1
|
Ricci S, Pacífico C, Kreuzer-Redmer S, Castillo-Lopez E, Rivera-Chacon R, Sener-Aydemir A, Rossi G, Galosi L, Biagini L, Schwartz-Zimmermann HE, Berthiller F, Reisinger N, Petri RM, Zebeli Q. Integrated microbiota-host-metabolome approaches reveal adaptive ruminal changes to prolonged high-grain feeding and phytogenic supplementation in cattle. FEMS Microbiol Ecol 2024; 100:fiae006. [PMID: 38281064 PMCID: PMC10858391 DOI: 10.1093/femsec/fiae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Diets rich in readily fermentable carbohydrates primarily impact microbial composition and activity, but can also impair the ruminal epithelium barrier function. By combining microbiota, metabolome, and gene expression analysis, we evaluated the impact of feeding a 65% concentrate diet for 4 weeks, with or without a phytogenic feed additive (PFA), on the rumen ecosystem of cattle. The breaking point for rumen health seemed to be the second week of high grain (HG) diet, with a dysbiosis characterized by reduced alpha diversity. While we did not find changes in histological evaluations, genes related with epithelial proliferation (IGF-1, IGF-1R, EGFR, and TBP) and ZO-1 were affected by the HG feeding. Integrative analyses allowed us to define the main drivers of difference for the rumen ecosystem in response to a HG diet, identified as ZO-1, MyD88, and genus Prevotella 1. PFA supplementation reduced the concentration of potentially harmful compounds in the rumen (e.g. dopamine and 5-aminovaleric acid) and increased the tolerance of the epithelium toward the microbiota by altering the expression of TLR-2, IL-6, and IL-10. The particle-associated rumen liquid microbiota showed a quicker adaptation potential to prolonged HG feeding compared to the other microenvironments investigated, especially by the end of the experiment.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Nicole Reisinger
- dsm-firmenich,
Animal Health and Nutrition R&D Center, Technopark 1, 3430 Tulln an der Donau, Austria
| | - Renee M Petri
- Agriculture and Agri-Food Canada,
Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec J1M 0C8, Canada
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
2
|
Bauer K, Eghbali M, Hartinger T, Haselmann A, Fuerst-Waltl B, Zollitsch W, Zebeli Q, Knaus W. Effects of particle size reduction of meadow hay on feed intake, performance, and apparent total tract nutrient digestibility in dairy cows. Arch Anim Nutr 2023; 77:452-467. [PMID: 38012072 DOI: 10.1080/1745039x.2023.2284527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Forage-based diets are encouraged in organic dairy cattle production as this can increase the net human food supply, but their voluminous nature can limit dry matter intake (DMI) and performance. This study investigates the effects of a substantial particle size reduction of hay on dairy cows' feed intake, performance, and body characteristics, as well as on apparent total tract digestibility (ATTD). Eighteen lactating Holstein cows were allocated to two balanced feeding groups. The control group received long stem hay with a conventional particle size (CON), the experimental group received chopped hay (RED). Both groups were supplemented with concentrates (3.6 kg/d, DM basis). After 14 adaptation days, data were collected for 20 consecutive days. A covariate period of 21 days preceded the experimental feeding period. Particles retained on the 19-, 8- and 4-mm screens and on the pan of the Penn State Particle Separator accounted for 21%, 20%, 20% and 39% of the RED hay. CON hay consisted of 72% large particles, followed by 8%, 7% and 13% retained on the other screens. Average DMI levels of cows in the CON group reached 20.8 kg/d, with a nonsignificant increase (+1.05 kg/d) in the RED group (p = 0.28). Intakes of both NFC (+0.65 kg/d, p = 0.01) and CP (+0.28 kg/d, p = 0.05) were significantly greater in the RED group, resulting in a slightly increased milk yield (+0.8 kg energy corrected milk/d) (p = 0.45), likely because the ATTD decreased significantly when feeding RED hay. No impact was observed on energy balance (103.7 vs 103.9%, p = 0.95), feed conversion efficiency (kg ECM/kg DMI), or N use efficiency. Overall, the results indicate increases in intake of NFC and CP in the RED group when feeding a hay-based (>83%, DM basis) diet, but also a decrease in nutrient digestibility, likely due to increased passage rate, potentially because of the high fraction of hay particles < 4 mm. In conclusion, hay-based rations with a lower proportion of fine particles should be tested to exploit the potential of particle size reduction in terms of improving hay use efficiency.
Collapse
Affiliation(s)
- Katrin Bauer
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mansour Eghbali
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Haselmann
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Birgit Fuerst-Waltl
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Knaus
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Soltis MP, Moorey SE, Egert-McLean AM, Voy BH, Shepherd EA, Myer PR. Rumen Biogeographical Regions and Microbiome Variation. Microorganisms 2023; 11:microorganisms11030747. [PMID: 36985320 PMCID: PMC10057925 DOI: 10.3390/microorganisms11030747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
The rumen is a complex organ that is critical for its host to convert low-quality feedstuffs into energy. The conversion of lignocellulosic biomass to volatile fatty acids and other end products is primarily driven by the rumen microbiome and its interaction with the host. Importantly, the rumen is demarcated into five distinct rumen sacs as a result of anatomical structure, resulting in variable physiology among the sacs. However, rumen nutritional and microbiome studies have historically focused on the bulk content or fluids sampled from single regions within the rumen. Examining the rumen microbiome from only one or two biogeographical regions is likely not sufficient to provide a comprehensive analysis of the rumen microbiome and its fermentative capacity. Rumen biogeography, digesta fraction, and microbial rumen–tissue association all impact the diversity and function of the entirety of the rumen microbiome. Therefore, this review discusses the importance of the rumen biographical regions and their contribution to microbiome variation.
