lipid metabolism in post-weaning piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:124-129. [PMID: 32542191 PMCID: PMC7283369 DOI: 10.1016/j.aninu.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022]
Abstract
A previous study has demonstrated that early weaning significantly suppressed hepatic glucose metabolism in piglets. Glutamate (Glu), aspartate (Asp) and glutamine (Gln) are major metabolic fuels for the small intestine and can alleviate weaning stress, and therefore might improve hepatic energy metabolism. The objective of this study was to investigate the effects of administration of Glu, Asp and Gln on the expression of hepatic genes and proteins involved in lipid metabolism in post-weaning piglets. Thirty-six weaned piglets were assigned to the following treatments: control diet (Control; basal diet + 15.90 g/kg alanine); Asp, Gln and Glu-supplemented diet (Control + AA; basal diet + 1.00 g/kg Asp + 5.00 g/kg Glu + 10.00 g/kg Gln); and the energy-restricted diet supplemented with Asp, Gln and Glu (Energy− + AA; energy deficient diet + 1.00 g/kg Asp + 5.00 g/kg Glu + 10.00 g/kg Gln). Liver samples were obtained on d 5 and 21 post-weaning. Piglets fed Energy− + AA diet had higher liver mRNA abundances of acyl-CoA oxidase 1 (ACOX1), succinate dehydrogenase (SDH), mitochondrial transcription factor A (TFAM) and sirtuin 1 (SIRT1), as well as higher protein expression of serine/threonine protein kinase 11 (LKB1), phosphor-acetyl-CoA carboxylase (P-ACC) and SIRT1 compared with piglets fed control diet (P < 0.05) on d 5 post-weaning. Control + AA diet increased liver malic enzyme 1 (ME1) and SIRT1 mRNA levels, as well as protein expression of LKB1 and P-ACC on d 5 post-weaning (P < 0.05). On d 21 post-weaning, compared to control group, Glu, Gln and Asp supplementation up-regulated the mRNA levels of ACOX1, ME1 and SIRT1 (P < 0.05). These findings indicated that dietary Glu, Gln and Asp supplementation could improve hepatic lipid metabolism to some extent, which may provide nutritional intervention for the insufficient energy intake after weaning in piglets.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,University of Chinese Academy of Sciences, Beijing 100008, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis 95616, CA, USA
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
8
|
Smith K, Karimian Azari E, LaMoia TE, Hussain T, Vargova V, Karolyi K, Veldhuis PP, Arnoletti JP, de la Fuente SG, Pratley RE, Osborne TF, Kyriazis GA. T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways. Mol Metab 2018; 17:98-111. [PMID: 30201274 PMCID: PMC6197762 DOI: 10.1016/j.molmet.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Objective Beyond the taste buds, sweet taste receptors (STRs; T1R2/T1R3) are also expressed on enteroendocrine cells, where they regulate gut peptide secretion but their regulatory function within the intestine is largely unknown. Methods Using T1R2-knock out (KO) mice we evaluated the role of STRs in the regulation of glucose absorption in vivo and in intact intestinal preparations ex vivo. Results STR signaling enhances the rate of intestinal glucose absorption specifically in response to the ingestion of a glucose-rich meal. These effects were mediated specifically by the regulation of GLUT2 transporter trafficking to the apical membrane of enterocytes. GLUT2 translocation and glucose transport was dependent and specific to glucagon-like peptide 2 (GLP-2) secretion and subsequent intestinal neuronal activation. Finally, high-sucrose feeding in wild-type mice induced rapid downregulation of STRs in the gut, leading to reduced glucose absorption. Conclusions Our studies demonstrate that STRs have evolved to modulate glucose absorption via the regulation of its transport and to prevent the development of exacerbated hyperglycemia due to the ingestion of high levels of sugars. The intestinal T1R2 receptor enhances glucose absorption in vivo and ex vivo. Pharmacological inhibition of STRs reduces glucose flux in human intestinal preparations. T1R2 regulates glucose absorption dependent on GLUT2 activity in enterocytes. GLP-2 mediates the effects of T1R2 signaling through activation of enteric neurons. High sucrose diet rapidly downregulates STRs leading to reduced glucose absorption.
