1
|
Adil S, Banday MT, Wani MA, Hussain SA, Shah S, Sheikh ID, Shafi M, Khan AA, Kashoo ZA, Pattoo RA, Swelum AA. Nano-protected form of rosemary essential oil has a positive influence on blood biochemistry parameters, haematological indices, immune-antioxidant status, intestinal microbiota and histomorphology of meat-type chickens. Poult Sci 2024; 103:104309. [PMID: 39303351 PMCID: PMC11426142 DOI: 10.1016/j.psj.2024.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
This study aimed to investigate the potential of free and nanoprotected rosemary essential oil (REO) as an antibiotic alternative in blood biochemistry, hematology, immune-antioxidant status, intestinal microbiology, and histomorphology of broilers. A total of 420 1-wk-old broiler chicks (Cobb) were randomly allotted into 7 treatments, each having 4 replicates of 15 chicks. The first group served as control received basal diet, while the second group was fed a basal diet plus 100 mg/kg enramycin and third group basal diet plus 150 mg/kg chitosan nanoparticles (CNPs). The fourth and fifth groups received diets supplemented with 100 mg and 200 mg free REO (F-REO)/kg diet. The sixth and seventh groups were supplemented with 100 mg and 200 mg nanoprotected REO (N-REO)/kg diet. Results revealed that supplementing nanoprotected REO significantly (P < 0.05) decreased the levels of blood cholesterol and low-density lipoproteins (LDL) compared to control and enramycin groups. The kidney and liver function parameters were not altered by adding free or nanoprotected REO to the diet. Both levels of nanoprotected REO significantly (P < 0.05) reduced heterophil: lymphocyte (H: L) ratio compared to all other groups. Birds receiving nanoprotected REO at 200 mg/kg diet had significantly (P ˂ 0.05) raised serum levels of immunoglobulin G (IgG) and immunoglobulin M (IgM) compared to control and other birds. Anti-SRBC titre and cell-mediated immunity improved significantly (P < 0.05) in nanoprotected REO groups. Supplementation of nanoprotected REO resulted in significantly (P < 0.05) higher values for superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS). The caecal microbiota was improved in broiler birds fed diets supplemented with nanoprotected REO. The 200 mg nanoprotected REO/kg diet supplementation resulted in significantly (P < 0.05) better villus height (VH) and villus height: crypt depth (VH: CD) ratio in all the segments of the small intestine. In conclusion, feeding REO in nanoprotected form in a 200 mg/kg diet could be used as an antibiotic substitute to improve broiler chicken's lipid profile, immune-antioxidant status, and intestinal health.
Collapse
Affiliation(s)
- Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Muhammad T Banday
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Manzoor A Wani
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | | | - Showkat Shah
- Division of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190001, Jammu and Kashmir, India
| | - Islam D Sheikh
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Majid Shafi
- Division of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190001, Jammu and Kashmir, India
| | - Azmat A Khan
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Zahid A Kashoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190001, Jammu and Kashmir, India
| | - Roof A Pattoo
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K 190025, Jammu and Kashmir, India
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Taghizadeh M, Esmaeili H, Vakili R. Cholecalciferol combined with Satureja rechingeri essential oils improves growth performance and immune response of broiler chickens. Vet Med Sci 2024; 10:e1587. [PMID: 39136499 PMCID: PMC11320753 DOI: 10.1002/vms3.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Vitamin D possesses an important role in the maintenance and health of broiler chickens. Herbal essential oils (EOs) have been proposed as a suitable alternative to chemical drugs in intensive production management systems for better performance of broilers with slight side effects and admirable therapeutic properties. OBJECTIVES This experiment was conducted to investigate the effects of feeding cholecalciferol (VD) in combination of Satureja rechingeri EO (SREO) on growth performance, haematological indicators and immunological response of broilers. METHODS A total of 540 1-day-old mixed-sex broiler chickens (Ross 308) were used in a completely randomized design with a 3 × 3 factorial arrangement of treatments. Experimental treatments included different concentrations of cholecalciferol (VD) (0, 2000 and 4000 IU/kg = 0, 0.05 and 0.1 mg/kg) and SREO (0, 200 and 400 mg/kg) on growth performance, haematological indicators and immunological responses of broiler chickens were investigated. RESULTS The results showed that the chicken fed diet supplemented with 0.1 mg/kg VD (VD0.1) in combination of 200 mg/kg SREO (SREO200) increased the feed intake during the overall and first 14-day periods of the trial when compared with other dietary treatments. Interaction of VD0.1 × SREO200 led to more body weight gain (BWG) in the grower and finisher phases than all other feed treatment groups. The blood level of lymphocyte at day 42, heterophil at days 28 and 42 and heterophil/lymphocyte (H/L) ratio at 14 and 28 days of age were affected by VD0.1 + SREO200 in comparison with VD0 + SREO0 group. Feeding VD and/or SREO decreased triglyceride, cholesterol and low-density lipoprotein concentrations at days 28 and 42 of the study, especially in VD0.1 + SREO200 treatment. Feeding VD0.1 + SREO200 also resulted in higher serum status of immunoglobulin M, lysozymes and phagocytic percentage among all treatments. CONCLUSION Considering the outcomes, it is suggested that the combination of suitable concentration of VD and EO of the plant had favourable effects on the immune system and performance criteria of broiler chickens.