Collapse
|
4
|
Alvarez C, Os Andersen T, Sømliøy Eikanger K, Wøyen Hamfjord I, Niu P, Weiby KV, Årvik L, Dörsch P, Hagen LH, Pope PB, Forberg DK, Kolsrud Hustoft H, Schwarm A, Kidane A. Methane inhibition by Asparagopsis taxiformis with rumen fluid collected from ventral and central location – a pilot study. ACTA AGR SCAND A-AN 2022. [DOI: 10.1080/09064702.2022.2152196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Clementina Alvarez
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- TineSA, Oslo, Norway
| | - Thea Os Andersen
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Ida Wøyen Hamfjord
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Puchun Niu
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Kim Viggo Weiby
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- TineSA, Oslo, Norway
| | - Linda Årvik
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B. Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Angela Schwarm
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Alemayehu Kidane
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Ricci S, Pacífico C, Castillo-Lopez E, Rivera-Chacon R, Schwartz-Zimmermann HE, Reisinger N, Berthiller F, Zebeli Q, Petri RM. Progressive microbial adaptation of the bovine rumen and hindgut in response to a step-wise increase in dietary starch and the influence of phytogenic supplementation. Front Microbiol 2022; 13:920427. [PMID: 35935232 PMCID: PMC9354822 DOI: 10.3389/fmicb.2022.920427] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
Microbial composition and activity in the gastrointestinal tract (GIT) of cattle has important implications for animal health and welfare, driving the focus of research toward ways to modify their function and abundance. However, our understanding of microbial adaption to nutritional changes remains limited. The aim of this study was to examine the progressive mechanisms of adaptation in the rumen and hindgut of cattle receiving increasing amounts of starch with or without dietary supplementation of a blended phytogenic feed additive (PFA; containing menthol, thymol and eugenol). We used 16S rRNA gene amplicon sequencing to assess the microbial composition and predicted metabolic pathways in ruminal solid and liquid digesta, and feces. Furthermore, we employed targeted liquid chromatography-mass spectrometry methods to evaluate rumen fluid metabolites. Results indicated a rapid microbial adaptation to diet change, starting on the second day of starch feeding for the particle associated rumen liquid (PARL) microbes. Solid rumen digesta- and feces-associated microbes started changing from the following day. The PARL niche was the most responsive to dietary changes, with the highest number of taxa and predicted pathways affected by the increase in starch intake, as well as by the phytogenic supplementation. Despite the differences in the microbial composition and metabolic potential of the different GIT niches, all showed similar changes toward carbohydrate metabolism. Metabolite measurement confirmed the high prevalence of glucose and volatile fatty acids (VFAs) in the rumen due to the increased substrate availability and metabolic activity of the microbiota. Families Prevotellaceae, Ruminococcaceae and Lachnospiraceae were found to be positively correlated with carbohydrate metabolism, with the latter two showing wide-ranging predicted metabolic capabilities. Phytogenic supplementation affected low abundant taxa and demonstrated the potential to prevent unwanted implications of feeding high-concentrate diet, such as reduction of microbial diversity. The inclusion of 50% concentrate in the diet caused a major shift in microbial composition and activity in the GIT of cattle. This study demonstrated the ability of microorganisms in various GIT niches to adjust differentially, yet rapidly, to changing dietary conditions, and revealed the potential beneficial effects of supplementation with a PFA during dietary adaptation.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Sara Ricci
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Renee M. Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Whole corn grain-based diet and levels of physically effective neutral detergent fiber from forage (pefNDF) for feedlot lambs: Digestibility, ruminal fermentation, nitrogen balance and ruminal pH. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Metabolism of Zearalenone in the Rumen of Dairy Cows with and without Application of a Zearalenone-Degrading Enzyme. Toxins (Basel) 2021; 13:toxins13020084. [PMID: 33499402 PMCID: PMC7911295 DOI: 10.3390/toxins13020084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and β-zearalenol (β-ZEL) was detected in lower concentrations. ZEN, α-ZEL and β-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and β-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.
Collapse
|
8
|
Abstract
Rumen sensors provide specific information to help understand rumen functioning in relation to health disorders and to assist in decision-making for farm management. This review focuses on the use of rumen sensors to measure ruminal pH and discusses variation in pH in both time and location, pH-associated disorders and data analysis methods to summarize and interpret rumen pH data. Discussion on the use of rumen sensors to measure redox potential as an indication of the fermentation processes is also included. Acids may accumulate and reduce ruminal pH if acid removal from the rumen and rumen buffering cannot keep pace with their production. The complexity of the factors involved, combined with the interactions between the rumen and the host that ultimately determine ruminal pH, results in large variation among animals in their pH response to dietary or other changes. Although ruminal pH and pH dynamics only partially explain the typical symptoms of acidosis, it remains a main indicator and may assist to optimize rumen function. Rumen pH sensors allow continuous monitoring of pH and of diurnal variation in pH in individual animals. Substantial drift of non-retrievable rumen pH sensors, and the difficulty to calibrate these sensors, limits their application. Significant within-day variation in ruminal pH is frequently observed, and large distinct differences in pH between locations in the rumen occur. The magnitude of pH differences between locations appears to be diet dependent. Universal application of fixed conversion factors to correct for absolute pH differences between locations should be avoided. Rumen sensors provide high-resolution kinetics of pH and a vast amount of data. Commonly reported pH characteristics include mean and minimum pH, but these do not properly reflect severity of pH depression. The area under the pH × time curve integrates both duration and extent of pH depression. The use of this characteristic, as well as summarizing parameters obtained from fitting equations to cumulative pH data, is recommended to identify pH variation in relation to acidosis. Some rumen sensors can also measure the redox potential. This measurement helps to understand rumen functioning, as the redox potential of rumen fluid directly reflects the microbial intracellular redox balance status and impacts fermentative activity of rumen microorganisms. Taken together, proper assessment and interpretation of data generated by rumen sensors requires consideration of their limitations under various conditions.
Collapse
|
9
|
The Effect of Behaviour and Diet on the Rumen Temperature of Holstein Bulls. Animals (Basel) 2019; 9:ani9111000. [PMID: 31752422 PMCID: PMC6912663 DOI: 10.3390/ani9111000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Rumen temperature boluses are becoming increasingly used as a means of monitoring core body temperature for the detection of ill health. However, the effect of behavior on rumen temperature is largely unknown. This research investigates the impact of behaviour and diet on the rumen temperature of Holstein bulls, both at grass, and in a housed environment. Rumen temperature was recorded at five-minute intervals using a bolus. Direct observations were conducted on young bulls in two studies (i) at grass (n = 30) and (ii) while housed (n = 32). In addition, activity monitors were attached to bulls at grass (n = 24). Within each study, diet differed by the level of concentrate supplementation. There was no effect of diet on rumen temperature. Significant differences in rumen temperature were observed between behaviour groups for bulls at grass (p < 0.001) and housed (p < 0.001). Furthermore, drinking resulted in the lowest rumen temperature (grass 35.97 °C; housed 36.70 °C). Therefore, rumen temperature is affected by behavior; however, the temperatures recorded were not outside the normal temperature range for healthy cattle.