Collapse
Affiliation(s)
- Kathleen Smith
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Elnaz Karimian Azari
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Traci E LaMoia
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Tania Hussain
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Veronika Vargova
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Katalin Karolyi
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Paula P Veldhuis
- Institute for Surgical Advancement, Florida Hospital, Orlando, FL, USA
| | | | | | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Timothy F Osborne
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - George A Kyriazis
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA; Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA; Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Curry SM, Schwartz KJ, Yoon KJ, Gabler NK, Burrough ER. Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity. Vet Microbiol 2017; 211:58-66. [PMID: 29102122 DOI: 10.1016/j.vetmic.2017.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 01/02/2023]
Abstract
The pig intestinal epithelium can be compromised by pathogens leading to reduced integrity and function. Porcine epidemic diarrhea virus (PEDV), recently detected in North America, exemplifies intestinal epithelial insult. Although several studies have investigated the molecular aspects and host immune response to PEDV, there are little data on the impact of PEDV on pig intestinal physiology. The objective of this study was to investigate the longitudinal impact of PEDV on nursery pig intestinal function and integrity. Fifty recently-weaned, 5-week-old barrows and gilts (BW=9.92±0.49kg) were sorted based on body weight (BW) and sex into two treatments: 1) Control or 2) PEDV inoculated. At 2, 5, 7, and 14days post inoculation (dpi), 4 pigs per treatment were euthanized and jejunum sections collected. PEDV antigen was detected in inoculated pigs by immunohistochemistry in 50% (2/4) at dpi 2, 100% (4/4) at dpi 5, and none at later time points. PEDV-infected pigs had reduced (P<0.05) villus height and decreased transepithelial resistance compared with controls. Total acidic mucins, particularly sialomucin, were reduced in PEDV pigs at dpi 2 and then increased compared with controls at dpi 7 and 14. In addition, PEDV pigs had increased stem cell proliferation (P<0.05) and a numerical increase in DNA fragmentation compared with controls through dpi 7 which coincided with an observed return of digestive function to that of controls. Collectively, these data reveal that PEDV infection results in time-dependent changes not only in intestinal morphology but also barrier integrity and function.
Collapse
Affiliation(s)
- S M Curry
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - K J Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - K J Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - N K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - E R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Moran ET. Gastric digestion of protein through pancreozyme action optimizes intestinal forms for absorption, mucin formation and villus integrity. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Abstract
Advanced mucosal healing (MH) after intestinal mucosal inflammation coincides with sustained clinical remission and reduced rates of hospitalization and surgical resection, explaining why MH is increasingly considered as a full therapeutic goal and as an endpoint for clinical trials. Intestinal MH is a complex phenomenon viewed as a succession of steps necessary to restore tissue structure and function. These steps include epithelial cell migration and proliferation, cell differentiation, restoration of epithelial barrier functions, and modulation of cell apoptosis. Few clinical studies have evaluated the needs for specific macronutrients and micronutrients and their effects on intestinal MH, most data having been obtained from animal and cell studies. These data suggest that supplementation with specific amino acids including arginine, glutamine, glutamate, threonine, methionine, serine, proline, and the amino acid-derived compounds, polyamines can favorably influence MH. Short-chain fatty acids, which are produced by the microbiota from undigested polysaccharides and protein-derived amino acids, also exert beneficial effects on the process of intestinal MH in experimental models. Regarding supplementation with lipids, although the effects of ω-3 and ω-6 fatty acids remain controversial, endogenous prostaglandin synthesis seems to be necessary for MH. Finally, among micronutrients, several vitamin and mineral deficiencies with different frequencies have been observed in patients with inflammatory bowel diseases and supplementation with some of them (vitamin A, vitamin D3, vitamin C, and zinc) are presumed to favor MH. Future work, including clinical studies, should evaluate the efficiency of supplementation with combination of dietary compounds as adjuvant nutritional intervention for MH of the inflamed intestinal mucosa.