Collapse
Affiliation(s)
| | - Hassan Esmaeili
- Department of AgricultureMedicinal Plants and Drugs Research InstituteShahid Beheshti UniversityTehranIran
| | - Reza Vakili
- Animal Science DepartmentKashmar BranchIslamic Azad UniversityKashmarIran
| |
Collapse
|
3
|
Movahedi F, Nirmal N, Wang P, Jin H, Grøndahl L, Li L. Recent advances in essential oils and their nanoformulations for poultry feed. J Anim Sci Biotechnol 2024; 15:110. [PMID: 39123220 PMCID: PMC11316336 DOI: 10.1186/s40104-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development. Essential oils (EOs), as natural, plant-derived compounds, have demonstrated antimicrobial and antioxidant properties. EOs may potentially improve poultry health and growth performance when included in poultry feed. Nevertheless, the incorporation of EOs as nutritional additives is hindered by their high volatility, low water solubility, poor intestinal absorption, and sensitivity to environmental conditions. Recently, nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges, improving the stability and bioavailability of EOs, and enabling targeted delivery in poultry feed. This review provides an overview of the antioxidant and antibacterial properties of EOs, the current limitations of their applications in poultry feed, and the recent advancements in nano-engineering to overcome these limitations. Furthermore, we outline the potential future research direction on EO nanoformulations, emphasizing their promising role in advancing sustainable poultry nutrition.Highlights• Essential oils (EOs) are known as powerful antioxidants and antibacterial agents.• EOs have a high potential to replace antibiotics as feed additives.• Nanoformulations of EOs have shown improved bioactivity and storage stability of EOs.• Nanoformulation promotes the bioavailability and gut adsorption of EOs as feed additives.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pengyuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hongping Jin
- JECHO Biopharmaceuticals Co., Ltd., No. 2633, Zhongbin Avenue, Sino-Singapore Tianjin Eco-city, Binhai New Area, Tianjin, China
| | - Lisbeth Grøndahl
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
4
|
Gheorghe-Irimia RA, Tăpăloagă D, Tăpăloagă PR, Ghimpețeanu OM, Tudor L, Militaru M. Spicing Up Meat Preservation: Cinnamomum zeylanicum Essential Oil in Meat-Based Functional Foods-A Five-Year Review. Foods 2024; 13:2479. [PMID: 39200406 PMCID: PMC11353328 DOI: 10.3390/foods13162479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Today, in the modern consumer era, we are facing a significant change in terms of preferences and behaviour. This tendency is not only a basic desire, but rather a significant social and cultural movement that exerts a tremendous influence on the food industry and correlated sectors. In this direction, food authorities and experts have thoroughly evaluated the practicality of employing natural preservation methods to enhance the quality and safety of foodstuffs, while preserving their nutritional and sensory attributes. Given this context, the development of meat products enhanced with Cinnamomum zeylanicum essential oil (CZEO) poses promising avenues, such as extended shelf-life due to its antimicrobial, antifungal, and antioxidant properties. CZEO also has many health benefits, rendering it as a promising ingredient in functional meat product formulations. Conversely, challenges such as higher associated costs, sensory interactions, and variability arise. Hence, the aim of this review is to offer a novel critical perspective on CZEO's potential application as a functional ingredient in meat products formulations and to address the inherent associated challenges, based on the last five years of scholarly publications.
