1
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
2
|
Udovin LD, Kobiec T, Herrera MI, Toro-Urrego N, Kusnier CF, Kölliker-Frers RA, Ramos-Hryb AB, Luaces JP, Otero-Losada M, Capani F. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front Neurosci 2020; 13:1345. [PMID: 31969800 PMCID: PMC6960201 DOI: 10.3389/fnins.2019.01345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023] Open
Abstract
Perinatal asphyxia (PA) is a clinical condition brought by a birth temporary oxygen deprivation associated with long-term damage in the corpus striatum, one of the most compromised brain areas. Palmitoylethanolamide (PEA) is a neuromodulator well known for its protective effects in brain injury models, including PA, albeit not deeply studied regarding its particular effects in the corpus striatum following PA. Using Bjelke et al. (1991) PA model, full-term pregnant rats were decapitated, and uterus horns were placed in a water bath at 37°C for 19 min. One hour later, the pups were injected with PEA 10 mg/kg s.c., and placed with surrogate mothers. After 30 days, the animals were perfused, and coronal striatal sections were collected to analyze protein-level expression by Western blot and the reactive area by immunohistochemistry for neuron markers: phosphorylated neurofilament-heavy/medium-chain (pNF-H/M) and microtubule-associated protein-2 (MAP-2), and the astrocyte marker, glial fibrillary acidic protein (GFAP). Results indicated that PA produced neuronal damage and morphological changes. Asphyctic rats showed a decrease in pNF-H/M and MAP-2 reactive areas, GFAP+ cells number, and MAP-2 as well as pNF-H/M protein expression in the striatum. Treatment with PEA largely restored the number of GFAP+ cells. Most important, it ameliorated the decrease in pNF-H/M and MAP-2 reactive areas in asphyctic rats. Noticeably, PEA treatment reversed the decrease in MAP-2 protein expression and largely prevented PA-induced decrease in pNF-H/M protein expression. PA did not affect the GFAP protein level. Treatment with PEA attenuated striatal damage induced by PA, suggesting its therapeutic potential for the prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas D Udovin
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Tamara Kobiec
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María I Herrera
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Carlos F Kusnier
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Rodolfo A Kölliker-Frers
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Ana B Ramos-Hryb
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Juan P Luaces
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Francisco Capani
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Departamento de Biología, Universidad Argentina John F. Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
3
|
Lespay-Rebolledo C, Perez-Lobos R, Tapia-Bustos A, Vio V, Morales P, Herrera-Marschitz M. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days. Neurotox Res 2018; 34:660-676. [PMID: 29959728 DOI: 10.1007/s12640-018-9928-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022]
Abstract
The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA implies a long-term metabolic insult, triggered by the length of hypoxia, the resuscitation/reoxigenation manoevres, but also by the developmental stage of the affected brain regions, and the integrity of cardiovascular and respiratory physiological functions, which are fundamental for warrantying a proper development.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Ronald Perez-Lobos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Andrea Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Valentina Vio
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
- Department Neuroscience, Medical Faculty, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile.
| |
Collapse
|
4
|
Sarangarajan R, Meera S, Rukkumani R, Sankar P, Anuradha G. Antioxidants: Friend or foe? ASIAN PAC J TROP MED 2017; 10:1111-1116. [PMID: 29268965 DOI: 10.1016/j.apjtm.2017.10.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/24/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species are the intermediates that are formed during the normal metabolic process which are effectively neutralized by the antioxidant system of the body. Any imbalance in this neutralization process causes oxidative stress which has been implicated as one of the cause in diseases such as Alzheimer's disease, cardiovascular disorders, cancer etc. Research has enabled the use of antioxidants as therapeutic agents in the treatment of various diseases. Literature also puts forth the negative effects of using antioxidants in the treatment of diseases. This review is a compilation of both the beneficial and detrimental effects of use of antioxidants in the treatment of diseases such as cancer, cardiovascular diseases, diabetes and oral diseases.
