1
|
Vathagavorakul R, Gonjo T, Homma M. The influence of sound waves and musical experiences on movement coordination with beats. Hum Mov Sci 2024; 93:103170. [PMID: 38043482 DOI: 10.1016/j.humov.2023.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Synchronizing movement with external stimuli is important in musicians and athletes. This study investigated the effects of sound characteristics, including sound with harmonics (square wave) and without harmonics (sine wave) and levels of expertise in sports and music on rhythmic ability. Thirty-two university students participated in the study. The participants were divided into sixteen music education (ME) and sixteen physical education (PE) majors. They were asked to perform finger tapping tasks with 1,2 and 3 Hz beat rates, tapping in time with the sine and square wave beat produced by a metronome. The relative phase angle of finger tapping and the onset time of metronome sound were calculated using circular statistics. The results showed that type of wave and music experience affected the rhythmic ability of participants. Our study highlights the importance of types of waves on rhythmic ability, especially for participants with no background in music. The square wave is recommended for athletes to learn to synchronize their movement with beats.
Collapse
Affiliation(s)
- Ravisara Vathagavorakul
- Division of Health and Physical Education, Department of Curriculum and Instruction, Faculty of Education, Chulalongkorn University, Bangkok, Thailand.
| | - Tomohiro Gonjo
- School of Energy, Geoscience, Infrastructure and Society, Institute for Life and Earth Sciences, Heriot-Watt University, Edinburgh, UK
| | - Miwako Homma
- Institute of Health and Sport Sciences, University of Tsukuba, Japan
| |
Collapse
|
2
|
Nakagawa K, Kawashima S, Fukuda K, Mizuguchi N, Muraoka T, Kanosue K. Constraints on hand-foot coordination associated with phase dependent modulation of corticospinal excitability during motor imagery. Front Hum Neurosci 2023; 17:1133279. [PMID: 37457499 PMCID: PMC10348420 DOI: 10.3389/fnhum.2023.1133279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Interlimb coordination involving cyclical movements of hand and foot in the sagittal plane is more difficult when the limbs move in opposite directions compared with the same direction (directional constraint). Here we first investigated whether the directional constraint on hand-foot coordination exists in motor imagery (imagined motion). Participants performed 10 cyclic coordinated movements of right wrist flexion-extension and right ankle dorsiflexion-plantarflexion as quickly and precisely as possible, in the following three conditions; (1) actual movements of the two limbs, (2) imaginary movements of the two limbs, and (3) actual movement of one limb combined with imaginary movement of the other limb. Each condition was performed under two directions; the same and the opposite direction. Task execution duration was measured as the time between the first and second press of a button by the participants. The opposite directional movement took a significantly longer time than did the same directional movement, irrespective of the condition type. This suggests that directional constraint of hand-foot coordination occurs even in motor imagery without actual motor commands or kinesthetic signals. We secondarily examined whether the corticospinal excitability of wrist muscles is modulated in synchronization with an imaginary foot movement to estimate the neural basis of directional constraint on imaginary hand-foot coordination. The corticospinal excitability of the forearm extensor in resting position increased during dorsiflexion and decreased during plantarflexion similarly in both actual and imaginary foot movements. This corticospinal modulation depending on imaginary movement phase likely produces the directional constraint on the imaginary hand-foot coordination.
Collapse
Affiliation(s)
- Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Saeko Kawashima
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Kazuki Fukuda
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | | | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
3
|
Umesawa Y, Matsushima K, Fukatsu R, Terao Y, Ide M. Hand-foot coordination is significantly influenced by motion direction in individuals with autism spectrum disorder. Autism Res 2023; 16:40-51. [PMID: 36317815 DOI: 10.1002/aur.2837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/10/2022] [Indexed: 01/13/2023]
Abstract
Generally, when individuals attempt to move two limbs rhythmically in the opposite direction (e.g., flex the left hand and extend the left foot along the sagittal plane), the movements tend to be instead performed in the same direction. This phenomenon, known as directional constraint, can be harnessed to examine the difficulties in movement coordination exhibited by most individuals with autism spectrum disorder (ASD). While such difficulties have already been investigated through standardized clinical assessments, they have not been examined through kinematic methods. Thus, we employed a clinical assessment scale in an experimentally controlled environment to investigate whether stronger directional constraint during the rhythmic movement of two limbs is more pronounced and associated with decreased movement coordination in individuals with ASD. ASD and typically developing (TD) participants were asked to rhythmically move two limbs either in the same or opposite directions. In addition, the coordination skills of participants were assessed using the Bruininks-Oseretsky Test of Motor Proficiency Second Edition (BOT-2). Subjects with ASD showed significantly stronger directional constraint than TD participants during the contralateral and ipsilateral movement of the hand and foot. According to the pooled data from both groups, participants who showed stronger directional constraint during these two movement conditions also exhibited poorer coordinated movement skills in the BOT-2. These results suggest that people with ASD may have difficulties in inhibiting the neural signals that synchronize the direction of inter-limb movements, thus resulting in coordination disabilities. LAY SUMMARY: Individuals with autism spectrum disorder (ASD) often exhibit difficulties in coordinated movements. We asked those with ASD and typically developing (TD) participants to move two limbs (e.g., left hand and left foot) either in the same or the opposite direction. Results demonstrated that participants with ASD had more difficulties in counteracting the tendency of their hand and foot to synchronously move in the same direction. Our findings suggested that difficulties to suppress synchronized movements of the hand and foot result in coordination disabilities.