Collapse
Affiliation(s)
- Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Paul-Rodian Tăpăloagă
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine Bucharest, 011464 Bucharest, Romania;
| | - Oana-Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Laurențiu Tudor
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Manuella Militaru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| |
Collapse
|
5
|
Hassan AHA, Youssef IMI, Abdel-Atty NS, Abdel-Daim ASA. Effect of thyme, ginger, and their nano-particles on growth performance, carcass characteristics, meat quality and intestinal bacteriology of broiler chickens. BMC Vet Res 2024; 20:269. [PMID: 38907235 PMCID: PMC11193295 DOI: 10.1186/s12917-024-04101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
This study was conducted to evaluate the effects of thyme, ginger, and their nano-particles, as alternatives to antibiotic growth promotors (AGP), on productive performance, carcass traits, meat quality and gut health of broiler chickens. A total of 270 one-day-old broiler chicks were randomly distributed into 6 groups, each consisting of 3 replicates (n = 15 chicks/replicate). The birds in group 1 were fed the control diet which contained neither antibiotic growth promotors nor phytogenic feed additives (PFA). Birds in group 2 were fed diets containing 0.05% of AGP (Bacitracin methylene disalicylate). Chicks in group 3 and 4 were fed diets supplemented with 1.0% of thyme and ginger, respectively, whereas birds in group 5 and 6 were offered diets including 0.10% of nano-thyme and nano-ginger, respectively. The experiment lasted for 35 days. It was found that thyme and ginger with their nano-products, like the antibiotic, improved the body weight, weight gain and feed conversion rate of birds. The effect of ginger and nano-ginger on body weight and weight gain was greater than other treatments. During the overall feeding period, the feed cost of production was the highest in antibiotic group, but was the lowest in ginger and nano-ginger treatments. There was no effect of dietary treatments on carcass yield or organs weight except bursa of Fabricius and abdominal fat. Thyme, ginger and their nano-composites increased the weight of bursa and reduced the abdominal fat amount. The phytogenic additives and their nano-particles improved the colour, water holding capacity, and flavor of meat. Moreover, these additives reduced the total intestinal bacterial count as well as the total aerobic mesophilic count of meat. The effect of PFA and their nano-particles on the bacterial count was similar to that of antibiotic. In conclusion, thyme and ginger with their nano- particles can be considered as promising agents in feeding of broilers to improve the growth performance, gut health and meat quality. Moreover, these additives can be used as alternatives to AGP to overcome its health hazards and the high cost. The nanotechnology of herbal plants enables them to be added in smaller amounts in poultry diets with producing the same effect of raw ingredients, and this could be due to the higher bioavailability.
Collapse
Affiliation(s)
- Amal H A Hassan
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ibrahim M I Youssef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nasser S Abdel-Atty
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa S A Abdel-Daim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
6
|
Prachumchai R, Suriyapha C, Dagaew G, Sommai S, Matra M, Phupaboon S, Phasuk Y, Wanapat M. Microencapsulation of lemongrass and mangosteen peel as phytogenic compounds to gas kinetics, fermentation, degradability, methane production, and microbial population using in vitro gas technique. PLoS One 2024; 19:e0304282. [PMID: 38837999 DOI: 10.1371/journal.pone.0304282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
The purpose of the current study was to evaluate the impact of various doses of microencapsulated lemongrass and mangosteen peel (MELM) on gas dynamics, rumen fermentation, degradability, methane production, and microbial population in in vitro gas experiments. With five levels of microencapsulated-phytonutrient supplementation at 0, 1, 2, 3, and 4% of substrate, 0.5 g of roughage, and a concentrate ratio of 60:40, the trial was set up as a completely randomized design. Under investigation, the amount of final asymptotic gas volume was corresponding responded to completely digested substrate (b) increased cubically as a result of the addition of MELM (P < 0.01) and a cubic rise in cumulative gas output. The amount of MELM form did not change the pH and NH3-N concentration of the rumen after 12 and 24 h of incubation. However, methane production during 24 h of incubation, the levels were cubically decreased with further doses of MELM (P < 0.01) at 12 h of incubation. Increasing the dosage of MELM supplementation at 2% DM resulted in a significant increase in the digestibility of in vitro neutral detergent fiber (IVNDF) and in vitro true digestibility (IVTD) at various incubation times (P < 0.05), but decreased above 3% DM supplementations. Moreover, the concentration of propionic acid (C3) exhibited the variations across the different levels of MELM (P < 0.05), with the maximum concentration obtained at 2% DM. The populations of Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, and Megasphaera elsdenii revealed a significant increase (P < 0.05), while the quantity of Methanobacteriales decreased linearly with increasing doses of MELM. In conclusion, the inclusion of MELM at a concentration of 2% DM in the substrate which could enhance cumulative gas production, NDF and true digestibility, C3 production, and microbial population, while reducing methane concentration and Methanobacterial abundance.
Collapse
Affiliation(s)
- Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, Rajamangala, University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Yupin Phasuk
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Matra M, Phupaboon S, Totakul P, Prommachart R, Shah AA, Shah AM, Wanapat M. Microencapsulation of Mitragyna leaf extracts to be used as a bioactive compound source to enhance in vitro fermentation characteristics and microbial dynamics. Anim Biosci 2024; 37:74-83. [PMID: 37946435 PMCID: PMC10766463 DOI: 10.5713/ab.23.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Mitragyna speciosa Korth is traditionally used in Thailand. They have a high level of antioxidant capacities and bioactive compounds, the potential to modulate rumen fermentation and decrease methane production. The aim of the study was to investigate the different levels of microencapsulated-Mitragyna leaves extracts (MMLE) supplementation on nutrient degradability, rumen ecology, microbial dynamics, and methane production in an in vitro study. METHODS A completely randomized design was used to assign the experimental treatments, MMLE was supplemented at 0%, 4%, 6%, and 8% of the total dry matter (DM) substrate. RESULTS The addition of MMLE significantly increased in vitro dry matter degradability both at 12, 24, and 48 h, while ammonia-nitrogen (NH3-N) concentration was improved with MMLE supplementation. The MMLE had the greatest propionate and total volatile fatty acid production when added with 6% of total DM substrate, while decreased the methane production (12, 24, and 48 h). Furthermore, the microbial population of cellulolytic bacteria and Butyrivibrio fibrisolvens were increased, whilst Methanobacteriales was decreased with MMLE feeding. CONCLUSION The results indicated that MMLE could be a potential alternative plant-based bioactive compound supplement to be used as ruminant feed additives.