Collapse
Affiliation(s)
- R Sarangarajan
- Department of Oral Pathology, Madha Dental College, Kundrathur, Chennai, India.
| | - S Meera
- Private Dental Practitioner, Sree Sai Dental Care, Chennai, India
| | - R Rukkumani
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - P Sankar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - G Anuradha
- Private Dental Practitioner, Sai Raghav Dental Clinic, Chennai, India
| |
Collapse
|
5
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
6
|
Logica T, Riviere S, Holubiec MI, Castilla R, Barreto GE, Capani F. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons. Front Aging Neurosci 2016; 8:116. [PMID: 27445788 PMCID: PMC4921470 DOI: 10.3389/fnagi.2016.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.
Collapse
Affiliation(s)
- Tamara Logica
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Stephanie Riviere
- Laboratorio de Biología Molecular, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Mariana I Holubiec
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Rocío Castilla
- Laboratorio de Biología Molecular, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá Bogotá, Colombia
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABABuenos Aires, Argentina; Departamento de Biología, Universidad Argentina JF KennedyBuenos Aires, Argentina; Investigador Asociado, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
7
|
Wisnowski JL, Wu TW, Reitman AJ, McLean C, Friedlich P, Vanderbilt D, Ho E, Nelson MD, Panigrahy A, Blüml S. The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy: An in vivo 1H-MR spectroscopy study. J Cereb Blood Flow Metab 2016; 36:1075-86. [PMID: 26661180 PMCID: PMC4908621 DOI: 10.1177/0271678x15607881] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 10/22/2022]
Abstract
Therapeutic hypothermia has emerged as the first empirically supported therapy for neuroprotection in neonates with hypoxic-ischemic encephalopathy (HIE). We used magnetic resonance spectroscopy ((1)H-MRS) to characterize the effects of hypothermia on energy metabolites, neurotransmitters, and antioxidants. Thirty-one neonates with HIE were studied during hypothermia and after rewarming. Metabolite concentrations (mmol/kg) were determined from the thalamus, basal ganglia, cortical grey matter, and cerebral white matter. In the thalamus, phosphocreatine concentrations were increased by 20% during hypothermia when compared to after rewarming (3.49 ± 0.88 vs. 2.90 ± 0.65, p < 0.001) while free creatine concentrations were reduced to a similar degree (3.00 ± 0.50 vs. 3.74 ± 0.85, p < 0.001). Glutamate (5.33 ± 0.82 vs. 6.32 ± 1.12, p < 0.001), aspartate (3.39 ± 0.66 vs. 3.87 ± 1.19, p < 0.05), and GABA (0.92 ± 0.36 vs. 1.19 ± 0.41, p < 0.05) were also reduced, while taurine (1.39 ± 0.52 vs. 0.79 ± 0.61, p < 0.001) and glutathione (2.23 ± 0.41 vs. 2.09 ± 0.33, p < 0.05) were increased. Similar patterns were observed in other brain regions. These findings support that hypothermia improves energy homeostasis by decreasing the availability of excitatory neurotransmitters, and thereby, cellular energy demand.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA Rudi Schulte Research Institute, Santa Barbara, CA, USA
| | - Tai-Wei Wu
- Department of Pediatrics, Division of Neonatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan Department of Pediatrics, Division of Neonatology, Chang Gung University, Taoyuan, Taiwan
| | - Aaron J Reitman
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Neonatal Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire McLean
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Neonatal Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philippe Friedlich
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Neonatal Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas Vanderbilt
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Developmental-Behavioral Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Eugenia Ho
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Child Neurology, University of Southern California, Los Angeles, CA, USA
| | - Marvin D Nelson
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Stefan Blüml
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA Rudi Schulte Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Blanco E, Galeano P, Holubiec MI, Romero JI, Logica T, Rivera P, Pavón FJ, Suarez J, Capani F, Rodríguez de Fonseca F. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats. Front Neuroanat 2015; 9:141. [PMID: 26578900 PMCID: PMC4630311 DOI: 10.3389/fnana.2015.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 01/25/2023] Open
Abstract
Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.