Collapse
|
14
|
Abstract
BACKGROUND Mucosal healing (MH) decreases the relapse risk in patients with inflammatory bowel disease, but the role of dietary supplementation in this process has been poorly investigated. Here, we investigated the effect of an amino acid mixture supplement on rat MH. METHODS Colitis was induced using 5% of dextran sodium sulfate for 6 days. Then, rats received a mixture of threonine (0.50 g/d), methionine (0.31 g/d), and monosodium glutamate (0.57 g/d) or an isonitrogenous amount of alanine (control group). Colons were recovered after colitis induction and after dietary supplementation for measuring colon characteristics, myeloperoxidase, cytokine gene expression, glutathione content, protein synthesis rate, and for histological analysis. Short-chain fatty acids were measured in the colonic content. RESULTS Colitis induction resulted in anorexia, thickening and shortening of the colon, and ulceration. Colonic cytokine expression and neutrophil infiltration were increased. An increased amount of water and a decreased amount of butyrate, propionate, and acetate were measured in the colonic content. Supplementation with the amino acid mixture coincided with a reduced protein synthesis rate in the colon compatible with the observed increased colonic MH. Mucosal regeneration/re-epithelialization was visible within 3 days after colitis induction at a time when mucosal inflammation was severe. Histological analysis revealed an increased regeneration/re-epithelialization after 10-day supplementation. In contrast, the spontaneous resolution of inflammation was not affected by the supplementation. CONCLUSIONS Amino acid supplementation ameliorates colonic MH but not mucosal inflammatory status. Our data sustain the use of adjuvant dietary intervention on initiated intestinal MH.
Collapse
|
15
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol Res 2013. [DOI: 10.1016/j.phrs.2012.11.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Boutry C, Matsumoto H, Bos C, Moinard C, Cynober L, Yin Y, Tomé D, Blachier F. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect? Amino Acids 2013; 43:1485-98. [PMID: 22286833 DOI: 10.1007/s00726-012-1221-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/12/2012] [Indexed: 12/14/2022]
Abstract
Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg(-1) lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.
Collapse
Affiliation(s)
- Claire Boutry
- INRA, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, 16 rue Claude Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Re-print of "Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host". Pharmacol Res 2013; 69:114-26. [PMID: 23318949 DOI: 10.1016/j.phrs.2013.01.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alimentary and endogenous proteins are mixed in the small intestinal lumen with the microbiota. Although experimental evidences suggest that the intestinal microbiota is able to incorporate and degrade some of the available amino acids, it appears that the microbiota is also able to synthesize amino acids raising the view that amino acid exchange between the microbiota and host can proceed in both directions. Although the net result of such exchanges remains to be determined, it is likely that a significant part of the amino acids recovered from the alimentary proteins are used by the microbiota. In the large intestine, where the density of bacteria is much higher than in the small intestine and the transit time much longer, the residual undigested luminal proteins and peptides can be degraded in amino acids by the microbiota. These amino acids cannot be absorbed to a significant extent by the colonic epithelium, but are precursors for the synthesis of numerous metabolic end products in reactions made by the microbiota. Among these products, some like short-chain fatty acids and organic acids are energy substrates for the colonic mucosa and several peripheral tissues while others like sulfide and ammonia can affect the energy metabolism of colonic epithelial cells. More work is needed to clarify the overall effects of the intestinal microbiota on nitrogenous compound metabolism and consequences on gut and more generally host health.
Collapse
Affiliation(s)
- Anne-Marie Davila
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-Fluorouracil administration. Lipids 2012; 47:669-78. [PMID: 22648862 DOI: 10.1007/s11745-012-3680-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
Mucositis affects about 40 % of patients undergoing chemotherapy. Short chain fatty acids (SCFA), mainly butyrate, are claimed to improve mucosal integrity, reduce intestinal permeability and act as anti-inflammatory agents for the colon mucosa. We evaluated the effects of oral administration of SCFA or butyrate in the 5FU-induced mucositis. Mice received water, SCFA or butyrate during all experiment (10 days) and a single dose of 5FU (200 mg/kg) 3 days before euthanasia. We evaluated inflammatory and histological score by morphometry, and by activity of enzymes specific to neutrophil, eosinophil and macrophage and TLR-4, TNF-alpha and IL6 expressions. Intestinal permeability and tight junction protein ZO-1 expression were evaluated. Mice from the 5FU (5-Fluorouracil) group presented weight loss, ulcerations and inflammatory infiltration of neutrophils and eosinophils, increased expression of IL6 and TNF-alpha and increased intestinal permeability. SCFA minimized intestinal damage, reduced ulcerations without affecting intestinal permeability. Butyrate alone was more efficient at improving those parameters than in SCFA solution and also reduced intestinal permeability. The expression of pro-inflammatory cytokines and ZO-1 tended to be higher in the SCFA supplemented but not in the butyrate supplemented group. We showed the beneficial effects of butyrate on intestinal mucositis and its promising function as an adjuvant in the treatment of diseases not only of the colon, but also of the small intestine.