Collapse
|
10
|
Larsen M, Hansen NP, Weisbjerg MR, Lund P. Technical note: Evaluation of the ororuminal FLORA sampling device for rumen fluid sampling in intact cattle. J Dairy Sci 2019; 103:447-450. [PMID: 31733868 DOI: 10.3168/jds.2019-16972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to evaluate the actual intraruminal sampling site of the ororuminal FLORA sampling device (Profs Products, Wittibreut, Germany), and to compare pH and volatile fatty acid (VFA) data obtained using FLORA and those obtained using a suction strainer introduced to the ventral ruminal sac via a rumen cannula. Five lactating multiparous Danish Holstein cows fitted with ruminal cannulas were used. All cows were fed the same diet once daily, and the diet was allowed ad libitum. Samples of rumen fluid and recordings were obtained 6 h after feeding at 3 occasions. Rumen fluid samples were taken using 2 devices: (1) the ororuminal FLORA sampling device and (2) a suction strainer inserted through the rumen cannula to the ventral ruminal sac and a 60-mL syringe for suction. Both sampling devices were inserted concomitantly, and samples of rumen fluid were obtained simultaneously with both devices. After sampling rumen fluid, the actual intraruminal placement of the FLORA sampling cup was manually assessed as being in either the cranial sac, the dorsal sac, the medial layer, or the ventral sac. Only VFA proportions, and not pH and VFA concentrations, were similar between rumen fluid samples obtained using FLORA and those obtained directly through the rumen cannula. The observed intraruminal sampling site of the FLORA sampling cup indicates that firm rumen digesta hampers the ability of the FLORA device to reach the ventral sac and impedes filling of the sampling cup and, consequently, increases the risk of saliva contamination of samples.
Collapse
Affiliation(s)
- Mogens Larsen
- Department of Animal Science, Aarhus University, 8830 Foulum, Denmark.
| | - Nikolaj P Hansen
- Department of Animal Science, Aarhus University, 8830 Foulum, Denmark
| | | | - Peter Lund
- Department of Animal Science, Aarhus University, 8830 Foulum, Denmark
| |
Collapse
|
11
|
Ren Q, Si H, Yan X, Liu C, Ding L, Long R, Li Z, Qiu Q. Bacterial communities in the solid, liquid, dorsal, and ventral epithelium fractions of yak (Bos grunniens) rumen. Microbiologyopen 2019; 9:e963. [PMID: 31701637 PMCID: PMC7002109 DOI: 10.1002/mbo3.963] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/03/2022] Open
Abstract
Yak (Bos grunniens) is an important and dominant livestock species in the challenging environment of the Qinghai–Tibetan Plateau. Rumen microbiota of the solid, liquid, and epithelium fractions play key roles in nutrient metabolism and contribute to host adaptation in ruminants. However, there is a little knowledge of the microbiota in these rumen fractions of yak. Therefore, we collected samples of solid, liquid, dorsal, and ventral epithelium fractions from five female yaks, then amplified bacterial 16S rRNA gene V4 regions and sequenced them using an Illumina MiSeq platform. Principal coordinates analysis detected significant differences in bacterial communities between the liquid, solid, and epithelium fractions, and between dorsal and ventral epithelium fractions. Rikenellaceae RC9, the families Lachnospiraceae and Ruminococcaceae, and Fibrobacter spp. were the abundant and enriched bacteria in solid fraction, while the genera Prevotella and Prevotellaceae UCG 003 were higher in the liquid fraction. Campylobacter spp., Comamonas spp., Desulfovibrio spp., and Solobacterium spp. were significantly higher in dorsal epithelium, while Howardella spp., Prevotellaceae UCG 001, Ruminococcaceae UCG 005, and Treponema 2 were enriched in the ventral epithelium. Comparison of predictive functional profiles among the solid, liquid, and dorsal, and ventral epithelium fractions also revealed significant differences. Microbiota in the ventral fraction of yak rumen also significantly differ from reported microbiota of cattle. In conclusion, our results improve our knowledge of the taxonomic composition and roles of yak rumen microbiota.
Collapse
Affiliation(s)
- Qingmiao Ren
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huazhe Si
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoting Yan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chang Liu
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Luming Ding
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhipeng Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiang Qiu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Haselmann A, Zehetgruber K, Fuerst-Waltl B, Zollitsch W, Knaus W, Zebeli Q. Feeding forages with reduced particle size in a total mixed ration improves feed intake, total-tract digestibility, and performance of organic dairy cows. J Dairy Sci 2019; 102:8839-8849. [PMID: 31351713 DOI: 10.3168/jds.2018-16191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/03/2019] [Indexed: 11/19/2022]
Abstract
The optimal utilization of forages is crucial in cattle production, especially in organic dairy systems that encourage forage-based feeding with limited concentrate amounts. Reduction of the particle size of forages is known to improve feed intake and thus might be a viable option to help cows cope with less nutrient-dense feeds. The main aim of this study was to evaluate the effects of reducing forage particle size with a geometric mean of 52 mm (conventional particle size; CON) to 7 mm (reduced particle size; RED) in a high-forage diet (80% of dry matter) on dairy cows' sorting behavior, feed intake, chewing activity, and performance as well as on total-tract nutrient digestibility. Both diets (CON and RED) consisted of 43% grass hay, 37% clover-grass silage, and 20% concentrate and contained roughly 44% NDF, 15% CP, and 0.5% starch (dry matter basis). For CON, particle size was set by mixing all components for 20 min in a vertical feed mixer. The RED diet was treated the same, but before the mixer was filled, forages were chopped (theoretical length of cut = 0.5 cm) and the hay was hammer-milled (sieve size = 2 cm). Four primiparous and 16 multiparous mid-lactating dairy cows were assigned according to milk yield, body weight (BW), days in milk, and parity into 2 groups and fed 1 of the 2 diets for 34 d. The first 13 d were used for diet adaption, followed by data collection of nutrient intake, chewing activity, sorting behavior, milk production, and nutrient digestibility for the last 21 d of the experiment. Seven days before the start of the experiment, data on BW, dry matter intake (DMI), chewing activity, sorting behavior, and milk production were collected for use as covariates. Results showed that the RED diet improved DMI (+1.8 kg/d) and NDF intake (+0.46 kg/d) but decreased intake of physically effective NDF >8 (-3.25 kg/d). The RED-fed cows increased their intake of smaller particles (<19 mm), whereas CON-fed cows sorted for long particles (>19 mm). The RED cows reduced eating and ruminating time per kilogram of DMI by 4.8 and 1.9 min, respectively, suggesting lower mastication efforts. In addition, the RED diet significantly increased apparent total-tract digestibility of nutrients. As a consequence, RED cows' energy-corrected milk yield was higher (27.0 vs. 29.3 kg/d) without affecting milk solids, cow BW, or feed efficiency. In conclusion, the data support a reduction of forage particle size in high-forage diets as a measure to improve energy intake, performance, and hence forage utilization under these feeding conditions.