Collapse
Affiliation(s)
- Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain ; Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida Lleida, Spain
| | - Pablo Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación Instituto Leloir Buenos Aires, Argentina ; Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Mariana I Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Juan I Romero
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Tamara Logica
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| |
Collapse
|
9
|
Galeano P, Blanco E, Logica Tornatore TMA, Romero JI, Holubiec MI, Rodríguez de Fonseca F, Capani F. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia. Front Behav Neurosci 2015; 8:406. [PMID: 25601829 PMCID: PMC4283640 DOI: 10.3389/fnbeh.2014.00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023] Open
Abstract
Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.
Collapse
Affiliation(s)
- Pablo Galeano
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina ; Instituto de Investigaciones Bioquímicas de Buenos Aires (CONICET), Fundación Instituto Leloir Buenos Aires, Argentina
| | - Eduardo Blanco
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina ; Laboratorio de Investigación, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga - Hospital Regional Universitario de Málaga (UGC Salud Mental) Málaga, Spain ; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga Málaga, Spain
| | - Tamara M A Logica Tornatore
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Juan I Romero
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Mariana I Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Investigación, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga - Hospital Regional Universitario de Málaga (UGC Salud Mental) Málaga, Spain
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| |
Collapse
|
10
|
Muñiz J, Romero J, Holubiec M, Barreto G, González J, Saint-Martin M, Blanco E, Carlos Cavicchia J, Castilla R, Capani F. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia. Brain Res 2014; 1563:81-90. [DOI: 10.1016/j.brainres.2014.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
11
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
12
|
Li J, Qu Y, Chen D, Zhang L, Zhao F, Luo L, Pan L, Hua J, Mu D. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation. Neuroscience 2013; 252:346-58. [PMID: 23968592 DOI: 10.1016/j.neuroscience.2013.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 01/14/2023]
Abstract
Telomerase reverse transcriptase (TERT) is reported to protect neurons from apoptosis induced by various stresses including hypoxia-ischemia (HI). However, the mechanisms by which TERT exerts its anti-apoptotic role in neurons with HI injury remain unclear. In this study, we examined the protective role and explored the possible mechanisms of TERT in neurons with HI injury in vitro. Primary cultured neurons were exposed to oxygen and glucose deprivation (OGD) for 3h followed by reperfusion to mimic HI injury in vivo. Plasmids containing TERT antisense, sense nucleotides, or mock were transduced into neurons at 48h before OGD. Expression and distribution of TERT were measured by immunofluorescence labeling and western blot. The expression of cleaved caspase 3 (CC3), Bcl-2 and Bax were detected by western blot. Neuronal apoptosis was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The mitochondrial reactive oxygen species (ROS) were measured by MitoSOX Red staining. Fluorescent probe JC-1 was used to measure the mitochondrial membrane potential (ΔΨm). We found that TERT expression increased at 8h and peaked at 24h in neurons after OGD. CC3 expression and neuronal apoptosis were induced and peaked at 24h after OGD. TERT inhibition significantly increased CC3 expression and neuronal apoptosis after OGD treatment. Additionally, TERT inhibition decreased the expression ratio of Bcl-2/Bax, and enhanced ROS production and ΔΨm dissipation after OGD. These data suggest that TERT plays a neuroprotective role via anti-apoptosis in neurons after OGD. The underlying mechanisms may be associated with regulating Bcl-2/Bax expression ratio, attenuating ROS generation, and increasing mitochondrial membrane potential.
Collapse
Affiliation(s)
- J Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Galeano P, Romero JI, Luque-Rojas MJ, Suárez J, Holubiec MI, Bisagno V, Santín LJ, De Fonseca FR, Capani F, Blanco E. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats. Synapse 2013; 67:553-67. [PMID: 23447367 DOI: 10.1002/syn.21660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction.