Collapse
|
19
|
AMAGASE K, NAKAMURA E, KATO S, TAKEUCHI K. Prophylactic Effect of Glutamate on Gastrointestinal Damage. YAKUGAKU ZASSHI 2011; 131:1711-9. [DOI: 10.1248/yakushi.131.1711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kikuko AMAGASE
- Department of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Eiji NAKAMURA
- Frontier Research Labs., Institute for Innovation, AJINOMOTO CO., INC
| | - Shinichi KATO
- Department of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Koji TAKEUCHI
- Department of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
20
|
Radiation proctitis: current strategies in management. Gastroenterol Res Pract 2011; 2011:917941. [PMID: 22144997 PMCID: PMC3226317 DOI: 10.1155/2011/917941] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/15/2011] [Accepted: 08/23/2011] [Indexed: 12/11/2022] Open
Abstract
Radiation proctitis is a known complication following radiation therapy for pelvic malignancy. The majority of cases are treated nonsurgically, and an understanding of the available modalities is crucial in the management of these patients. In this paper, we focus on the current treatments of radiation proctitis.
Collapse
|
21
|
Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol 2011; 300:R554-65. [DOI: 10.1152/ajpregu.00610.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various mechanisms detect the presence of dietary triacylglycerols (TAG) in the digestive tract and link TAG ingestion to the regulation of energy homeostasis. We here propose a novel sensing mechanism with the potential to encode dietary TAG-derived energy by translating enterocyte fatty acid oxidation (FAO) into vagal afferent signals controlling eating. Peripheral FAO has long been implicated in the control of eating ( 141 ). The prevailing view was that mercaptoacetate (MA) and other FAO inhibitors stimulate eating by modulating vagal afferent signaling from the liver. This concept has been challenged because hepatic parenchymal vagal afferent innervation is scarce and because experimentally induced changes in hepatic FAO often fail to affect eating. Nevertheless, intraperitoneally administered MA acts in the abdomen to stimulate eating because this effect was blocked by subdiaphragmatic vagal deafferentation ( 21 ), a surgical technique that eliminates all vagal afferents from the upper gut. These and other data support a role of the small intestine rather than the liver as a FAO sensor that can influence eating. After intrajejunal infusions, MA also stimulated eating in rats through vagal afferent signaling, and after infusion into the superior mesenteric artery, MA increased the activity of celiac vagal afferent fibers originating in the proximal small intestine. Also, pharmacological interference with TAG synthesis targeting the small intestine induced a metabolic profile indicative of increased FAO and inhibited eating in rats on a high-fat diet but not on chow. Finally, cell culture studies indicate that enterocytes oxidize fatty acids, which can be modified pharmacologically. Thus enterocytes may sense dietary TAG-derived fatty acids via FAO and influence eating through changes in intestinal vagal afferent activity. Further studies are necessary to identify the link between enterocyte FAO and vagal afferents and to examine the specificity and potential physiological relevance of such a mechanism.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Schwerzenbach, Switzerland
| | - Claudia Leitner
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
22
|
Taylor JR, Grosell M. The intestinal response to feeding in seawater gulf toadfish, Opsanus beta, includes elevated base secretion and increased epithelial oxygen consumption. ACTA ACUST UNITED AC 2010; 212:3873-81. [PMID: 19915130 DOI: 10.1242/jeb.034579] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal HCO3- secretion is essential to marine teleost fish osmoregulation and comprises a considerable source of base efflux attributable to both serosal HCO3- and endogenous CO2 hydration. The role of intestinal HCO3- secretion in dynamic acid-base balance regulation appears negligible in studies of unfed fish, but evidence of high intestinal fluid [HCO3-] in fed marine teleosts led us to investigate the source of this HCO3- and its potential role in offsetting the postprandial 'alkaline tide' commonly associated with digestion. Specifically, we hypothesized that elevated metabolic rate and thus endogenous CO2 production by intestinal tissue as well as increased transepithelial intestinal HCO3- secretion occur post-feeding and offset a postprandial alkaline tide. To test these hypotheses changes in HCO3- secretion and O2 consumption by gulf toadfish (Opsanus beta) isolated intestine were quantified 0, 3, 6, 12, 24 and 48 h post-feeding. Intestinal tissue of unfed fish in general showed high rates of HCO3- secretion (15.5 mumol g(-1) h(-1)) and O2 consumption (8.9 mumol g(-1) h(-1)). Furthermore, postprandial increases in both intestinal HCO3- secretion and O2 consumption (1.6- and 1.9-fold peak increases, respectively) were observed. Elevated intestinal HCO3- secretion rates preceded and outlasted those of O2 consumption, and occurred at a magnitude and duration sufficient to account for the lack of alkaline tide. The dependence of these high rates of postprandial intestinal base secretion on serosal HCO3- indicates transepithelial HCO3- transport increases disproportionately more than endogenous CO2 production. The magnitude of postprandial intestinal HCO(3)(-) secretion indicates the intestine certainly is capable of postprandial acid-base balance regulation.