Collapse
Affiliation(s)
- Maharach Matra
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Pajaree Totakul
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12130,
Thailand
| | - Ronnachai Prommachart
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology, Tawan-Ok 20110,
Thailand
| | - Assar Ali Shah
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Ali Mujtaba Shah
- Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Sindh,
Pakistan
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| |
Collapse
|
8
|
Essid R, Ayed A, Djebali K, Saad H, Srasra M, Othmani Y, Fares N, Jallouli S, Abid I, Alothman MR, Limam F, Tabbene O. Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles. Molecules 2023; 28:5681. [PMID: 37570651 PMCID: PMC10419485 DOI: 10.3390/molecules28155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.
Collapse
Affiliation(s)
- Rym Essid
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Ameni Ayed
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Kais Djebali
- Valorization of Useful Material Laboratory (LVMU), National Research Center in Material Sciences (CNRSM) Technopôle Borj Cedria, BP 73, Soliman 8027, Tunisia
| | - Houda Saad
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Mondher Srasra
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Yasmine Othmani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Selim Jallouli
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Monerah Rashed Alothman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Olfa Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
9
|
Uyanga VA, Ejeromedoghene O, Lambo MT, Alowakennu M, Alli YA, Ere-Richard AA, Min L, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Chitosan and chitosan‑based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
10
|
Dietary Supplementation with Eugenol Nanoemulsion Alleviates the Negative Effects of Experimental Coccidiosis on Broiler Chicken's Health and Growth Performance. Molecules 2023; 28:molecules28052200. [PMID: 36903445 PMCID: PMC10005078 DOI: 10.3390/molecules28052200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present study investigated the protective efficacy of dietary supplementation with clove essential oil (CEO), its main constituent eugenol (EUG), and their nanoformulated emulsions (Nano-CEO and Nano-EUG) against experimental coccidiosis in broiler chickens. To this aim, various parameters (oocyst number per gram of excreta (OPG), daily weight gain (DWG), daily feed intake (DFI), feed conversion ratio (FCR), serum concentrations of total proteins (TP), albumin (ALB), globulins (GLB), triglycerides (TG), cholesterol (CHO) and glucose (GLU), serum activity of superoxide dismutase (SOD), glutathione s-transferase (GST), and glutathione peroxidase (GPx)] were compared among groups receiving CEO supplemented feed (CEO), Nano-CEO supplemented feed (Nano-CEO), EUG supplemented feed (EUG), Nano-EUG supplemented feed (Nano-EUG), diclazuril supplemented feed (standard treatment, ST), or basal diet [diseased control (d-CON) and healthy control (h-CON)), from days 1-42. Chickens of all groups, except h-CON, were challenged with mixed Eimeria spp. at 14 days of age. Coccidiosis development in d-CON was associated with impaired productivity (lower DWG and higher DFI and FCR relative to h-CON; p < 0.05) and altered serum biochemistry (decreased TP, ALB, and GLB concentrations and SOD, GST, and GPx activities relative to h-CON; p < 0.05). ST effectively controlled coccidiosis infection by significantly decreasing OPG values compared with d-CON (p < 0.05) and maintaining zootechnical and serum biochemical parameters at levels close to (DWG, FCR; p < 0.05) or not different from (DFI, TP, ALB, GLB, SOD, GST, and GPx) those of h-CON. Among the phytogenic supplemented (PS) groups, all showed decreased OPG values compared with d-CON (p < 0.05), with the lowest value being measured in Nano-EUG. All PS groups showed better values of DFI and FCR than d-CON (p < 0.05), but only in Nano-EUG were these parameters, along with DWG, not different from those of ST. Furthermore, Nano-EUG was the only PS group having all serum biochemical values not different (or even slightly improved) relative to ST and h-CON. In conclusion, the tested PS diets, especially Nano-EUG, can limit the deleterious effects of coccidiosis in broiler chickens, due to anticoccidial activity and possibly their reported antioxidant and anti-inflammatory properties, thereby representing a potential green alternative to synthetic anticoccidials.