Collapse
Affiliation(s)
- Andreas Haselmann
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | - Katharina Zehetgruber
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Birgit Fuerst-Waltl
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Wilhelm Knaus
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
13
|
Izumi K, Tamura T, Fujii R, Nakatsuji H, Morita S. Effects of substituting kraft pulp with corn silage on dry matter intake, ruminal mat formation, rumen fermentation, and rumination activity in non‐lactating cows. Anim Sci J 2018; 90:205-213. [DOI: 10.1111/asj.13149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Kenichi Izumi
- College of Agriculture, Food and Environment SciencesRakuno Gakuen University Ebetsu Hokkaido Japan
| | - Tatuya Tamura
- College of Agriculture, Food and Environment SciencesRakuno Gakuen University Ebetsu Hokkaido Japan
| | - Ryoya Fujii
- College of Agriculture, Food and Environment SciencesRakuno Gakuen University Ebetsu Hokkaido Japan
| | - Hiroki Nakatsuji
- College of Agriculture, Food and Environment SciencesRakuno Gakuen University Ebetsu Hokkaido Japan
| | - Shigeru Morita
- College of Agriculture, Food and Environment SciencesRakuno Gakuen University Ebetsu Hokkaido Japan
| |
Collapse
|
14
|
Abstract
Due to their high energy requirements, high-yielding dairy cows receive high-grain diets. This commonly jeopardises their gastrointestinal health by causing subacute ruminal acidosis (SARA) and hindgut acidosis. These disorders can disrupt nutrient utilisations, impair the functionalities of gastrointestinal microbiota, and reduce the absorptive and barrier capacities of gastrointestinal epithelia. They can also trigger inflammatory responses. The symptoms of SARA are not only due to a depressed rumen pH. Hence, the diagnosis of this disorder based solely on reticulo-rumen pH values is inaccurate. An accurate diagnosis requires a combination of clinical examinations of cows, including blood, milk, urine and faeces parameters, as well as analyses of herd management and feed quality, including the dietary contents of NDF, starch and physical effective NDF. Grain-induced SARA increases acidity and shifts availabilities of substrates for microorganisms in the reticulo-rumen and hindgut and can result in a dysbiotic microbiota that are characterised by low richness, diversity and functionality. Also, amylolytic microorganisms become more dominant at the expense of proteolytic and fibrolytic ones. Opportunistic microorganisms can take advantage of newly available niches, which, combined with reduced functionalities of epithelia, can contribute to an overall reduction in nutrient utilisation and increasing endotoxins and pathogens in digesta and faeces. The reduced barrier function of epithelia increases translocation of these endotoxins and other immunogenic compounds out of the digestive tract, which may be the cause of inflammations. This needs to be confirmed by determining the toxicity of these compounds. Cows differ in their susceptibility to poor gastrointestinal health, due to variations in genetics, feeding history, diet adaptation, gastrointestinal microbiota, metabolic adaptation, stress and infections. These differences may also offer opportunities for the management of gastrointestinal health. Strategies to prevent SARA include balancing the diet for physical effective fibre, non-fibre carbohydrates and starch, managing the different fractions of non-fibre carbohydrates, and consideration of the type and processing of grain and forage digestibility. Gastrointestinal health disorders due to high grain feeding may be attenuated by a variety of feed supplements and additives, including buffers, antibiotics, probiotics/direct fed microbials and yeast products. However, the efficacy of strategies to prevent these disorders must be improved. This requires a better understanding of the mechanisms through which these strategies affect the functionality of gastrointestinal microbiota and epithelia, and the immunity, inflammation and 'gastrointestinal-health robustness' of cows. More representative models to induce SARA are also needed.
Collapse
|
15
|
Humer E, Petri RM, Aschenbach JR, Bradford BJ, Penner GB, Tafaj M, Südekum KH, Zebeli Q. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J Dairy Sci 2017; 101:872-888. [PMID: 29153519 DOI: 10.3168/jds.2017-13191] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
Rumen health is of vital importance in ensuring healthy and efficient dairy cattle production. Current feeding programs for cattle recommend concentrate-rich diets to meet the high nutritional needs of cows during lactation and enhance cost-efficiency. These diets, however, can impair rumen health. The term "subacute ruminal acidosis" (SARA) is often used as a synonym for poor rumen health. In this review, we first describe the physiological demands of cattle for dietary physically effective fiber. We also provide background information on the importance of enhancing salivary secretions and short-chain fatty acid absorption across the stratified squamous epithelium of the rumen; thus, preventing the disruption of the ruminal acid-base balance, a process that paves the way for acidification of the rumen. On-farm evaluation of dietary fiber adequacy is challenging for both nutritionists and veterinarians; therefore, this review provides practical recommendations on how to evaluate the physical effectiveness of the diet based on differences in particle size distribution, fiber content, and the type of concentrate fed, both when the latter is part of total mixed ration and when it is supplemented in partial mixed rations. Besides considering the absolute amount of physically effective fiber and starch types in the diet, we highlight the role of several feeding management factors that affect rumen health and should be considered to control and mitigate SARA. Most importantly, transitional feeding to ensure gradual adaptation of the ruminal epithelium and microbiota; monitoring and careful management of particle size distribution; controlling feed sorting, meal size, and meal frequency; and paying special attention to primiparous cows are some of the feeding management tools that can help in sustaining rumen health in high-producing dairy herds. Supplementation of feed additives including yeast products, phytogenic compounds, and buffers may help attenuate SARA, especially during stress periods when the risk of a deficiency of physically effective fiber in the diet is high, such as during early lactation. However, the usage of feed additives cannot fully compensate for suboptimal feeding management.
Collapse
Affiliation(s)
- E Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - R M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - G B Penner
- Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada, S7N 5A8
| | - M Tafaj
- Department of Animal Science, Agriculture University of Tirana, Tirana 1000, Albania
| | - K-H Südekum
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
16
|
Mickdam E, Khiaosa-ard R, Metzler-Zebeli B, Humer E, Harder H, Khol-Parisini A, Zebeli Q. Modulation of ruminal fermentation profile and microbial abundance in cows fed diets treated with lactic acid, without or with inorganic phosphorus supplementation. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Schulze AKS, Storm AC, Weisbjerg MR, Nørgaard P. Effects of forage neutral detergent fibre and time after feeding on medial and ventral rumen pH and volatile fatty acids concentration in heifers fed highly digestible grass/clover silages. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an14261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The major microbial fermentation of forages and production of volatile fatty acids (VFA) takes place in the medial part of the rumen, whereas the absorption of VFA occurs through the rumen epithelium, for example the ventral sac. The objective was to study effects of forage neutral detergent fibre (NDF) content and time after feeding on the medial to ventral VFA and pH gradient as well as rumen motility in the rumen of heifers fed grass/clover silages. Four silages were harvested at different growth stages with NDF contents of 31–45% of DM and in vitro organic matter digestibilities of 75–82% and fed to four rumen-fistulated Jersey heifers at 90% of ad libitum level in a Latin square design, with half the ration fed at 0800 hours and 1530 hours. Rumen fluid was sampled hourly from 0730 hours to 1530 hours in the medial and ventral rumen, and analysed for pH and concentrations of VFA, L-lactic acid, and ammonia to assess ruminal chemical gradient. Reticular contractions were continuously recorded by a pressure transducer. Time relative to feeding affected rumen parameters as pH was generally lower and VFA content greater in medial compared with ventral rumen fluid. Greater NDF content of the silage caused lower VFA concentration and higher pH in the rumen mat, and therefore the gradient diminished at greater NDF content in the silages; an effect probably caused by reduced organic matter digestibility rather than digesta NDF properties. This study therefore suggests that VFA production decreased with greater NDF content of forages, whereas intra-ruminal equilibration increased.