Collapse
Affiliation(s)
- J R Taylor
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA.
| | | |
Collapse
|
23
|
Taylor J, Cooper C, Mommsen T. Implications of GI function for gas exchange, acid–base balance and nitrogen metabolism. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03006-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Blachier F, Boutry C, Bos C, Tomé D. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 2009; 90:814S-821S. [PMID: 19571215 DOI: 10.3945/ajcn.2009.27462s] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
l-Glutamate is one of the most abundant amino acids in alimentary proteins, but its concentration in blood is among the lowest. This is largely because l-glutamate is extensively oxidized in small intestine epithelial cells during its transcellular journey from the lumen to the bloodstream and after its uptake from the bloodstream. This oxidative capacity coincides with a high energy demand of the epithelium, which is in rapid renewal and responsible for the nutrient absorption process. l-Glutamate is a precursor for glutathione and N-acetylglutamate in enterocytes. Glutathione is involved in the enterocyte redox state and in the detoxication process. N-acetylglutamate is an activator of carbamoylphosphate synthetase 1, which is implicated in l-citrulline production by enterocytes. Furthermore, l-glutamate is a precursor in enterocytes for several other amino acids, including l-alanine, l-aspartate, l-ornithine, and l-proline. Thus, l-glutamate can serve both locally inside enterocytes and through the production of other amino acids in an interorgan metabolic perspective. Intestinal epithelial cell capacity to oxidize l-glutamine and l-glutamate is already high in piglets at birth and during the suckling period. In colonocytes, l-glutamate also serves as a fuel but is provided from the bloodstream. Alimentary and endogenous proteins that escape digestion enter the large intestine and are broken down by colonic bacterial flora, which then release l-glutamate into the lumen. l-Glutamate can then serve in the colon lumen as a precursor for butyrate and acetate in bacteria. l-Glutamate, in addition to fiber and digestion-resistant starch, can thus serve as a luminally derived fuel precursor for colonocytes.
Collapse
Affiliation(s)
- François Blachier
- INRA, CRNH-IdF, UMR Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | |
Collapse
|
25
|
Mazzanti R, Solazzo M, Fantappié O, Elfering S, Pantaleo P, Bechi P, Cianchi F, Ettl A, Giulivi C. Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1329-38. [PMID: 16439467 DOI: 10.1152/ajpgi.00563.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The focus of this study was to use differential protein expression to investigate operative pathways in early stages of human colon cancer. Colorectal cancer represents an ideal model system to study the development and progression of human tumors, and the proteomic approach avoids overlooking posttranslational modifications not detected by microarray analyses and the limited correlation between transcript and protein levels. Colon cancer samples, confined to the intestinal wall, were analyzed by expression proteomics and compared with matched samples from normal colon tissue. Samples were processed by two-dimensional gel electrophoresis, and spots differentially expressed and consistent across all patients were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses and by Western blot analyses. After differentially expressed proteins and their metabolic pathways were analyzed, the following main conclusions were achieved for tumor tissue: 1) a shift from beta-oxidation, as the main source of energy, to anaerobic glycolysis was observed owed to the alteration of nuclear- versus mitochondrial-encoded proteins and other proteins related to fatty acid and carbohydrate metabolism; 2) lower capacity for Na(+) and K(+) cycling; and 3) operativity of the apoptosis pathway, especially the mitochondrial one. This study of the human colon cancer proteome represents a step toward a better understanding of the metabolomics of colon cancer at early stages confined to the intestinal wall.