Collapse
|
11
|
Preparation, Characterization, In Vitro Release, and Antibacterial Activity of Oregano Essential Oil Chitosan Nanoparticles. Foods 2022; 11:foods11233756. [PMID: 36496563 PMCID: PMC9736546 DOI: 10.3390/foods11233756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Essential oils have unique functional properties, but their environmental sensitivity and poor water solubility limit their applications. Therefore, we encapsulated oregano essential oil (OEO) in chitosan nanoparticles (CSNPs) and used tripolyphosphate (TPP) as a cross-linking agent to produce oregano essential oil chitosan nanoparticles (OEO-CSNPs). The optimized conditions obtained using the Box-Behnken design were: a chitosan concentration of 1.63 mg/mL, TPP concentration of 1.27 mg/mL, and OEO concentration of 0.30%. The OEO-CSNPs had a particle size of 182.77 ± 4.83 nm, a polydispersity index (PDI) of 0.26 ± 0.01, a zeta potential of 40.53 ± 0.86 mV, and an encapsulation efficiency of 92.90%. The success of OEO encapsulation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The scanning electron microscope (SEM) analysis showed that the OEO-CSNPs had a regular distribution and spherical shape. The in vitro release profile at pH = 7.4 showed an initial burst release followed by a sustained release of OEO. The antibacterial activity of OEO before and after encapsulation was measured using the agar disk diffusion method. In conclusion, OEO can be used as an antibacterial agent in future food processing and packaging applications because of its high biological activity and excellent stability when encapsulated.
Collapse
|
12
|
Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L. Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics (Basel) 2022; 11:1673. [PMID: 36421318 PMCID: PMC9686951 DOI: 10.3390/antibiotics11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
13
|
Extraction, Characterization, and Chitosan Microencapsulation of Bioactive Compounds from Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. Antioxidants (Basel) 2022; 11:antiox11112103. [PMID: 36358475 PMCID: PMC9686816 DOI: 10.3390/antiox11112103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of the research was to investigate the bioactive compounds of herbal plant leaves by microencapsulation technique for future application as a feed additive. In this experiment, three herbal plant leaves, namely Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K., were comparatively investigated using different methods to extract their bioactive compounds. Two methods were used to extract the bioactive compounds: microwave extraction (water-heating transferred) and maceration extraction (methanol extracted). The results obtained using microwave extraction revealed that the total polyphenolic and flavonoid contents and antioxidant capacity were significantly higher and stronger, respectively, than those produced by the maceration extraction method (p < 0.05). Furthermore, the spray-drying technique was employed to enhance the extracted compounds by encapsulation with chitosan through ionic gelation properties. The physical characteristics of chitosan-encapsulated substrates were examined under a scanning electron microscope (SEM) and were as microparticle size (1.45 to 11.0 µm). The encapsulation efficiency of the bioactive compounds was found to be 99.7, 82.3, and 54.6% for microencapsulated M. speiosa, C. indica, and C. sativa, respectively. Therefore, microwave treatment prior to chitosan encapsulation of leaf extracts resulted in increased recovery of bioactive compound encroachment.
Collapse
|
14
|
Siddiqui SA, Bahmid NA, Taha A, Abdel-Moneim AME, Shehata AM, Tan C, Kharazmi MS, Li Y, Assadpour E, Castro-Muñoz R, Jafari SM. Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv Colloid Interface Sci 2022; 308:102772. [PMID: 36087561 DOI: 10.1016/j.cis.2022.102772] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
Advances in animal husbandry and better performance of livestock results in growing demands for feed and its nutrients, bioactive compounds (bioactives), such as vitamins, minerals, proteins, and phenolics, along with drugs/vaccines. To protect the feed bioactives in unintended circumstances, they can be encapsulated to achieve desired efficacy in animal feeding and nanoencapsulation gives more potential for better protection, absorption and targeted delivery of bioactives. This study reviews structures, properties, and methods of nanoencapsulation for animal feedings and relevant drugs. Essential oil (EOs) and plant extracts are mostly encapsulated bioactives and phytochemicals for poultry diets and chitosan is found as most effective nanocarrier to load EOs and plant extracts. Nanoparticles (NPs) and nanocapsules are frequently studied nanocarriers, which are mostly processed by using the ionotropic/ionic gelation. Nanofibers, nanohydrogels and nanoemulsions are not found yet for their application in feed bioactives. These nanocarriers can have an improved protection, stability, and controlled release of feed bioactives which benefits to additional nutrition for the growth of livestock regardless of the low stability and water solubility of bioactives. For ruminants' feeds, nano-minerals, vitamins, phytochemicals, essential fatty acids, and drugs are encapsulated by NPs to facilitate the delivery to target organs through direct penetration, to improve their bioavailability, to generate more efficient absorption in cells and tissues, and protect them from rapid degradation. Furthermore, safety and regulatory issues, as well as advantages and disadvantages of nanoencapsulation application in animal feeds are also discussed. The review shows an accurate design of NPs can largely mask safety issues with straightforward approaches and awareness of safety concerns is fundamental for better designing of nanoencapsulation systems and commercialization. This review gives an insight of understanding and potential of nanoencapsulation in ruminants and poultry feedings to obtain a better bioavailability of the nutrients and bioactives with improved safety and awareness for better designing of nanoencapsulating systems.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D-Quakenbrück, Germany; Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene 90311, Indonesia
| | - Ahmed Taha
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | | | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt; Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | | | - Yuan Li
- Beijing Advanced Center for Food Nutrition and Human Health, Center of Food Colloids and Delivery of Functionally, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
15
|
Encapsulation as a way to improve the phytogenic effects of herbal additives in broilers – an overview. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The prohibition of antibiotic growth promoters (AGP) and the restriction of synthetic antioxidants have had a negative impact on the productivity and health of broiler chickens. To ensure sustainability in broiler production, poultry nutritionists continue to look for alternatives to AGP and antioxidants. Using herbal ingredients is one alternative that is widely used today. However, the use of herbal ingredients in small doses is often constrained by bioavailability problems, thereby reducing the effectiveness of using herbal additives for broiler chickens. At higher doses, the use of herbal ingredients can increase feed costs and negatively impact palatability, digestion and protein utilization, and liver health. Encapsulation is a method that can improve the stability, palatability, and bioavailability of herbal additives, which may enhance the efficacy of herbs as AGP and antioxidant alternatives for broilers. This review article provides a comprehensive insight into the application of and problems related to herbal additives, benefits of encapsulation technology on herbs, and use of encapsulated herbs in broiler production.