Collapse
Affiliation(s)
- Yumi Umesawa
- Department of Medical Physiology, Faculty of Medicine, Kyorin University, Tokyo, Japan.,Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Kanae Matsushima
- Faculty of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Reiko Fukatsu
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Masakazu Ide
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
4
|
Restoration of bilateral motor coordination from preserved agonist-antagonist coupling in amputation musculature. J Neuroeng Rehabil 2021; 18:38. [PMID: 33596960 PMCID: PMC7891024 DOI: 10.1186/s12984-021-00829-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background Neuroprosthetic devices controlled by persons with standard limb amputation often lack the dexterity of the physiological limb due to limitations of both the user’s ability to output accurate control signals and the control system’s ability to formulate dynamic trajectories from those signals. To restore full limb functionality to persons with amputation, it is necessary to first deduce and quantify the motor performance of the missing limbs, then meet these performance requirements through direct, volitional control of neuroprosthetic devices. Methods We develop a neuromuscular modeling and optimization paradigm for the agonist-antagonist myoneural interface, a novel tissue architecture and neural interface for the control of myoelectric prostheses, that enables it to generate virtual joint trajectories coordinated with an intact biological joint at full physiologically-relevant movement bandwidth. In this investigation, a baseline of performance is first established in a population of non-amputee control subjects (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n = 8$$\end{document}n=8). Then, a neuromuscular modeling and optimization technique is advanced that allows unilateral AMI amputation subjects (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n = 5$$\end{document}n=5) and standard amputation subjects (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n = 4$$\end{document}n=4) to generate virtual subtalar prosthetic joint kinematics using measured surface electromyography (sEMG) signals generated by musculature within the affected leg residuum. Results Using their optimized neuromuscular subtalar models under blindfolded conditions with only proprioceptive feedback, AMI amputation subjects demonstrate bilateral subtalar coordination accuracy not significantly different from that of the non-amputee control group (Kolmogorov-Smirnov test, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P \ge 0.052$$\end{document}P≥0.052) while standard amputation subjects demonstrate significantly poorer performance (Kolmogorov-Smirnov test, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P < 0.001$$\end{document}P<0.001). Conclusions These results suggest that the absence of an intact biological joint does not necessarily remove the ability to produce neurophysical signals with sufficient information to reconstruct physiological movements. Further, the seamless manner in which virtual and intact biological joints are shown to coordinate reinforces the theory that desired movement trajectories are mentally formulated in an abstract task space which does not depend on physical limb configurations. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00829-z.
Collapse
|
5
|
Stability of bimanual finger tapping coordination is constrained by salient phases. Neurosci Res 2020; 163:1-9. [PMID: 32088328 DOI: 10.1016/j.neures.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022]
Abstract
In bimanual cyclical continuous movements, the relative timing of the most salient movement phase in each movement is a predominant constraint. This is the case for coordination when both movements have a single most salient phase (the relative-salience hypothesis). We tested whether the relative-salience hypothesis could explain results obtained for repetitive discrete movements, utilizing finger tapping. In experiment 1, participants performed unimanual alternate two-finger tapping with the metronome beat (i.e., one finger taps on the beat and the other finger taps off the beat). The stability of the tapping timing relative to the beat, which reflects the extent of salience, was higher in the index finger than the middle finger, and was lower in the ring finger than the middle finger. In experiment 2, participants performed four conditions of repetitive bimanual four-finger tapping (i.e., alternate two-finger tapping in each hand) without external pacing signals. Under all four conditions, a more stable pattern occurred when the timing of the more salient tapping in each hand was simultaneous rather than alternate, regardless of relative direction in the external space or movement coupling of the homologous fingers. The results indicated that bimanual four-finger tapping could be explained by the relative-salience hypothesis.
Collapse
|
6
|
Qi W, Nakajima T, Sakamoto M, Kato K, Kawakami Y, Kanosue K. Walking and finger tapping can be done with independent rhythms. Sci Rep 2019; 9:7620. [PMID: 31110194 PMCID: PMC6527701 DOI: 10.1038/s41598-019-43824-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/02/2019] [Indexed: 11/16/2022] Open
Abstract
Rhythmic movements occur in many aspects of daily life. Examples include clapping the hands and walking. The production of two independent rhythms with multiple limbs is considered to be extremely difficult. In the present study we evaluated whether two different, independent rhythms that involved finger tapping and walking could be produced. In Experiment I, twenty subjects that had no experience of musical instrument training performed rhythmic finger tapping with the right index finger and one of four different lower limb movements; (1) self-paced walking, (2) given-paced walking, (3) alternative bilateral heel tapping from a sitting position, and (4) unilateral heel tapping with the leg ipsilateral to the tapping finger from a sitting position. The target intervals of finger tapping and heel strikes for walking step/heel tapping were set at 375 ms and 600 ms, respectively. The even distribution of relative phases between instantaneous finger tapping and heel strike was taken as the criteria of independency for the two rhythms. In the self-paced walking and given-paced walking tasks, 16 out of 20 subjects successfully performed finger tapping and walking with independent rhythms without any special practice. On the other hand, in the bipedal heels striking and unipedal heel striking tasks 19 subjects failed to perform the two movements independently, falling into interrelated rhythms with the ratio mostly being 2:1. In Experiment II, a similar independency of finger tapping and walking at a given pace was observed for heel strike intervals of 400, 600, and 800 ms, as well as at the constant 375 ms for finger tapping. These results suggest that finger tapping and walking are controlled by separate neural control mechanisms, presumably with a supra-spinal locus for finger tapping, and a spinal location for walking.