Collapse
|
18
|
Kleefisch MT, Zebeli Q, Humer E, Kröger I, Ertl P, Klevenhusen F. Effects of the replacement of concentrate and fibre-rich hay by high-quality hay on chewing, rumination and nutrient digestibility in non-lactating Holstein cows. Arch Anim Nutr 2016; 71:21-36. [DOI: 10.1080/1745039x.2016.1253227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Clauss M, Fritz J, Tschuor A, Braun U, Hummel J, Codron D. Dry matter and digesta particle size gradients along the goat digestive tract on grass and browse diets. J Anim Physiol Anim Nutr (Berl) 2016; 101:61-69. [DOI: 10.1111/jpn.12505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- M. Clauss
- Vetsuisse Faculty; Clinic for Zoo Animals; Exotic Pets and Wildlife; University of Zurich; Zurich Switzerland
| | - J. Fritz
- Vetsuisse Faculty; Clinic for Zoo Animals; Exotic Pets and Wildlife; University of Zurich; Zurich Switzerland
| | - A. Tschuor
- Vetsuisse Faculty; Department of Farm Animals; University of Zurich; Zurich Switzerland
| | - U. Braun
- Vetsuisse Faculty; Department of Farm Animals; University of Zurich; Zurich Switzerland
| | - J. Hummel
- Department of Animal Sciences; Ruminant Nutrition; University of Göttingen; Göttingen Germany
| | - D. Codron
- Florisbad Quaternary Research; National Museum; Bloemfontein South Africa
- Centre for Environmental Management; University of the Free State; Bloemfontein South Africa
| |
Collapse
|
20
|
Schären M, Seyfang GM, Steingass H, Dieho K, Dijkstra J, Hüther L, Frahm J, Beineke A, von Soosten D, Meyer U, Breves G, Dänicke S. The effects of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows. J Dairy Sci 2016; 99:3549-3565. [PMID: 26898273 DOI: 10.3168/jds.2015-10450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
To investigate the effect of the change from a concentrate and silage-based ration (total mixed ration, TMR) to a pasture-based ration, a 10-wk trial (wk 1-10) was performed, including 10 rumen- and duodenum-fistulated German Holstein dairy cows (182±24 d in milk, 23.5±3.5kg of milk/d; mean ± standard deviation). The cows were divided in either a pasture group (PG, n=5) or a confinement group (CG, n=5). The CG stayed on a TMR-based ration (35% corn silage, 35% grass silage, 30% concentrate; dry matter basis), whereas the PG was gradually transitioned from a TMR to a pasture-based ration (wk 1: TMR only; wk 2: 3 h/d on pasture wk 3 and 4: 12 h/d on pasture wk 5-10: pasture only). Ruminal pH, volatile fatty acids (VFA), NH3-N, and lipopolysaccharide (LPS) concentrations were measured in rumen fluid samples collected medially and ventrally on a weekly basis. Ruminal pH was continuously recorded during 1 to 4 consecutive days each week using ruminal pH measuring devices. In wk 1, 5, and 10, rumen contents were evacuated and weighed, papillae were collected from 3 locations in the rumen, and subsequently a VFA absorption test was performed. In the PG, mean rumen pH and molar acetate proportions decreased, and molar butyrate proportions increased continuously over the course of the trial, which can most likely be ascribed to an increased intake of rapidly fermentable carbohydrates. During the first weeks on a full grazing ration (wk 5-7), variation of rumen pH decreased, and in wk 5 a lower rumen content, papillae surface area, and potential for VFA absorption were observed. In wk 8 to 10, variation of rumen pH and total VFA concentrations increased again, and acetate/propionate ratio decreased. In wk-10 rumen content, papillae area and VFA absorption characteristics similar to initial levels were observed. Although continuous rumen pH assessments and LPS concentrations did not reveal an increased risk for subacute rumen acidosis (SARA) during the adaption period, histopathology of rumen papillae and potential for VFA absorption indicated a possible risk for rumen health. An increased risk for SARA was observed in wk 9 and 10 in the PG, but rumen LPS concentrations and histopathology were not adversely affected. Results of the present study suggest that after behavioral and metabolic adaptation to the transition from a TMR to a pasture-based ration, no adverse effects on rumen morphology and absorption capacity occurred, although rumen pH after adaptation to pasture indicated increased risk of SARA.
Collapse
Affiliation(s)
- M Schären
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - G M Seyfang
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - H Steingass
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - K Dieho
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, the Netherlands
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, the Netherlands
| | - L Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - J Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - A Beineke
- Institute of Pathology, University of Veterinary Medicine Hanover, Bünteweg 17, 30559 Hannover, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - U Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany.
| | - G Breves
- Department of Physiology, University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| |
Collapse
|
21
|
Pourazad P, Khiaosa-ard R, Qumar M, Wetzels SU, Klevenhusen F, Metzler-Zebeli BU, Zebeli Q. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle1. J Anim Sci 2016; 94:726-38. [DOI: 10.2527/jas.2015-9605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Sato S. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim Sci J 2015; 87:168-77. [PMID: 26279060 PMCID: PMC5042035 DOI: 10.1111/asj.12415] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/09/2015] [Accepted: 02/27/2015] [Indexed: 11/29/2022]
Abstract
Evaluation of the radio‐transmission pH‐measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay‐fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio‐transmission pH‐measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH.