Collapse
|
16
|
Exploring the Potential of Myrothamnus flabellifolius Welw. (Resurrection Tree) as a Phytogenic Feed Additive in Animal Nutrition. Animals (Basel) 2022; 12:ani12151973. [PMID: 35953961 PMCID: PMC9367323 DOI: 10.3390/ani12151973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The unregulated use of in-feed antibiotic growth promoters has received widespread condemnation due to an increase in cases of antibiotic-resistant microbes. This has fueled an ever-growing demand for new sources of natural and safe alternative products with minimal impacts on the environment and human health in animal production. Myrothamnus flabellifolius, as a phytogenic feed additive, fits this description, as it is a natural plant containing high amounts of secondary metabolites necessary for cell function, regulation, and protection for improved animal growth, performance, and health. With some limitations towards its use, several processing and combination strategies are available to unlock nutrients and explore its potential in animal production, as described in this review. Abstract Myrothamnus flabellifolius (Welw.) is used in African traditional medicine for the treatment of depression and mental disorder, asthma, infectious diseases, respiratory, inflammation, epilepsy, heart, wound, backaches, diabetes, kidney ailments, hypertension, hemorrhoids, gingivitis, shingles, stroke, and skins conditions. The effectiveness of M. flabellifolius is due to the presence of several secondary metabolites that have demonstrated efficacy in other cell and animal models. These metabolites are key in cell regulation and function and have potential use in animal production due to antimicrobial and antioxidant properties, for an improvement in growth performance, feed quality and palatability, gut microbial environment, function, and animal health. The purpose of this review is to provide a detailed account on the potential use of M. flabellifolius in animal nutrition. Limitations towards the use of this plant in animal nutrition, including toxicity, economic, and financial issues are discussed. Finally, novel strategies and technologies, e.g., microencapsulation, microbial fermentation, and essential oil extraction, used to unlock and improve nutrient bioaccessibility and bioavailability are clearly discussed towards the potential use of M. flabellifolius as a phytogenic additive in animal diets.
Collapse
|
17
|
Dupuis V, Cerbu C, Witkowski L, Potarniche AV, Timar MC, Żychska M, Sabliov CM. Nanodelivery of essential oils as efficient tools against antimicrobial resistance: a review of the type and physical-chemical properties of the delivery systems and applications. Drug Deliv 2022; 29:1007-1024. [PMID: 35363104 PMCID: PMC8979527 DOI: 10.1080/10717544.2022.2056663] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review provides a synthesis of the last ten years of research on nanodelivery systems used for the delivery of essential oils (EOs), as well as their potential as a viable alternative to antibiotics in human and veterinary therapy. The use of essential oils alone in therapy is not always possible due to several limitations but nanodelivery systems seem to be able to overcome these issues. The choice of the essential oil, as well as the choice of the nanodelivery system influences the therapeutic efficacy obtained. While several studies on the characterization of EOs exist, this review assesses the characteristics of the nanomaterials used for the delivery of essential oils, as well as impact on the functionality of nanodelivered essential oils, and successful applications. Two classes of delivery systems stand out: polymeric nanoparticles (NPs) including chitosan, cellulose, zein, sodium alginate, and poly(lactic-co-glycolic) acid (PLGA), and lipidic NPs including nanostructured lipid carriers, solid lipid NPs, nanoemulsions, liposomes, and niosomes. While the advantages and disadvantages of these delivery systems and information on stability, release, and efficacy of the nanodelivered EOs are covered in the literature as presented in this review, essential information, such as the speed of emergence of a potential bacteria resistance to these new systems, or dosages for each type of infection and for each animal species or humans is still missing today. Therefore, more quantitative and in vivo studies should be conducted before the adoption of EOs loaded NPs as an alternative to antibiotics, where appropriate.