Collapse
Affiliation(s)
- Weihuang Qi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Masanori Sakamoto
- Faculty of Education, Department of Physical Education, Kumamoto University, Kumamoto, Japan
| | - Kouki Kato
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | |
Collapse
|
7
|
Zheng Y, Muraoka T, Nakagawa K, Kato K, Kanosue K. Effect of salient points in movements on the constraints in bimanual coordination. Exp Brain Res 2018; 236:1461-1470. [DOI: 10.1007/s00221-018-5236-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
|
8
|
Kato K, Kanosue K. Motor imagery of voluntary muscle relaxation of the foot induces a temporal reduction of corticospinal excitability in the hand. Neurosci Lett 2018; 668:67-72. [PMID: 29305917 DOI: 10.1016/j.neulet.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022]
Abstract
The object of this study was to clarify how the motor imagery of foot muscle relaxation influences corticospinal excitability for the ipsilateral hand. Twelve participants volitionally relaxed their right foot from a dorsiflexed position (actual relaxation), or imaged the same movement (imagery relaxation) in response to an auditory cue. Transcranial magnetic stimulation (TMS) was delivered to the hand area of the left primary motor cortex at different time intervals after an auditory cue. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased during both actual relaxation and imagery relaxation as compared with those of the resting control. A correlation of MEP amplitude between actual relaxation and imagery relaxation was observed. Our findings indicate that motor imagery of muscle relaxation of the foot induced a reduction of corticospinal excitability in the ipsilateral hand muscles. This effect is likely produced via the same mechanism that functions during actual muscle relaxation.
Collapse
Affiliation(s)
- Kouki Kato
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.
| | | |
Collapse
|
9
|
Kim SJ, Cho SR, Yoo GE. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing. Front Psychol 2017; 8:1569. [PMID: 29085309 PMCID: PMC5649211 DOI: 10.3389/fpsyg.2017.01569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/28/2017] [Indexed: 11/14/2022] Open
Abstract
Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of synchronization errors and performance of cognitive tasks involving executive control and cognitive flexibility when asked for bimanual coordination in response to external timing cues at adjusted tempi. Also, significant correlations with cognitive measures were more prevalent in variability of synchronization errors during alternative tapping compared to simultaneous tapping. The current study supports that bimanual tapping may be predictive of cognitive processing of older adults. Also, tempo and type of movement required for instrument playing both involve cognitive and motor loads at different levels, and such variables could be important factors for determining the complexity of the task and the involved task requirements for interventions using instrument playing.
Collapse
Affiliation(s)
- Soo Ji Kim
- Music Therapy Education, Graduate School of Education, Ewha Womans University, Seoul, South Korea.,Ewha Music Rehabilitation Center, Seoul, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Ga Eul Yoo
- Ewha Music Rehabilitation Center, Seoul, South Korea.,Department of Music Therapy, Graduate School, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
10
|
Corporaal SHA, Gooijers J, Chalavi S, Cheval B, Swinnen SP, Boisgontier MP. Neural predictors of motor control and impact of visuo-proprioceptive information in youth. Hum Brain Mapp 2017; 38:5628-5647. [PMID: 28782899 DOI: 10.1002/hbm.23754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023] Open
Abstract
For successful motor control, the central nervous system is required to combine information from the environment and the current body state, which is provided by vision and proprioception respectively. We investigated the relative contribution of visual and proprioceptive information to upper limb motor control and the extent to which structural brain measures predict this performance in youth (n = 40; age range 9-18 years). Participants performed a manual tracking task, adopting in-phase and anti-phase coordination modes. Results showed that, in contrast to older participants, younger participants performed the task with lower accuracy in general and poorer performance in anti-phase than in-phase modes. However, a proprioceptive advantage was found at all ages, that is, tracking accuracy was higher when proprioceptive information was available during both in- and anti-phase modes at all ages. The microstructural organization of interhemispheric connections between homologous dorsolateral prefrontal cortices, and the cortical thickness of the primary motor cortex were associated with sensory-specific accuracy of tracking performance. Overall, the findings suggest that manual tracking performance in youth does not only rely on brain regions involved in sensorimotor processing, but also on prefrontal regions involved in attention and working memory. Hum Brain Mapp 38:5628-5647, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharissa H A Corporaal
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Boris Cheval
- Department of General Internal Medicine, Rehabilitation and Geriatrics, University of Geneva, Geneva, Switzerland.,Swiss NCCR "LIVES - Overcoming Vulnerability: Life Course Perspectives", University of Geneva, Geneva, Switzerland
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Matthieu P Boisgontier
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Baldissera FG, Tesio L. APAs Constraints to Voluntary Movements: The Case for Limb Movements Coupling. Front Hum Neurosci 2017; 11:152. [PMID: 28408875 PMCID: PMC5374888 DOI: 10.3389/fnhum.2017.00152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/14/2017] [Indexed: 01/20/2023] Open
Abstract
When rhythmically moving two limbs in either the same or in opposite directions, one coupling mode meets constraints that are absent in the other mode. Isodirectional (ISO) flexion-extensions of the ipsilateral hand and foot can be easily performed with either the hand prone or supine. Instead, antidirectional (ANTI) movements require attentive effort and irresistibly tend to reverse into ISO when frequency increases. Experimental evidence indicates that the direction dependent easy-difficult dichotomy is caused by interference of the anticipatory postural commands associated to movements of one limb with voluntary commands to the other limb. Excitability of the resting wrist muscles is subliminally modulated at the period of ipsilateral foot oscillations, being phase-opposite in the antagonists and distributed so as to facilitate ISO and obstacle ANTI coupling of the hand (either prone or supine) with the foot. Modulation is driven by cortical signals dispatched to the forearm simultaneously with the voluntary commands moving the foot. If right foot oscillations are performed when standing on the left foot with the right hand touching a fixed support, the subliminal excitability modulation is replaced by overt contractions of forearm muscles conforming the APAs features. This suggests that during hand-foot ANTI coupling the voluntary commands to forearm muscles are contrasted by APAs commands of opposite sign linked to foot oscillations. Correlation between the easy-difficult dichotomy and the APAs distribution is also found in coupled adduction-abduction of the arms or hands in the transverse plane and in coupled flexion-extension of the arms in the parasagittal plane. In all these movements, APAs commands linked to the movement of each limb reach the motor pathways to the contralateral muscles homologous to the prime movers and can interfere during coupling with their voluntary activation. APAs are also generated in postural muscles of trunk and lower limbs and size-increase when the movement frequency is incremented. The related increase in postural effort apparently contributes in destabilizing the difficult coupling mode. Motor learning may rely upon more effective APAs. APAs and focal contraction are entangled within the same voluntary action. Yet, neural diseases may selectively impair APAs, which represent a potential target for rehabilitation.