Collapse
Affiliation(s)
- Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
23
|
Klevenhusen F, Pourazad P, Wetzels SU, Qumar M, Khol-Parisini A, Zebeli Q. Technical note: Evaluation of a real-time wireless pH measurement system relative to intraruminal differences of digesta in dairy cattle1,2. J Anim Sci 2014; 92:5635-9. [DOI: 10.2527/jas.2014-8038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F. Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - P. Pourazad
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - S. U. Wetzels
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M. Qumar
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - A. Khol-Parisini
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Q. Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
24
|
Schulze AKS, Weisbjerg MR, Storm AC, Nørgaard P. Forage fiber effects on particle size reduction, ruminal stratification, and selective retention in heifers fed highly digestible grass/clover silages1. J Anim Sci 2014; 92:2511-21. [DOI: 10.2527/jas.2013-7326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A. K. S. Schulze
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - M. R. Weisbjerg
- Department of Animal Science, AU-Foulum, Faculty of Science and Technology, Aarhus University, P.O. Box 50, 8830 Tjele, Denmark
| | - A. C. Storm
- Department of Animal Science, AU-Foulum, Faculty of Science and Technology, Aarhus University, P.O. Box 50, 8830 Tjele, Denmark
| | - P. Nørgaard
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
25
|
Izumi K, Miwa J, Ishizuka K. Effect of a non-forage fiber of red bean hulls on ruminal mat characteristics, chewing activity and milk production in dairy cows. Anim Sci J 2013; 85:233-40. [DOI: 10.1111/asj.12131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Kenichi Izumi
- Department of Sustainable Agriculture; Rakuno Gakuen University; Ebetsu Hokkaido Japan
| | - Junpei Miwa
- Department of Sustainable Agriculture; Rakuno Gakuen University; Ebetsu Hokkaido Japan
| | - Kenta Ishizuka
- Department of Sustainable Agriculture; Rakuno Gakuen University; Ebetsu Hokkaido Japan
| |
Collapse
|
26
|
Ritz J, Hofer K, Hofer E, Hackländer K, Immekus D, Codron D, Clauss M. Forestomach pH in hunted roe deer (Capreolus capreolus) in relation to forestomach region, time of measurement and supplemental feeding and comparison among wild ruminant species. EUR J WILDLIFE RES 2013. [DOI: 10.1007/s10344-013-0698-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal 2013; 7:216-22. [DOI: 10.1017/s1751731112001188] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Zebeli Q, Klevenhusen F, Drochner W. Characterisation of particle dynamics and turnover in the gastrointestinal tract of Holstein cows fed forage diets differing in fibre and protein contents. Arch Anim Nutr 2012; 66:372-84. [PMID: 22889132 DOI: 10.1080/1745039x.2012.710083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
An improved understanding of the role of forage quality on the processes of particle dynamics and turnover is important for the development of healthier and cost-effective feeding strategies that aim at lowering the proportions of concentrates in the diets of cattle. The aim of this study was to evaluate the effects of feeding hays of different qualities on particle dynamics, digestion kinetics and turnover in the gastrointestinal tract (GIT). Three non-lactating, rumen fistulated Holstein cows were fed diets consisting exclusively of hay with either low quality [Group LH; 605 ± 12.4 g/kg neutral detergent fibre (NDF) and 63 ± 4.7 g/kg crude protein (CP)] or good quality (Group GH; 551 ± 20.1 g/kg NDF and 116 ± 3.6 g/kg CP). Data showed that in situ dry matter (DM) disappearance of the soluble fraction was greater for Group GH (p < 0.05). Feeding good quality hay also lowered the proportion of particles >1.18 mm particularly during the eating process (p < 0.05). Changes in the particle size occurring afterwards were greater for Group GH as well (p < 0.05); approximately 30% in the comminution in the particle size occurred postruminally. Feeding hay of good quality lowered DM content of solid rumen digesta (p < 0.05), accelerated (p < 0.05) the turnover rate of DM and NDF in the GIT and increased DM intake (p < 0.05). In conclusion, feeding forages of better quality significantly promoted degradation processes and kinetics in the GIT with positive effects on turnover rate of digesta and feed intake in Holstein cows.
Collapse
Affiliation(s)
- Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | | | | |
Collapse
|
29
|
Zebeli Q, Aschenbach JR, Tafaj M, Boguhn J, Ametaj BN, Drochner W. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J Dairy Sci 2012; 95:1041-56. [PMID: 22365188 DOI: 10.3168/jds.2011-4421] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/30/2011] [Indexed: 11/19/2022]
Abstract
Highly fermentable diets require the inclusion of adequate amounts of fiber to reduce the risk of subacute rumen acidosis (SARA). To assess the adequacy of dietary fiber in dairy cattle, the concept of physically effective neutral detergent fiber (peNDF) has received increasing attention because it amalgamates information on both chemical fiber content and particle size (PS) of the feedstuffs. The nutritional effects of dietary PS and peNDF are complex and involve feed intake behavior (absolute intake and sorting behavior), ruminal mat formation, rumination and salivation, and ruminal motility. Other effects include fermentation characteristics, digesta passage, and nutrient intake and absorption. Moreover, peNDF requirements depend on the fermentability of the starch source (i.e., starch type and endosperm structure). To date, the incomplete understanding of these complex interactions has prevented the establishment of peNDF as a routine method to determine dietary fiber adequacy so far. Therefore, this review is intended to analyze the quantitative effects of and interactions among forage PS, peNDF, and diet fermentability with regard to rumen metabolism and prevention of SARA, and aims to give an overview of the latest achievements in the estimation of dietary fiber adequacy in high-producing dairy cattle. Recently developed models that synthesize the effects of both peNDF and fermentable starch on rumen metabolism appear to provide an appropriate basis for estimation of dietary fiber adequacy in high-producing dairy cows. Data suggest that a period lasting more than 5 to 6h/d during which ruminal pH is <5.8 should be avoided to minimize health disturbances due to SARA. The knowledge generated from these modeling approaches recommends that average amounts of 31.2% peNDF inclusive particles >1.18mm (i.e., peNDF(>1.18)) or 18.5% peNDF inclusive particles >8mm (i.e., peNDF(>8)) in the diet (DM basis) are required. However, inclusion of a concentration of peNDF(>8) in the diet beyond 14.9% of diet DM may lower DM intake level. As such, more research is warranted to develop efficient feeding strategies that encourage inclusion of energy-dense diets without the need to increase their content in peNDF above the threshold that leads to lower DM intake. The latter would require strategies that modulate the fermentability characteristics of the diet and promote absorption and metabolic capacity of ruminal epithelia of dairy cows.
Collapse
Affiliation(s)
- Q Zebeli
- Institute of Animal Nutrition, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Sato S, Ikeda A, Tsuchiya Y, Ikuta K, Murayama I, Kanehira M, Okada K, Mizuguchi H. Diagnosis of subacute ruminal acidosis (SARA) by continuous reticular pH measurements in cows. Vet Res Commun 2012; 36:201-5. [DOI: 10.1007/s11259-012-9528-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
31
|
Sato S, Kimura A, Anan T, Yamagishi N, Okada K, Mizuguchi H, Ito K. A radio transmission pH measurement system for continuous evaluation of fluid pH in the rumen of cows. Vet Res Commun 2012; 36:85-9. [PMID: 22281863 DOI: 10.1007/s11259-012-9518-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
We developed a novel wireless radio transmission pH measurement system to continuously monitor ruminal bottom pH in cows, and compared these measurements to pH values determined by a spot-sample method. The wireless system consists of a pH sensor, data measurement receiver, relay unit, and personal computer with special software. The bullet-shaped sensor can be easily administered orally via a catheter into the rumen, without surgery. The glass electrode, using a temperature compensation system, can detect the rumen fluid pH with high accuracy. The ruminal bottom pH in healthy rumen-fistulated cows was measured as 6.52 ± 0.18 by the wireless system and as 6.62 ± 0.20 by the spot-sample method; with a correlation between pH measurements using these different methods (n = 8, 24 samples, r = 0.952, P < 0.01). When measured serially in a cow fed a diet evoking rumen acidosis, the ruminal bottom pH decreased markedly following the morning feeding and then increased gradually by the next morning feeding. This wireless system is a ready-to-use tool for estimating circadian changes in ruminal bottom pH.