Collapse
|
26
|
Lardy H, Mouillé B, Thomas M, Darcy-Vrillon B, Vaugelade P, Blachier F, Bernard F, Cherbuy C, Robert V, Corriol O, Ricour C, Goulet O, Duée PH, Colomb V. Enterocyte metabolism during early adaptation after extensive intestinal resection in a rat model. Surgery 2004; 135:649-56. [PMID: 15179371 DOI: 10.1016/j.surg.2003.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE A better knowledge of intestinal adaptation after resection is required to improve the nutritional support that is given to patients. The aim of this study was to understand the metabolic changes underlying early adaptation after massive intestinal resection. METHODS Rats were assigned to either 80% intestinal resection or transection. All animals received the same intragastric nutrition. On day 8, plasma glutamine turnover was measured. Substrate use was determined on isolated enterocytes that were incubated in the presence of D-[U-(14)C] glucose (2 mmol/L), L-[U-(14)C] glutamine (2 mmol/L), L-[U-(14)C] arginine (1 mmol/L), or L-[1-(14)C] ornithine (1 mmol/L). RESULTS Plasma glutamine turnover was similar in both groups. The rate of enterocyte glutamine use was significantly increased in the resection group, although the maximal glutaminase activity was unchanged. Glutathione generation was enhanced 3-fold in remnant intestine as compared with transected intestine (P <.05). L-ornithine decarboxylation was increased markedly in resected animals (P <.05), without any detectable change of maximal ornithine decarboxylase activity. CONCLUSION The early phase of intestinal adaptation after resection induces changes in enterocyte glutamine and ornithine metabolism that may be related, in part, to increased de novo polyamine synthesis. This observation suggests that a supplementation of artificial nutrition by nutrients that lead to the generation of trophic agents may be of potential interest.
Collapse
Affiliation(s)
- Hubert Lardy
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
The control of mitochondrial beta-oxidation, including the delivery of acyl moieties from the plasma membrane to the mitochondrion, is reviewed. Control of beta-oxidation flux appears to be largely at the level of entry of acyl groups to mitochondria, but is also dependent on substrate supply. CPTI has much of the control of hepatic beta-oxidation flux, and probably exerts high control in intact muscle because of the high concentration of malonyl-CoA in vivo. beta-Oxidation flux can also be controlled by the redox state of NAD/NADH and ETF/ETFH(2). Control by [acetyl-CoA]/[CoASH] may also be significant, but it is probably via export of acyl groups by carnitine acylcarnitine translocase and CPT II rather than via accumulation of 3-ketoacyl-CoA esters. The sharing of control between CPTI and other enzymes allows for flexible regulation of metabolism and the ability to rapidly adapt beta-oxidation flux to differing requirements in different tissues.
Collapse
Affiliation(s)
- Simon Eaton
- Surgery Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
29
|
Momcilovic B, Reeves PG. Idiorrhythmic zinc dose-rate induction of intestinal metallothionein in rats depends upon their nutritional zinc status(dagger). J Nutr Biochem 2001; 12:225-234. [PMID: 11287218 DOI: 10.1016/s0955-2863(00)00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The idiorrhythmic dose-rate feeding experimental model was used to study the induction of intestinal metallothionein (iMT) by zinc (Zn) in the gastrointestinal (GIT) mucosa of young growing male rats relative to their nutritional Zn status. The idiorrhythmic approach requires that the average dietary Zn concentration, referred to as modulo (M), is kept constant across different groups over the whole experimental epoch (E). This is done by adjusting the Zn concentration of the supplemented diet to compensate for the reduction in the number of days on which this diet is fed, the latter being spread evenly over the whole experiment. Idiorrhythms (I) involve offering the diet with n times the overall Zn concentration (M) only every nth day with a Zn-deficient diet offered on other days. We studied three modulos (low-Zn, M3; adequate-Zn, M12; and high-Zn, M48), each M having 8 analogous idiorrhythms (I = Mx/1 to 8Mx/8); every I was fed over a 48-d idiorrhythmic E. Over the wide range of peak doses of dietary Zn (3-384 mg Zn/kg diet), the higher the modulo, the greater the capacity for iMT to be induced (M3 < M12 < M48; P < 0.05). Also, the ability of Zn to induce iMT increased proportionally with the progression of the idiorrhythms from I = Mx/1 to 8Mx/8 (P < 0.001). When rats were fed M3, less Zn was required to induce iMT than when they were fed M12 or M48. Thus, within the M and E limits of this study, the better the nutritional Zn status of the animal, the more Zn is required to induce iMT and vice versa. The fact that iMT was increased means that the amount of available Zn was not proportional with the actual steady state of its metabolism. This indicates that for any Zn supplementation program to be effective, it should progress gradually from a lower to a higher Zn dose relative to the given nutritional Zn status.