Collapse
Affiliation(s)
| | - Luigi Tesio
- Department of Biomedical Sciences for Health, Università degli Studi di MilanoMilan, Italy.,Department of Neuro-Rehabilitation Sciences, Istituto Auxologico Italiano-IRCCSMilan, Italy
| |
Collapse
|
12
|
Do accuracy requirements change bimanual and unimanual control processes similarly? Exp Brain Res 2017; 235:1467-1479. [DOI: 10.1007/s00221-017-4908-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|
13
|
Nakagawa K, Kawashima S, Mizuguchi N, Kanosue K. Difference in Activity in the Supplementary Motor Area Depending on Limb Combination of Hand-Foot Coordinated Movements. Front Hum Neurosci 2016; 10:499. [PMID: 27757079 PMCID: PMC5047893 DOI: 10.3389/fnhum.2016.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Periodic interlimb coordination shows lower performance when the ipsilateral hand and foot (e.g., right hand and right foot) are simultaneously moved than when the contralateral hand and foot (e.g., right hand and left foot) are simultaneously moved. The present study aimed to investigate how brain activity that is related to the dependence of hand–foot coordination on limb combination, using functional magnetic imaging. Twenty-one right-handed subjects performed periodic coordinated movements of the ipsilateral or contralateral hand and foot in the same or opposite direction in the sagittal plane. Kinematic data showed that performance was lower for the ipsilateral hand–foot coordination than for the contralateral one. A comparison of brain activity between the same and opposite directions showed that there was a greater activation of supplementary motor area for ipsilateral hand–foot coordination as compared to that seen during contralateral hand–foot coordination. We speculate that this might reflect a difference in the degree of inhibition of the neural circuit that disrupts opposite directional movements between ipsilateral and contralateral hand–foot coordinated movements.
Collapse
Affiliation(s)
- Kento Nakagawa
- Faculty of Sport Sciences, Waseda UniversityTokorozawa, Japan; Japan Society for the Promotion of ScienceTokyo, Japan; Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Saeko Kawashima
- Faculty of Sport Sciences, Waseda University Tokorozawa, Japan
| | | | | |
Collapse
|
14
|
Kato K, Muraoka T, Mizuguchi N, Nakagawa K, Nakata H, Kanosue K. Muscle Relaxation of the Foot Reduces Corticospinal Excitability of Hand Muscles and Enhances Intracortical Inhibition. Front Hum Neurosci 2016; 10:218. [PMID: 27242482 PMCID: PMC4861736 DOI: 10.3389/fnhum.2016.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/26/2016] [Indexed: 12/04/2022] Open
Abstract
The object of this study was to clarify the effects of foot muscle relaxation on activity in the primary motor cortex (M1) of the hand area. Subjects were asked to volitionally relax the right foot from sustained contraction of either the dorsiflexor (tibialis anterior; TA relaxation) or plantarflexor (soleus; SOL relaxation) in response to an auditory stimulus. Single- and paired-pulse transcranial magnetic stimulation (TMS) was delivered to the hand area of the left M1 at different time intervals before and after the onset of TA or SOL relaxation. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased after TA and SOL relaxation onset, respectively, as compared with those of the resting control. Furthermore, short-interval intracortical inhibition (SICI) of ECR evaluated with paired-pulse TMS temporarily increased after TA relaxation onset. Our findings indicate that muscle relaxation of the dorsiflexor reduced corticospinal excitability of the ipsilateral hand muscles. This is most likely caused by an increase in intracortical inhibition.
Collapse
Affiliation(s)
- Kouki Kato
- Faculty of Sport Sciences, Waseda UniversitySaitama, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | | | | | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda UniversitySaitama, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Hiroki Nakata
- Faculty of Human Life and Environment, Nara Women's University Nara, Japan
| | | |
Collapse
|
15
|
Muraoka T, Nakagawa K, Kato K, Qi W, Kanosue K. Interlimb coordination from a psychological perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo
- Japan Society for the Promotion of Science
| | - Kouki Kato
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| | - Weihuang Qi
- Graduate School of Sport Sciences, Waseda University
| | - Kazuyuki Kanosue
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| |
Collapse
|
16
|
Kato K, Watanabe T, Kanosue K. Effects of muscle relaxation on sustained contraction of ipsilateral remote muscle. Physiol Rep 2015; 3:3/11/e12620. [PMID: 26611464 PMCID: PMC4673648 DOI: 10.14814/phy2.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to clarify the temporal change of muscle activity during relaxation of ipsilateral remote muscles. While participants maintained a constant right wrist extensor isometric force, they dorsiflexed the ipsilateral ankle from resting position or relaxed from dorsiflexed position in response to an audio signal. The wrist extensor force magnitude increased in the 0–400 msec period after the onset of foot contraction compared to that of the resting condition (P < 0.05). On the other hand, wrist extensor force magnitude and electromyographic (EMG) activity decreased in the 0–400 msec period after the onset of ankle dorsiflexion compared to that of the resting condition (P < 0.05). Our findings suggest that foot muscle relaxation induces temporal reduction in hand muscle EMG activity and force magnitude.