Collapse
Affiliation(s)
- Victoria Dupuis
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Constantin Cerbu
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Adrian-Valentin Potarniche
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Maria Cristina Timar
- Faculty of Furniture Design and Wood Engineering, Department of Wood Processing and Wood Products Design, Transilvania University of Brasov, Brasov, Romania
| | - Monika Żychska
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Cristina M Sabliov
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Elnesr SS, Elwan HAM, El Sabry MI, Shehata AM, Alagawany M. Impact of chitosan on productive and physiological performance and gut health of poultry. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2041992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Mohamed I. El Sabry
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Rajendran D, Ezhuthupurakkal PB, Lakshman R, Gowda NKS, Manimaran A, Rao SBN. Application of encapsulated nano materials as feed additive in livestock and poultry: a review. Vet Res Commun 2022; 46:315-328. [DOI: 10.1007/s11259-022-09895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
20
|
Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Mousapour A, Salarmoini M, Afsharmanesh M, Ebrahimnejad H, Meimandipour A, Amiri N. Encapsulation of essential oils of rosemary (Rosmarinus officinalis): evaluation of in vitro antioxidant and antimicrobial properties, and effects on broiler performance. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Moharreri M, Vakili R, Oskoueian E, Rajabzadeh G. Phytobiotic role of essential oil-loaded microcapsules in improving the health parameters in Clostridium perfringens-infected broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1993093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahsa Moharreri
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran
| | - Reza Vakili
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran
| | - Ehsan Oskoueian
- Agricultural Biotechnology Research Institute of Iran,(ABRII), Mashhad, Iran
| | | |
Collapse
|
23
|
Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13158467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quality and safety attributes of poultry products have attracted increasing widespread attention and interest from scholarly groups and the general population. As natural and safe alternatives to synthetic and artificial chemical drugs (e.g., antibiotics), botanical products are recently being used in poultry farms more than 60% of the time for producing organic products. Medicinal plants, and honeybee products, are natural substances, and they were added to poultry diets in a small amount (between 1% and 3%) as a source of nutrition and to provide health benefits for poultry. In addition, they have several biological functions in the poultry body and may help to enhance their welfare. These supplements can increase the bodyweight of broilers and the egg production of laying hens by approximately 7% and 10% and enhance meat and egg quality by more than 25%. Moreover, they can improve rooster semen quality by an average of 20%. Previous research on the main biological activities performed by biotics has shown that most research only concentrated on the notion of using botanical products as growth promoters, anti-inflammatory, and antibacterial agents. In the current review, the critical effects and functions of bee products and botanicals are explored as natural and safe alternative feed additives in poultry production, such as antioxidants, sexual-stimulants, immuno-stimulants, and for producing healthy products.
Collapse
|
24
|
Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. Animal 2020; 15:100022. [PMID: 33573947 DOI: 10.1016/j.animal.2020.100022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
The addition of essential oil (EO) as chitosan encapsulated can increase the efficiency of these oils in broiler feeding. Therefore, the objective of the current research was to explore the antibacterial and antioxidant potential of garlic essential oil (GEO) (free vs. nanoencapsulated) and their effects on performance, gene expression of mucin2, microbial, and morphology of intestine in broilers. A total of 900 1-day-old male broilers (Ross 308) were assigned to six dietary treatments (0, 100, and 200 mg/kg free GEO and 0 (contain of chitosan), 100 and 200 mg/kg nanoencapsulated GEO) with a 2 × 3 factorial arrangement based on completely randomized design. Garlic essential oil encapsulation with chitosan significantly enhanced antibacterial and antioxidant parameters. At 100 mg/kg nanoencapsulated GEO had significant (P < 0.01) advantages in improving BW gain (BWG) (22-42 and 0-42) and feed conversion ratio (FCR) (0-42). Maximum feed intake (FI) was also associated with the control group (P < 0.05). Broilers fed on 100 mg/kg of nanoencapsulated GEO showed higher villi length and width relative to other treatments and villi length to crypt depth ratio as well (P < 0.01). The nanoencapsulation process of GEO (P < 0.01) affected the Lactobacilli population in the digesta of ileo-caecum and mucin2 gene expression. In broiler chickens, the tested EO, especially nanoencapsulated type, enhanced more evaluated parameters. Because of its ideal properties, nanoencasulating with chitosan may also be an effective and inexpensive way to protect bioactive compounds and improve GEO effects in broiler chickens.