Collapse
Affiliation(s)
- B Momcilovic
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, Croatia
| | | |
Collapse
|
30
|
Abstract
Although the small intestinal mucosa is designed to transport large quantities of all nutrients to the blood, the primary nutrients utilized by the enterocyte for growth and/or maintenance are quite restricted. The major fuels for the small intestinal mucosa are amino acids (glutamine, glutamate, aspartate), whereas glucose and fatty acids are of much less importance. Many of the experiments have been performed during growth or maintenance of mucosa in small rodents, especially the rat, a model in which the adaptation of the intestinal mucosa, at least to fasting, is quite different than in humans. A special role has been suggested for glutamine as a small intestinal fuel, compared with glutamate and aspartate, but the available data do not support this view. Clinical trials of glutamine supplementation suggest that, if glutamine has a role, it may be related to functions other than those relating to small intestinal function.
Collapse
|
31
|
Lang V, Vaugelade P, Bernard F, Darcy-Vrillon B, Alamowitch C, Slama G, Duée PH, Bornet FR. Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 1. Validation in pigs. Am J Clin Nutr 1999; 69:1174-82. [PMID: 10357736 DOI: 10.1093/ajcn/69.6.1174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Precise knowledge of the rate of glucose absorption after meal feeding requires invasive methods in humans. OBJECTIVE This study aimed to validate in an animal model a technique combining the euglycemic hyperinsulinemic clamp and oral carbohydrate loading (OC-Clamp) as a noninvasive procedure to quantify the posthepatic appearance of glucose after oral carbohydrate loading. DESIGN Twenty-one pigs were fitted with arterial, jugular, portal, and duodenal catheters and a portal blood flow probe. At glucose clamp steady state, duodenal glucose (0.9 g/kg; DG-Clamp) and oral carbohydrate (140 g corn or mung bean starch as part of a mixed meal; OC-Clamp) were administered while the glucose infusion was progressively reduced to compensate for the incremental posthepatic appearance of glucose. [3-3H]glucose was used to assess the glucose turnover rate. RESULTS Hepatic glucose production was totally suppressed by insulin infusion, and the whole-body glucose turnover rate remained stable during glucose absorption. The incremental portal appearance of glucose after the DG load was not altered by hyperinsulinemia, and the cumulative posthepatic appearance of glucose was 63 +/- 3% (x +/- SEM) of the DG load. The net hepatic portal appearance of glucose remained constant during absorption (34 +/- 3% of the load). After the OC load, the respective portal appearance rates of glucose were significantly different between carbohydrate sources; however, the rates paralleled those of the posthepatic appearance of glucose. Again, net hepatic glucose uptake expressed as portal appearance was similar for both carbohydrates. CONCLUSIONS The results validate the OC-Clamp method to monitor the posthepatic appearance of glucose after carbohydrate ingestion and to discriminate between different carbohydrate sources. The results suggest that the technique be used in humans.
Collapse
Affiliation(s)
- V Lang
- Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Guihot G, Blachier F, Colomb V, Morel MT, Raynal P, Corriol O, Ricour C, Duée PH. Effect of an elemental vs a complex diet on L-citrulline production from L-arginine in rat isolated enterocytes. JPEN J Parenter Enteral Nutr 1997; 21:316-23. [PMID: 9406127 DOI: 10.1177/0148607197021006316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND L-Arginine and L-glutamine are highly metabolized by intestinal cells, leading to various metabolites, including L-citrulline, which is required for optimal growth. Elemental diets, used in clinical practice to treat growth failure and malnutrition, are very different from complex diets normally consumed. The aim of the present study was to assess the effects of an elemental diet compared with a complex diet on L-arginine metabolism in rat isolated enterocytes and its modulation by L-glutamine. METHODS Rats were fed the elemental diet (group ED) or the control diet (group C) for 14 days. Villus enterocytes then were isolated, and metabolic capacities or enzyme activities were assessed. RESULTS The incubation of enterocytes isolated from group C with 0.1 mmol/L L-[U-14C]-arginine led to the production of 125 +/- 25 pmol L-citrulline/10(6) cells per 30 minutes. This production showed a twofold increase in the presence of 2 mmol/L L-glutamine. In group ED, L-citrulline synthesis from L-arginine was markedly lower in the absence or in the presence of L-glutamine. This coincided with lower carbamoylphosphate synthase I activity and carbamoylphosphate (CP) content of enterocytes. Other L-arginine and L-glutamine metabolic pathways were not affected. Similar results were obtained when the elemental diet was administered continuously through a gastric catheter or fed by mouth. CONCLUSIONS L-Glutamine favors the synthesis of L-citrulline from L-arginine in isolated enterocytes, probably via an increase in CP production. Changing the diet composition, from a complex to an elemental diet, results in an alteration of the enterocyte capacity to synthesize L-citrulline from L-arginine, irrespective of the rhythm of delivery.