Collapse
Affiliation(s)
- Kouki Kato
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Tasuku Watanabe
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | |
Collapse
|
17
|
Muraoka T, Sakamoto M, Mizuguchi N, Nakagawa K, Kanosue K. Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb. Front Hum Neurosci 2015; 9:607. [PMID: 26582985 PMCID: PMC4631817 DOI: 10.3389/fnhum.2015.00607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/22/2015] [Indexed: 11/13/2022] Open
Abstract
We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral digits, the right forearm was maintained in either the pronated or supinated position. During the movement, the motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS) was measured from either the resting right finger extensor and flexor, or toe extensor and flexor. For both finger and toe muscles, independent of forearm position, MEP amplitude of the flexor was greater during ipsilateral digit flexion as compared to extension, and MEP amplitude of the extensor was greater during ipsilateral digit extension as compared to flexion. An exception was that MEP amplitude of the toe flexor with the supinated forearm did not differ between during finger extension and flexion. These findings suggest that digit movement modulates corticospinal excitability of the digits of the ipsilateral limb such that the same action is preferred. Our results provide evidence for a better understanding of neural interactions between ipsilateral limbs, and may thus contribute to neurorehabilitation after a stroke or incomplete spinal cord injury.
Collapse
Affiliation(s)
| | - Masanori Sakamoto
- Faculty of Education, Department of Physical Education, Kumamoto University Kumamoto, Japan
| | | | - Kento Nakagawa
- Graduate School of Sport Sciences, Waseda University Saitama, Japan
| | | |
Collapse
|
18
|
Bank P, Peper C, Marinus J, van Hilten J, Beek P. Intended and unintended (sensory-)motor coupling between the affected and unaffected upper limb in complex regional pain syndrome. Eur J Pain 2015; 19:1021-34. [DOI: 10.1002/ejp.668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2014] [Indexed: 11/05/2022]
Affiliation(s)
- P.J.M. Bank
- Department of Neurology; Leiden University Medical Center; The Netherlands
- MOVE Research Institute; Faculty of Human Movement Sciences; VU University Amsterdam; The Netherlands
| | - C.E. Peper
- MOVE Research Institute; Faculty of Human Movement Sciences; VU University Amsterdam; The Netherlands
| | - J. Marinus
- Department of Neurology; Leiden University Medical Center; The Netherlands
| | - J.J. van Hilten
- Department of Neurology; Leiden University Medical Center; The Netherlands
| | - P.J. Beek
- MOVE Research Institute; Faculty of Human Movement Sciences; VU University Amsterdam; The Netherlands
| |
Collapse
|
19
|
Nakagawa K, Muraoka T, Kanosue K. Potential explanation of limb combination performance differences for two-limb coordination tasks. Physiol Rep 2015; 3:3/2/e12301. [PMID: 25713327 PMCID: PMC4393209 DOI: 10.14814/phy2.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rhythmic two-limb coordinated movements in the sagittal plane are variable and inaccurate when the movements are in the opposite direction as compared with those in the same direction (directional constraint). The magnitude of directional constraint depends on the particular limb combination. It is prominent in ipsilateral hand-foot coordination, but minimal in bimanual hand coordination. The reason for such differences remains unclear. In this study, we investigated the possible mechanisms underlying the production of the difference that depend on limb combination. Subjects performed two-limb rhythmic coordinated movements either in the same or in the opposite direction for three separate limb combinations (bilateral hands, contralateral hand and foot, and ipsilateral hand and foot). For each combination two different tasks were performed. In the first condition, subjects actively moved two limbs (active condition). Second, subjects actively moved one limb in coordination with a passively moved limb (passive condition). In the active condition, the directional constraint was dependent upon the limb combination, as reported in previous studies; the directional constraint was quite prominent in ipsilateral combinations, intermediate in contralateral combinations, and minimal for bilateral combination. However, differences in the directional constraint did not depend on limb combination for any combination in the passive conditions which apparently utilized closed-loop control. In other word, the difference depending on limb combination disappeared when control strategies become uniformly closed-loop. Thus, we speculate that the control strategy utilized depends on limb combination in the active condition. Additionally, different mechanisms other than closed-loop control also would have influence depending on the particular limb combination. This may result in differences in performance depending upon the limb combination.
Collapse
Affiliation(s)
- Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, TokorozawaSaitama, 359-1192, Japan Japan Society for the Promotion of Science, Chiyoda-Ku, Japan
| | - Tetsuro Muraoka
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, TokorozawaSaitama, 359-1192, Japan College of Economics, Nihon University, 1-3-2 Misaki-Cho, Chiyoda-KuTokyo, 101-8360, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, TokorozawaSaitama, 359-1192, Japan
| |
Collapse
|
20
|
Carter MJ, Maslovat D, Carlsen AN. Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. J Neurophysiol 2014; 113:780-5. [PMID: 25376785 DOI: 10.1152/jn.00662.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coordinated bimanual oscillatory movements often involve one of two intrinsically stable phasing relationships characterized as in-phase (symmetrical) or antiphase (asymmetrical). The in-phase mode is typically more stable than antiphase, and if movement frequency is increasing during antiphase movements, a spontaneous transition to the in-phase pattern occurs. There is converging neurophysiological evidence that the supplementary motor area (SMA) plays a critical role in the successful performance of these patterns, especially during antiphase movements. We investigated whether modulating the excitability of the SMA via offline transcranial direct current stimulation (tDCS) would delay the onset of anti-to-in-phase transitions. Participants completed two sessions (separated by ∼48 h), each consisting of a pre- and post-tDCS block in which they performed metronome-paced trials of rhythmic in- and antiphase bimanual supination-pronation movements as target oscillation frequency was systematically increased. Anodal or cathodal tDCS was applied over the SMA between the pre- and post-tDCS blocks in each session. Following anodal tDCS, participants performed the antiphase pattern with increased accuracy and stability and were able to maintain the coordination pattern at a higher oscillation frequency. Antiphase performance was unchanged following cathodal tDCS, and neither tDCS polarity affected the in-phase mode. Our findings suggest increased SMA excitability induced by anodal tDCS can improve antiphase performance and adds to the accumulating evidence of the pivotal role of the SMA in interlimb coordination.