Collapse
Affiliation(s)
- Pablo Galeano
- Instituto de Investigaciones "Prof. Dr. Alberto C. Taquini"-ININCA, Facultad de Medicina, UBA-CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grimaldi M, Romer I, de Apodaca MTG, Iturbe L, Catania ID, González J, Kolliker-Fres R, Barreto G, Capani F. Early changes in the synapses of the neostriatum induced by perinatal asphyxia. Nutr Neurosci 2012; 15:103-10. [PMID: 22732353 DOI: 10.1179/1476830511y.0000000026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Perinatal asphyxia (PA) is a medical condition associated with a high short-term morbimortality and different long-term neurological diseases. In previous work we have observed at 6 months post-synaptic densities (PSDs) alterations compatible with neurodegeneration highly correlated with the increment in the ubiquitination. Although alterations in the synaptic organization and function have been related with neuronal death after hypoxia, little is known about the synaptic changes in young animals exposed to PA. The main aim of this work is to study the PSDs changes in striatum of 30-day-old rats subjected to PA. Using two-dimensional electron microscopic analyses of synapses staining with ethanolic phosphotungstic acid we observed an increment of PSD thickness in severe hypoxic rats. These data are consistent with the western blot analysis that showed an increment in ubiquitination levels in the synapses of severe hypoxic rat. We did observe any alterations neither in synaptic structure nor in ubiquitinization in mild asphyctic rats. These data suggest that hypoxia might cause early misfolding and aggregation of synaptic proteins in severe anoxic animas that could induce long-term neurodegeneration.
Collapse
Affiliation(s)
- M Grimaldi
- Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hippocampal dendritic spines modifications induced by perinatal asphyxia. Neural Plast 2012; 2012:873532. [PMID: 22645692 PMCID: PMC3356716 DOI: 10.1155/2012/873532] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023] Open
Abstract
Perinatal asphyxia (PA) affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS). In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD) in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.
Collapse
|
16
|
Saraceno G, Ayala M, Badorrey M, Holubiec M, Romero J, Galeano P, Barreto G, Giraldez-Alvárez L, Kölliker-fres R, Coirini H, Capani F. Effects of perinatal asphyxia on rat striatal cytoskeleton. Synapse 2011; 66:9-19. [DOI: 10.1002/syn.20978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
|
17
|
Galeano P, Calvo EB, Oliveira DM, Cuenya L, Kamenetzky GV, Mustaca AE, Barreto GE, Giraldez‐Alvarez LD, Milei J, Capani F. Long‐lasting effects of perinatal asphyxia on exploration, memory and incentive downshift. Int J Dev Neurosci 2011; 29:609-19. [DOI: 10.1016/j.ijdevneu.2011.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/25/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022] Open
Affiliation(s)
- Pablo Galeano
- Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA)Facultad de Medicina, UBA‐CONICETMarcelo T. de Alvear 2270C1122AAJBuenos AiresArgentina
| | - Eduardo Blanco Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de PsicologíaUniversidad de MálagaCampus de Teatinos s/n29071MálagaSpain
- Laboratorio de Medicina Regenerativa, Fundación IMABISHospital Carlos HayaAvenida Carlos Haya 8229010MálagaSpain
| | - Diêgo Madureira Oliveira
- Laboratório de Neuroquímica e Biologia CelularInstituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)Campus do Canela40110‐100SalvadorBahiaBrazil
| | - Lucas Cuenya
- Laboratorio de Psicología Experimental y Aplicada (PSEA)Instituto de Investigaciones Médicas (IDIM), UBA‐CONICETCombatientes de Malvinas 3150C1427AROBuenos AiresArgentina
| | - Giselle Vanesa Kamenetzky
- Laboratorio de Psicología Experimental y Aplicada (PSEA)Instituto de Investigaciones Médicas (IDIM), UBA‐CONICETCombatientes de Malvinas 3150C1427AROBuenos AiresArgentina
| | - Alba Elisabeth Mustaca
- Laboratorio de Psicología Experimental y Aplicada (PSEA)Instituto de Investigaciones Médicas (IDIM), UBA‐CONICETCombatientes de Malvinas 3150C1427AROBuenos AiresArgentina