Collapse
Affiliation(s)
- Shigeru Sato
- Department of Veterinary Medicine, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Storm A, Kristensen N. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows. J Dairy Sci 2010; 93:4223-38. [DOI: 10.3168/jds.2009-3002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/11/2010] [Indexed: 11/19/2022]
|
33
|
AlZahal O, Steele M, Valdes E, McBride B. Technical note: The use of a telemetric system to continuously monitor ruminal temperature and to predict ruminal pH in cattle. J Dairy Sci 2009; 92:5697-701. [DOI: 10.3168/jds.2009-2220] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Clauss M, Hofmann RR, Fickel J, Streich WJ, Hummel J. The intraruminal papillation gradient in wild ruminants of different feeding types: Implications for rumen physiology. J Morphol 2009; 270:929-42. [DOI: 10.1002/jmor.10729] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Clauss M, Fritz J, Bayer D, Hummel J, Streich WJ, Südekum KH, Hatt JM. Physical characteristics of rumen contents in two small ruminants of different feeding type, the mouflon (Ovis ammon musimon) and the roe deer (Capreolus capreolus). ZOOLOGY 2009; 112:195-205. [DOI: 10.1016/j.zool.2008.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/04/2008] [Accepted: 08/22/2008] [Indexed: 11/17/2022]
|
36
|
Hummel J, Südekum KH, Bayer D, Ortmann S, Streich WJ, Hatt JM, Clauss M. Physical characteristics of reticuloruminal contents of oxen in relation to forage type and time after feeding. J Anim Physiol Anim Nutr (Berl) 2009; 93:209-20. [DOI: 10.1111/j.1439-0396.2008.00806.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Zebeli Q, Tafaj M, Junck B, Mansmann D, Steingass H, Drochner W. Evaluation of the effects of dietary particle fractions on fermentation profile and concentration of microbiota in the rumen of dairy cows fed grass silage-based diets. Arch Anim Nutr 2008; 62:230-40. [PMID: 18610538 DOI: 10.1080/17450390802027486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study evaluated the effects of three different theoretical particle lengths (TPL) of grass silage on the distribution of particle fractions of the diet and the resulting effects on fermentation profile and concentrations of protozoa and mixed bacterial mass in the rumen of three lactating Holstein cows fed total mixed rations (45% grass silage, 5% grass hay and 50% concentrate) ad libitum. Decreasing TPL of grass silage (long, medium, short) reduced particles retained on the 19-mm sieve of the Penn State Particle Separator, while particle fractions from 8 mm to 19 mm and smaller than 8 mm were increased. Different TPL did not affect pH and the concentration of volatile fatty acids in the rumen. However, lowering the TPL from long to medium increased significantly the bicarbonate concentration, acetate proportion and protozoal number in the rumen, whereas the proportion of bacterial protein in ruminal digesta and its amino acid concentration were significantly increased by the short TPL. For the current feeding conditions, it can be concluded that increasing the fraction of particles between 8 and 19 mm and probably even the fraction below 8 mm by decreasing TPL of grass silage do not adversely affect rumen conditions and can be beneficial in terms of optimising concentration and activity of ruminal microbiota in high-yielding dairy cows.
Collapse
Affiliation(s)
- Qendrim Zebeli
- University of Hohenheim, Institute of Animal Nutrition, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Zebeli Q, Dijkstra J, Tafaj M, Steingass H, Ametaj BN, Drochner W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J Dairy Sci 2008; 91:2046-66. [PMID: 18420634 DOI: 10.3168/jds.2007-0572] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The main objective of this study was to develop practical models to assess and predict the adequacy of dietary fiber in high-yielding dairy cows. We used quantitative methods to analyze relevant research data and critically evaluate and determine the responses of ruminal pH and production performance to different variables including physical, chemical, and starch-degrading characteristics of the diet. Further, extensive data were used to model the magnitude of ruminal pH fluctuations and determine the threshold for the development of subacute ruminal acidosis (SARA). Results of this study showed that to minimize the risk of SARA, the following events should be avoided: 1) a daily mean ruminal pH lower than 6.16, and 2) a time period in which ruminal pH is <5.8 for more than 5.24 h/d. As the content of physically effective neutral detergent fiber (peNDF) or the ratio between peNDF and rumen-degradable starch from grains in the diet increased up to 31.2 +/- 1.6% [dry matter (DM) basis] or 1.45 +/- 0.22, respectively, so did the daily mean ruminal pH, for which a asymptotic plateau was reached at a pH of 6.20 to 6.27. This study also showed that digestibility of fiber in the total tract depends on ruminal pH and outflow rate of digesta from reticulorumen; thereby both variables explained 62% of the variation of fiber digestibility. Feeding diets with peNDF content up to 31.9 +/- 1.97% (DM basis) slightly decreased DM intake and actual milk yield; however, 3.5% fat-corrected milk and milk fat yield were increased, resulting in greater milk energy efficiency. In conclusion, a level of about 30 to 33% peNDF in the diet may be considered generally optimal for minimizing the risk of SARA without impairing important production responses in high-yielding dairy cows. In terms of improvement of the accuracy to assessing dietary fiber adequacy, it is suggested that the content of peNDF required to stabilize ruminal pH and maintain milk fat content without compromising milk energy efficiency can be arranged based on grain or starch sources included in the diet, on feed intake level, and on days in milk of the cows.