Collapse
Affiliation(s)
- Michael J Carter
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Dana Maslovat
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada; and Department of Kinesiology, Langara College, Vancouver, British Columbia, Canada
| | - Anthony N Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
21
|
Pouydebat E, Borel A, Chotard H, Fragaszy D. Hand preference in fast-moving versus slow-moving actions in capuchin, Sapajus spp., and squirrel monkeys, Saimiri sciureus. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ko JH, Challis JH, Newell KM. Transition of COM-COP relative phase in a dynamic balance task. Hum Mov Sci 2014; 38:1-14. [PMID: 25240175 DOI: 10.1016/j.humov.2014.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate whether the coordination between center of mass (COM) and center of pressure (COP) could be a candidate collective variable of a dynamical system that captures the organization of the multi-segmental whole body postural control system. We examined the transition of the COM-COP coordination pattern in a moving platform balance control paradigm. 10 young healthy adults stood on a moving surface of support that within a trial was sinusoidally translated in the anterior-posterior direction continuously scaling up and then down its frequency within the range from 0Hz to 3.0Hz. The COP was derived from a single force platform mounted on the moving surface of support. 4 angular joint motions (ankle, knee, hip, and neck) were measured by a 3D motion analysis system that also allowed COM to be derived. The COM-COP coordination changed from in-phase/anti-phase to anti-phase/in-phase at a certain frequency of the support surface, showed hysteresis as a function of the direction of frequency change and higher variability at the transition region. Conversely, the transition of the ankle-hip coordination consistently occurred at 0.3Hz across subjects with little between or within subject variability as a function of transition frequency and before the COM-COP transition. The findings provide evidence that: (1) the transition of the COM-COP coordination pattern is that of a non-equilibrium phase transition with critical fluctuations and hysteresis; and (2) that COM-COP coupling is a candidate collective variable of the multi-segmental whole body postural control system acting on a redundant postural task.
Collapse
Affiliation(s)
- Ji-Hyun Ko
- Department of Kinesiology, The Pennsylvania State University, University Park, USA.
| | - John H Challis
- Department of Kinesiology, The Pennsylvania State University, University Park, USA
| | - Karl M Newell
- Department of Kinesiology, The Pennsylvania State University, University Park, USA
| |
Collapse
|
23
|
Nakagawa K, Muraoka T, Kanosue K. Factors that determine directional constraint in ipsilateral hand-foot coordinated movements. Physiol Rep 2013; 1:e00108. [PMID: 24303179 PMCID: PMC3841043 DOI: 10.1002/phy2.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/11/2022] Open
Abstract
In performing simultaneous rhythmic movements of the ipsilateral hand and foot, there are differences in the level of stability between same directional (stable) and opposite directional (unstable) movements. This is the directional constraint. In this study, we investigated three factors ("interaction in efferent process," "interaction of afferent signals," and "error correction") proposed to underlie for the directional constraint. We compared the performance of three tasks: (1) coordination of actively moved ipsilateral hand and foot, (2) active hand movement in coordination with passively moved foot, (3) active hand movement not coordinated with a passively moved foot. In each task, both same and opposite directional movements were executed. There was no difference between performance estimated with success rate for the first and second task. The directional constraint appeared in both tasks. Thus, the interaction in efferent processes, which was shown to be responsible for the directional constraint in bimanual coordination, was not involved with the directional constraint of ipsilateral hand-foot coordination. The directional constraint did not appear in the third task, which suggested that "interaction of afferent signals" also had no contribution. These results indicated that "error correction" must be the most critical of these factors for mediating the directional constraint in ipsilateral hand-foot coordinated movements.
Collapse
Affiliation(s)
- Kento Nakagawa
- Graduate School of Sport Sciences, Waseda University 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan ; Japan Society for the Promotion of Science Tokyo, Japan
| | | | | |
Collapse
|
24
|
The role of anticipatory postural adjustments in interlimb coordination of coupled arm movements in the parasagittal plane: III. difference in the energy cost of postural actions during cyclic flexion-extension arm movements, ISO- and ANTI-directionally coupled. Exp Brain Res 2013; 231:293-303. [PMID: 24096588 DOI: 10.1007/s00221-013-3691-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
When oscillating the upper limbs together in the parasagittal plane, movements coordination is lower (i.e., variability of the interlimb relative phase is higher) in antidirectional (ANTI) than in isodirectional (ISO) coupling. In contrast, we previously observed that for arm movements in the horizontal plane, the coordination was worse in ISO than ANTI and the energetic cost of postural activities was higher in ISO. Having hypothesised that the higher postural cost was one factor responsible for the coordination deficit in horizontal ISO, we measured the oxygen uptake ([Formula: see text]) in parasagittal movements, expecting that in this case too, the postural cost is higher in the less-coordinated mode (ANTI). Breath-by-breath metabolic ([Formula: see text], [Formula: see text]) and cardiorespiratory (HR, [Formula: see text]) parameters were measured in seven participants, who performed cyclic flexions-extensions in the parasagittal plane with either one arm or both arms, in ISO or ANTI coupling and at 1.4, 2.2 and 2.6 Hz. In each condition, the intermittent exercise (12 s movement, 12 s rest) lasted 264 s. A force platform recorded the mechanical actions to the ground. The exercise metabolic cost ([Formula: see text]) was found to be significantly higher in parasagittal ANTI than ISO. The movement amplitude being equal in the two modes, the ANTI-ISO difference should be ascribed to postural activities. This would confirm that the less-coordinated coupling mode requires the higher postural effort in parasagittal movements too. When rising the movement frequency, [Formula: see text] increased and linearly correlated with the coordination loss. Comparison of parasagittal with horizontal movements showed that [Formula: see text] was lower in parasagittal ANTI than in horizontal ISO (the less-coordinated modes), while it was not different between parasagittal ISO and horizontal ANTI (the more-coordinated modes).