| | - George Emilio Barreto
- Department of AnesthesiaStanford University School of MedicineStanford UniversityPalo Alto, StanfordCA94305‐5117USA
| | - Lisandro Diego Giraldez‐Alvarez
- Laboratório de Neuroquímica e Biologia CelularInstituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)Campus do Canela40110‐100SalvadorBahiaBrazil
| | - José Milei
- Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA)Facultad de Medicina, UBA‐CONICETMarcelo T. de Alvear 2270C1122AAJBuenos AiresArgentina
| | - Francisco Capani
- Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA)Facultad de Medicina, UBA‐CONICETMarcelo T. de Alvear 2270C1122AAJBuenos AiresArgentina
| |
Collapse
|
18
|
Changes in neostriatal and hippocampal synaptic densities in perinatal asphyctic male and female young rats: Role of hypothermia. Brain Res Bull 2011; 84:31-8. [DOI: 10.1016/j.brainresbull.2010.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
|
19
|
Aon-Bertolino ML, Romero JI, Galeano P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann EM, Lillig CH, Capani F. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta Gen Subj 2010; 1810:93-110. [PMID: 20620191 DOI: 10.1016/j.bbagen.2010.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellular response to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronal damage and glial reaction induced by a hypoxic-ischemic episode is highly related to glutamate excitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia-ischemia in the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death, however, no comprehensive study on the localization of the redox proteins in the rat CNS was available. METHODS The aim of this work was to study the distribution of the following proteins of the thioredoxin and glutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2, Txnip, Grx1, Grx2, Grx3, Grx5, and γ-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We have focused on areas most sensitive to a hypoxia-ischemic insult: Cerebellum, striatum, hippocampus, spinal cord, substantia nigra, cortex and retina. RESULTS AND CONCLUSIONS Previous studies implied that these redox proteins may be distributed in most cell types and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family. GENERAL SIGNIFICANCE We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia-ischemia insults and other disorders of the CNS. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- Maria Laura Aon-Bertolino
- Universidad de Buenos Aires Facultad de Medicina and Comisión Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Estradiol therapy in adulthood reverses glial and neuronal alterations caused by perinatal asphyxia. Exp Neurol 2010; 223:615-22. [PMID: 20206165 DOI: 10.1016/j.expneurol.2010.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/17/2010] [Accepted: 02/20/2010] [Indexed: 01/01/2023]
Abstract
The capacity of the ovarian hormone 17beta-estradiol to prevent neurodegeneration has been characterized in several animal models of brain and spinal cord pathology. However, the potential reparative activity of the hormone under chronic neurodegenerative conditions has received less attention. In this study we have assessed the effect of estradiol therapy in adulthood on chronic glial and neuronal alterations caused by perinatal asphyxia (PA) in rats. Four-month-old male Sprague-Dawley rats submitted to PA just after delivery, and their control littermates, were injected for 3 consecutive days with 17beta estradiol or vehicle. Animals subjected to PA and treated with vehicle showed an increased astrogliosis, focal swelling and fragmented appearance of MAP-2 immunoreactive dendrites, decreased MAP-2 immunoreactivity and decreased phosphorylation of high and medium molecular weight neurofilaments in the hippocampus, compared to control animals. Estradiol therapy reversed these alterations. These findings indicate that estradiol is able to reduce, in adult animals, chronic reactive astrogliosis and neuronal alterations caused by an early developmental neurodegenerative event, suggesting that the hormone might induce reparative actions in the Central Nervous System (CNS).