Collapse
Affiliation(s)
- Q Zebeli
- Institute of Animal Nutrition (450), University of Hohenheim, Emil-Wolff-Str. 10, D-70599 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Tafaj M, Schollenberger M, Feofilowa J, Zebeli Q, Steingass H, Drochner W. Relationship between thiamine concentration and fermentation patterns in the rumen fluid of dairy cows fed with graded concentrate levels. J Anim Physiol Anim Nutr (Berl) 2006; 90:335-43. [PMID: 16867079 DOI: 10.1111/j.1439-0396.2006.00608.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate the relationship between the thiamine concentration and the fermentation patterns [pH, concentration of short-chain fatty acids (SCFA)] in the free liquid (FRL) and particle-associated liquid (PARL) of the rumen in dairy cows fed with graded concentrate levels in the diet. Four ruminally cannulated Holstein cows in mid lactation were fed [semi-ad libitum, 18 kg dry matter (DM)/day] diets consisting of hay (H) and slowly degradable concentrate (C), offered in five different H:C ratios (% DM basis) in the following sequence: period 1, 30:70; period 2, 40:60; period 3, 50:50; period 4, 60:40 and period 5, 75:25. A negative quadratic relationship was observed between thiamine concentration in FRL and intake of dietary thiamine (R(2) = 0.36), of concentrate (R(2) = 0.38) and of digestible non-fibre carbohydrates (R(2) = 0.37). The thiamine concentration in PARL was higher (p < or = 0.05) compared to FRL. The ruminal thiamine concentration correlated negatively to pH and positively to concentrations of SCFA and propionate in the rumen. R(2) of these relationships varied markedly (0.002 and 0.77), depending on time after feeding and fluid digesta compartment. The higher R(2) were observed at 8 and 11 h after the morning feeding for FRL (R(2) 0.46-0.71) and PARL (R(2) 0.41-0.77), respectively.
Collapse
Affiliation(s)
- M Tafaj
- Institute of Animal Nutrition, The University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Tafaj M, Zebeli Q, Maulbetsch A, Steingass H, Drochner W. Effects of fibre concentration of diets consisting of hay and slowly degradable concentrate on ruminal fermentation and digesta particle size in mid-lactation dairy cows. Arch Anim Nutr 2006; 60:254-66. [PMID: 16736859 DOI: 10.1080/17450390600679322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Four multiparous ruminally cannulated Holstein cows (mean bodyweight [BW] 615 kg) in mid-lactation (103 days in milk and 32 kg milk x d(-1) at start of the experiment) were used in an one-factorial experiment to evaluate the effects of fibre level (19, 24, 28, 32 and 39% physically effective NDF [peNDF] in dry matter [DM]) in diets consisting of hay and slowly degradable concentrate on rumen fermentation patterns and digesta particle size, under a constant intake level (146 g DM x kg(-0.75). The different fibre concentrations in the diet were achieved by adjusting the hay to concentrate ratio. The above-mentioned levels of peNDF corresponded to 70, 60, 50, 40 and 25% concentrate in diet DM, respectively, and followed the lactation curve of the cows. The ruminal pH was positively and linearly correlated to the percentage of fibre (peNDF, NDF or CF) in ration DM with R2 of 0.76-0.88 (p < 0.001) for solid digesta (particle-associated rumen fluid, PARL), and R2 of 0.26-0.29 (p < 0.05) for fluid digesta (free rumen liquid, FRL). The lowest fibre level in the diet (19% peNDF) or the highest level of concentrate (70% on DM basis) caused pH values lower than 6.0 at almost all sampling times only in PARL but not in FRL, and significantly increased the proportion of large particles in rumen digesta, which in turn was reflected by a depression of fibre digestibility. A level of 24% peNDF or 60% concentrate in the diet maintained the ruminal pH higher than 6.0 and 5.8 in FRL and PARL, respectively. Therefore, the inclusion of more than 60% slowly degradable concentrate in dairy cows diets fed approximately 18 kg DM x d(-1) is discouraged. Based on the response of ruminal solid digesta to dietary fibre, it can be concluded that the recommendations of feeding a structural value > or =1 per kg DM (De Brabander et al. 1999) underestimated, and 400 g CF per 100 kg BW (Hoffmann 1990) overestimated the evaluation of structural effectiveness of the present diet.
Collapse
Affiliation(s)
- Myqerem Tafaj
- University of Hohenheim, Institute of Animal Nutrition, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
41
|
Zebeli Q, Tafaj M, Steingass H, Metzler B, Drochner W. Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. J Dairy Sci 2006; 89:651-68. [PMID: 16428635 DOI: 10.3168/jds.s0022-0302(06)72129-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data from recent research studies were analyzed quantitatively, and the random effect of experiment was assessed to define the physiological responses of dairy cows in early lactation to intake of physically effective neutral detergent fiber (peNDF). All studies were conducted with lactating Holstein cows (84.8 +/- 3.54 days in milk) in Latin square designs, and feeds were offered ad libitum as total mixed rations (TMR). The peNDF was estimated by 2 measurement techniques, the NDF content of TMR multiplied by amount of dry matter (DM) retained on a 1.18-mm screen (peNDF(> 1.18)) and NDF content of TMR multiplied by the proportion of DM retained by 19- and 8-mm Penn State Particle Separator screens (peNDF(> 8)). Other factors, including concentrations of NDF, forage NDF, non-fiber carbohydrates, the amount of digestible organic matter of forages (FDOM), and the intake of ruminally degradable starch (RDSI) from grain in the diet were also investigated. The studied animal response variables included feed intake, ruminal fermentation, chewing activity, fiber digestibility, and milk production and composition. The ruminal pH (day mean) in this study ranged from 5.30 to 6.59. Using peNDF(> 1.18) approach, the requirements for physically effective fiber in high-yielding dairy cows fed TMR in an ad libitum intake were estimated to be about 19% of ration DM or 4.1 kg/d or 0.6 kg/100 kg of body weight to maintain a ruminal pH of about 6.0. When peNDF was measured as peNDF(> 8), ruminal pH responded in a quadratic fashion but the confidence of estimation was lower (R(2) = 0.27) compared with the peNDF(> 1.18) approach (R(2) = 0.67). Results of these data analyses showed that peNDF(> 1.18) provided a satisfactory estimation of the mean ruminal pH (R(2) = 0.67) and NDF digestibility (R(2) = 0.56). Furthermore, peNDF(> 1.18) was poorly, although positively, correlated to daily chewing (R(2) = 0.17), and rumination (R(2) = 0.24) activity. On the other hand, results from these analyses showed that milk parameters are less sensitive to the effects of dietary peNDF than other variables, such as ruminal pH, chewing activity, and fiber digestibility. Dietary FDOM correlated positively (moderately) to ruminal pH (R(2) = 0.24), daily chewing (R(2) = 0.23), and rumination (R(2) = 0.29) activity, whereas the daily RDSI from grain correlated negatively to ruminal pH (R(2) = 0.55) and positively to total volatile fatty acids (R(2) = 0.27). Inclusion of FDOM and RDSI from grain along with peNDF(> 1.18) in the models that predict rumen pH further improved the accuracy of prediction. This approach appeared to further complement the concept of peNDF that does not account for differences in ruminal fermentability of feeds.
Collapse
Affiliation(s)
- Q Zebeli
- University of Hohenheim, Institute of Animal Nutrition (450), Emil-Wolff-Str. 10, D-70599 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
42
|
Tafaj M, Zebeli Q, Junck B, Steingass H, Drochner W. Effects of particle size of a total mixed ration on in vivo ruminal fermentation patterns and inocula characteristics used for in vitro gas production. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
|