Collapse
|
25
|
Peper CLE, Van Loon ECP, Van de Rijt A, Salverda A, van Kuijk AA. Bimanual training for children with cerebral palsy: exploring the effects of Lissajous-based computer gaming. Dev Neurorehabil 2013; 16:255-65. [PMID: 23477428 DOI: 10.3109/17518423.2012.760116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Hemiplegic cerebral palsy often results in impaired bimanual coordination, partly due to strong coupling between the arms. We aimed at inducing more flexibility in this coupling, to improve bimanual coordination. METHODS We designed computer games involving simple perceptual goals, based on Lissajous feedback. Such feedback implicitly facilitates the performance of complex rhythmic bimanual coordination patterns. A sample of six children received 9 h of computer training over a 6 weeks period. The effects of this training on functional bimanual performance were explored using the Assisting Hand Assessment (AHA). RESULTS Gaming performance and bimanual rhythmic antiphase coordination improved after training. The AHA results were mixed. Two children improved significantly, but at a group level no significant effects were found. CONCLUSIONS The results were evaluated in relation to the specificity of the AHA and the potential benefit of combining the proposed training with dedicated bimanual functional training programs.
Collapse
Affiliation(s)
- C Lieke E Peper
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Baldissera FG, Esposti R. The role of anticipatory postural adjustments in interlimb coordination of coupled arm movements in the parasagittal plane: II. Postural activities and coupling coordination during cyclic flexion-extension arm movements, ISO- and ANTI-directionally coupled. Exp Brain Res 2013; 229:203-19. [PMID: 23793445 DOI: 10.1007/s00221-013-3605-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
When coupling cyclic adduction-abduction movements of the arms in the transverse (horizontal) plane, isodirectional (ISO) coupling is less stable than antidirectional (ANTI) coupling. We proposed that such deficiency stems from the disturbing action that anticipatory postural adjustments exert on ISO coupling. To ascertain if postural adjustments differentiate ISO versus ANTI coupling coordination in other types of cyclic arm movements, we examined flexion-extension oscillations in the parasagittal plane. Oscillations of the right arm alone elicited cyclic Postural Adjustments (PAs) in the left Anterior Deltoid and Posterior Deltoid, which replicated the excitation-inhibition pattern of the prime movers right Anterior Deltoid, right Posterior Deltoid. Cyclic PAs also developed symmetrically in Erector Spinae (RES and LES) and in phase opposition in Ischiocruralis (RIC and LIC), so as to discharge to the ground both an anteroposterior force, Fy, and a moment about the vertical axis, Tz. Oscillations of both arms in ISO coupling induced symmetric PAs in both ES and IC muscles, thus generating a large Fy but no Tz. In ANTI coupling, PAs in RES and LES remained symmetric but smaller in size, while PAs in RIC and LIC were large and opposite in phase, resulting in a large Tz and small Fy. Altogether, PAs would thus favour ISO and hamper ANTI parasagittal movements because (1) in the motor pathways to the prime movers of either arm, a convergence would occur between the voluntary commands and the commands for PAs linked to the movement of the other arm, the two commands having the same sign (excitatory or inhibitory) during ISO and an opposite sign during ANTI; (2) the postural effort of trunk and leg muscles would be higher for generating Tz in ANTI than Fy in ISO. These predictions fit with the finding that coupling stability was lower in ANTI than in ISO, i.e., opposite to horizontal movements. In conclusion, in both parasagittal and horizontal arm movements, the less coordinated coupling mode was the one constrained by postural adjustments through the two above mechanisms.
Collapse
Affiliation(s)
- Fausto G Baldissera
- Sezione Fisiologia Umana, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via L. Mangiagalli 32, 20133 Milan, Italy.