Collapse
Affiliation(s)
- G Guihot
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
van der Meulen J, Jansman AJ. Nitrogen metabolism in gastrointestinal tissue of the pig. Proc Nutr Soc 1997; 56:535-45. [PMID: 9264106 DOI: 10.1079/pns19970056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J van der Meulen
- Institute for Animal Science and Health, Department of Nutrition of Pigs and Poultry (ID-DLO), Lelystad, The Netherlands
| | | |
Collapse
|
34
|
Abstract
We have investigated the possible benefits of elemental diets, especially a diet supplemented with L-glutamine, on maintenance of intestinal absorptive function in rat small intestine damaged by 5-fluorouracil. Although a standard rat diet sustained better body growth in control rats, each of the elemental diets and the diet containing intact casein in place of hydrolyzed casein was beneficial in promoting less body weight loss during the 3 d after 5-fluorouracil injection. The same significant benefit was seen in absorptive activity measured in small intestine in vitro 3 d after the cytotoxic injury. Glutamine supplementation, however, did not confer any significant advantages, although it did cause significant elevation of muscle glutamine pools. This elevation was substantially less than the corresponding increase in muscle glycine content after dietary supplementation with glycine.
Collapse
Affiliation(s)
- M L Gardner
- Department of Biomedical Sciences, University of Bradford, West Yorkshire, United Kingdom
| | | | | |
Collapse
|
35
|
Darcy-Vrillon B, Cherbuy C, Morel MT, Durand M, Duée PH. Short chain fatty acid and glucose metabolism in isolated pig colonocytes: modulation by NH4+. Mol Cell Biochem 1996; 156:145-51. [PMID: 9095471 DOI: 10.1007/bf00426337] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Short chain fatty acids (SCFA) from bacterial origin, as well as glucose from vascular origin, are among fuel substrates available to the colonic mucosa. The present work investigated the possible modulation by another bacterial metabolite, i.e. ammonia, of the capacities of colonic epithelial cells to metabolize these substrates. Viable colonocytes were isolated from the proximal colon of 40-50 kg pigs fed a standard diet and were incubated (30 min, 37 degrees C) in the presence of a concentration range of 14C-labeled n-butyrate or acetate, or 14C-labeled glucose (5 mM), with or without NH4Cl (10 mM) addition. 14CO2 and metabolites generated were measured. Butyrate utilization resulted in a high generation of ketone bodies (acetoacetate and beta-OH-butyrate), in addition to 14CO2 production. However, the net ketone body generation was significantly decreased for butyrate concentrations higher than 10 mM. In contrast to n-butyrate, acetate when given as the sole substrate got preferentially metabolized in the oxidation pathway. Acetate metabolism was not affected by NH4Cl, thus indicating that the tricarboxylic acid cycle was unchanged. Conversely, 14CO2 and ketone body production from butyrate were decreased by 30% in the presence of NH4Cl, suggesting that butyrate activation or beta-oxidation was diminished. Glucose utilization rate was increased by 20%, due to an increased glycolytic capacity in the presence of NH4Cl. A dose-dependent stimulation of phosphofructokinase activity by NH4+ could account for this effect. It is concluded that ammonia, whose physiological concentration is high in the colonic lumen, can modulate the metabolism of two major substrates, n-butyrate and glucose, in colonic epithelial cells.
Collapse
Affiliation(s)
- B Darcy-Vrillon
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|