Collapse
|
25
|
Irawan A, Hidayat C, Jayanegara A, Ratriyanto A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis. Anim Biosci 2020; 34:1499-1513. [PMID: 33332937 PMCID: PMC8495342 DOI: 10.5713/ab.20.0668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the effect of dietary essential oils (EOs) on productive performance, nutrient digestibility, and serum metabolite profiles of broiler chickens and to compare their effectiveness as growth-promoting additives against antibiotics. METHODS Peer-reviewed articles were retrieved from Web of Science, Science Direct, PubMed, and Google scholar and selected based on pre-determined criteria. A total of 41 articles containing 55 experiments with 163 treatment units were eligible for analyses. Data were subjected to a meta-analysis based on mixed model methodology considering the doses of EOs as fixed effects and the different studies as random effects. RESULTS Results showed a linear increase (p<0.001) on body weight gain (BWG) where Antibiotics (FCR) and average daily feed intake decreased (p<0.001) linearly with an increasing dose of EOs. Positive effects were observed on the increased (p<0.01) digestibility of dry matter, crude protein, ether extract, and cecal Lactobacillus while Escherichia coli (E. coli) population in the cecum decreased (p<0.001) linearly. There was a quadratic effect on the weight of gizzard (p<0.01), spleen (p<0.05), bursa of fabricius (p<0.001), and liver (p< 0.10) while carcass, abdominal fat, and pancreas increased (p<0.01) linearly. The dose of EOs linearly increased high density lipoprotein, glucose, protein, and globulin concentrations (p<0.01). In comparison to control and antibiotics, all type of EOs significantly reduced (p<0.001) FCR and tended to increase (p<0.1) BWG and final body weight. Cinnamaldehyde-compound was the only EOs type showing a tendency to increase (p<0.1) carcass weight, albumin, and protein of serum metabolites while this EOs together with EOs-Blend 1 decreased (p<0.01) E. coli population. Low density lipoprotein concentration decreased (p<0.05) with antibiotics and carvacrol-based compound when compared to the control group. CONCLUSION This evidence confirms that EOs are suitable to be used as growth promoters and their economical benefit appears to be promising.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational Program in Animal Husbandry, Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia.,Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Cecep Hidayat
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Indonesian Research Institute for Animal Production, Ciawi Bogor 16720, Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Adi Ratriyanto
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| |
Collapse
|
26
|
Amiri N, Afsharmanesh M, Salarmoini M, Meimandipour A, Hosseini S, Ebrahimnejad H. Effects of nanoencapsulated cumin essential oil as an alternative to the antibiotic growth promoter in broiler diets. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|
28
|
Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Ahmadian A, Seidavi A, Phillips CJC. Growth, Carcass Composition, Haematology and Immunity of Broilers Supplemented with Sumac Berries ( Rhus coriaria L.) and Thyme ( Thymus vulgaris). Animals (Basel) 2020; 10:E513. [PMID: 32204417 PMCID: PMC7142820 DOI: 10.3390/ani10030513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Alternatives to antibiotics as growth promoters for broilers could reduce bacterial resistance to antibiotics, while at the same time maintaining growth and improving carcass composition. We investigated the benefits of adding the medicinal plants sumac and thyme at 1, 2 or 3% of the diet for male Ross broiler chicks, with four replicates of ten birds in each treatment group and a Control. Feed intake was reduced for chickens fed the sumac supplements, and, at the two higher doses, defeathered body weight was also reduced. Abdominal fat was reduced by 41% in chickens fed thyme and 62% in those fed sumac. This reflected reduced low density lipoproteins in their blood, and in higher dose thyme treatments and all sumac treatments, reduced high density lipoproteins in blood. Apart from this, there was little effect of the supplements on carcass composition. Blood glucose was reduced in the supplemented chickens. There was evidence of higher antibody titers to Newcastle disease and influenza in supplemented chickens. It is concluded that both thyme and sumac offer potential to reduce fat content and improve disease responsiveness in broiler production systems.
Collapse
Affiliation(s)
- Amir Ahmadian
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 41335-3516, Iran;
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 41335-3516, Iran;
| | - Clive J. C. Phillips
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton 4343, Queensland, Australia;
| |
Collapse
|
30
|
Tavares TD, Antunes JC, Ferreira F, Felgueiras HP. Biofunctionalization of Natural Fiber-Reinforced Biocomposites for Biomedical Applications. Biomolecules 2020; 10:E148. [PMID: 31963279 PMCID: PMC7023167 DOI: 10.3390/biom10010148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
In the last ten years, environmental consciousness has increased worldwide, leading to the development of eco-friendly materials to replace synthetic ones. Natural fibers are extracted from renewable resources at low cost. Their combination with synthetic polymers as reinforcement materials has been an important step forward in that direction. The sustainability and excellent physical and biological (e.g., biocompatibility, antimicrobial activity) properties of these biocomposites have extended their application to the biomedical field. This paper offers a detailed overview of the extraction and separation processes applied to natural fibers and their posterior chemical and physical modifications for biocomposite fabrication. Because of the requirements for biomedical device production, specialized biomolecules are currently being incorporated onto these biocomposites. From antibiotics to peptides and plant extracts, to name a few, this review explores their impact on the final biocomposite product, in light of their individual or combined effect, and analyzes the most recurrent strategies for biomolecule immobilization.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (T.D.T.); (J.C.A.); (F.F.)
| |
Collapse
|