Collapse
|
21
|
Cebral E, Capani F, Selvín-Testa A, Funes MR, Coirini H, Loidl CF. NEOSTRIATAL CYTOSKELETON CHANGES FOLLOWING PERINATAL ASPHYXIA: EFFECT OF HYPOTHERMIA TREATMENT. Int J Neurosci 2009; 116:697-714. [PMID: 16753896 DOI: 10.1080/00207450600674970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long-term changes of different types of neurofilaments (NF) and glial fibrillar acid protein (GFAP) were studied in neostriatal rat subjected to perinatal asphyxia (PA) under normothermic and hypothermic (15 degrees C) conditions, using immunohistochemistry for light and electron microscopy. Neostriatal neurons of 6-month-old rats that were subjected to 19 and 20 min of PA, showed an increase of NF 200 kDa immunostaining mainly in the axon fascicles in comparison with the control and hypothermia groups. In contrast, no alterations were seen with NF68 and NF160 neurofilament antibodies. Furthermore, the same PA groups showed astroglial cells with enhanced GFAP immunoreactivity, evidencing a typical astroglial reaction with a clear hypertrophy of these cells. A quantitative image analysis confirmed these observations. Hypothermic treated animals did show neither astroglial nor neuronal cytoskeletal changes in comparison to the control group. These findings showed that PA produces chronic cytoskeletal alterations in the neostriatum cells that can be prevented by hypothermia.
Collapse
Affiliation(s)
- Elisa Cebral
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Protein ubiquitination in postsynaptic densities after hypoxia in rat neostriatum is blocked by hypothermia. Exp Neurol 2009; 219:404-13. [PMID: 19555686 DOI: 10.1016/j.expneurol.2009.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/24/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
Abstract
Synaptic dysfunction has been associated with neuronal cell death following hypoxia. The lack of knowledge on the mechanisms underlying this dysfunction prompted us to investigate the morphological changes in the postsynaptic densities (PSDs) induced by hypoxia. The results presented here demonstrate that PSDs of the rat neostriatum are highly modified and ubiquitinated 6 months after induction of hypoxia in a model of perinatal asphyxia. Using both two dimensional (2D) and three dimensional (3D) electron microscopic analyses of synapses stained with ethanolic phosphotungstic acid (E-PTA), we observed an increment of PSD thickness dependent on the duration and severity of the hypoxic insult. The PSDs showed clear signs of damage and intense staining for ubiquitin. These morphological and molecular changes were effectively blocked by hypothermia treatment, one of the most effective strategies for hypoxia-induced brain injury available today. Our data suggest that synaptic dysfunction following hypoxia may be caused by long-term misfolding and aggregation of proteins in the PSD.
Collapse
|
23
|
Dorfman VB, Rey-Funes M, Bayona JC, López EM, Coirini H, Loidl CF. Nitric oxide system alteration at spinal cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment. J Neurosci Res 2009; 87:1260-9. [PMID: 19006088 DOI: 10.1002/jnr.21922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal asphyxia (PA) is able to induce sequelae such as spinal spasticity. Previously, we demonstrated hypothermia as a neuroprotective treatment against cell degeneration triggered by increased nitric oxide (NO) release. Because spinal motoneurons are implicated in spasticity, our aim was to analyze the involvement of NO system at cervical and lumbar motoneurons after PA as well as the application of hypothermia as treatment. PA was performed by immersion of both uterine horns containing full-term fetuses in a water bath at 37 degrees C for 19 or 20 min (PA19 or PA20) or at 15 degrees C for 20 min (hypothermia during PA-HYP). Some randomly chosen PA20 rats were immediately exposed for 5 min over grain ice (hypothermia after PA-HPA). Full-term vaginally delivered rats were used as control (CTL). We analyzed NO synthase (NOS) activity, expression and localization by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactivity, inducible and neuronal NOS (iNOS and nNOS) by immunohistochemistry, and protein nitrotyrosilation state. We observed an increased NOS activity at cervical spinal cord of 60-day-old PA20 rats, with increased NADPH-d, iNOS, and nitrotyrosine expression in cervical motoneurons and increased NADPH-d in neurons of layer X. Lumbar neurons were not altered. Hypothermia was able to maintain CTL values. Also, we observed decreased forelimb motor potency in the PA20 group, which could be attributed to changes at cervical motoneurons. This study shows that PA can induce spasticity produced by alterations in the NO system of the cervical spinal cord. Moreover, this situation can be prevented by perinatal hypothermia.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Laboratorio de Neuropatología Experimental-Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|