| | | |
Collapse
|
27
|
The role of anticipatory postural adjustments (APAs) in interlimb coordination of coupled arm movements in the parasagittal plane: I. APAs associated with fast discrete flexion and extension movements of one arm or of both arms ISO- and ANTI-directionally coupled. Exp Brain Res 2013; 228:527-39. [PMID: 23771607 DOI: 10.1007/s00221-013-3584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Coupling stability during cyclic arm movements in the horizontal (transverse) plane is lower in ISO- than in ANTI-directional coupling. We proposed that such impairment arises from the interference exerted in ISO by the anticipatory postural adjustments (APAs) linked to the primary movements. To evaluate if a link between coupling stability and postural adjustments also exist for arm movements with different postural requirements, we focused on arm(s) flexion-extension in the parasagittal plane and started by analysing the APAs distribution in arm, trunk and leg muscles. Fast flexion and extension of the right arm elicited APAs in the left anterior and posterior deltoid that replicated the excitation-inhibition of the homologous prime movers; this pattern would favour ISO and contrast ANTI-coupled movements. Instead, in the left latissimus dorsi, APAs were opposite to the voluntary actions in the right latissimus dorsi, thus favouring ANTI coupling. Symmetrical APAs were also elicited in right and left erector spinae (RES, LES) and asymmetrical APAs in Ischiocruralis (RIC, LIC), while an antero-posterior force (Fy) and a moment about the vertical axis (Tz) were discharged to the ground. When fast discrete movements were ISO-coupled, APAs were symmetrical in trunk (RES, LES) and leg (RIC, LIC) muscles and a large Fy but no Tz was generated. In ANTI coupling, APAs in RES and LES remained symmetrical, whereas they became antisymmetrical in RIC and LIC. A large Tz and a small Fy were recorded. In conclusion, during parasagittal movements, APAs in are elicited in both ISO and ANTI coupling, at variance with horizontal movements where they are only present in ISO. This would suggest that the difference in coupling stability between the two modes is smaller (or even reversed) in parasagittal with respect to horizontal arm movements.
Collapse
|
28
|
McIntyre-Robinson AJK, Byblow WD. A neurophysiological basis for the coordination between hand and foot movement. J Neurophysiol 2013; 110:1039-46. [PMID: 23741039 DOI: 10.1152/jn.00266.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hand and foot movements are made more reliably when both limbs move in the same direction at the same time (isodirectional) compared with when they are made in opposite directions (anisodirectional). We hypothesized that M1 intracortical facilitation may subserve hand-foot coordination and reveal correlates that explain the preference for hand-foot movements to be performed in an isodirectional pattern. To test our hypothesis we investigated behavioral kinematics of hand-foot coordination (experiment 1) and neurophysiological measures of corticomotor excitability and intracortical facilitation (experiment 2) in 17 healthy young adults. As expected, coordination became unstable in the anisodirectional pattern but not the isodirectional pattern, as confirmed in measures of wrist and ankle relative phase error and stability (both P < 0.001). Short-latency paired-pulse TMS was used to elicit motor evoked potentials (MEPs) and produce short-latency intracortical facilitation (sICF) in right extensor carpi radialis (ECR) and flexor carpi radialis (FCR) in the presence and absence of right ankle plantarflexion/dorsiflexion (P < 0.015). An isodirectional preference was confirmed by facilitation of FCR MEPs and TMS-induced wrist flexion during ankle plantarflexion (both P < 0.025) but no evidence of modulation of any particular "I wave" during foot movement compared with rest. A novel finding was the association between loss of stability of the anisodirectional pattern (experiment 1) and the modulation of corticomotor excitability in support of the isodirectional pattern (experiment 2) (P < 0.05). The preference for isodirectional hand-foot movements appears not to depend on M1 intracortical facilitation.
Collapse
Affiliation(s)
- Andrew J K McIntyre-Robinson
- Movement Neuroscience Laboratory, Department of Sport and Exercise Science, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
29
|
Slow and steady is not as easy as it sounds: interlimb coordination at slow speed is associated with elevated attentional demand especially in older adults. Exp Brain Res 2013; 227:289-300. [DOI: 10.1007/s00221-013-3511-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
30
|
Muraoka T, Ishida Y, Obu T, Crawshaw L, Kanosue K. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame. Neurosci Res 2013; 75:289-94. [PMID: 23507257 DOI: 10.1016/j.neures.2013.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame.
Collapse
Affiliation(s)
- Tetsuro Muraoka
- College of Economics, Nihon University, 1-3-2 Misaki-Cho, Chiyoda-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
31
|
de Boer BJ, Peper C(LE, Beek PJ. Learning a New Bimanual Coordination Pattern: Interlimb Interactions, Attentional Focus, and Transfer. J Mot Behav 2013; 45:65-77. [DOI: 10.1080/00222895.2012.744955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Buchanan JJ, Ryu YU. Scaling Movement Amplitude: Adaptation of Timing and Amplitude Control in a Bimanual Task. J Mot Behav 2012; 44:135-47. [DOI: 10.1080/00222895.2012.656158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Gatti R, Rocca MA, Tettamanti A, Filippi M. Evaluation and training of hands and feet movements performed with different strategies: A kinematic study. Clin Neurol Neurosurg 2011; 113:218-23. [DOI: 10.1016/j.clineuro.2010.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
|
34
|
de Boer BJ, Peper CLE, Beek PJ. Frequency-induced changes in interlimb interactions: increasing manifestations of closed-loop control. Behav Brain Res 2011; 220:202-14. [PMID: 21310185 DOI: 10.1016/j.bbr.2011.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 11/16/2022]
Abstract
In bimanual coordination, interactions between the limbs result in attraction to in-phase and antiphase coordination. Increasing movement frequency leads to decreasing stability of antiphase coordination, often resulting in a transition to the more stable in-phase pattern. It is unknown, however, how this frequency-induced loss of stability is engendered in terms of the interlimb interactions underwriting bimanual coordination. The present study was conducted to help resolve this issue. Using an established method (based on comparison of various unimanual and bimanual tasks involving both passive and active movements), three sources of interlimb interaction were dissociated: (1) integrated timing of feedforward signals, (2) afference-based correction of relative phase errors, and (3) phase entrainment by contralateral afference. Results indicated that phase entrainment strength remained unaffected by frequency and that the stabilizing effects of error correction and integrated timing decreased with increasing frequency. Their contributions, however, reflected an interesting interplay as frequency increased. For moderate frequencies coordinative stability was predominantly secured by integrated timing processes. However, at high frequencies, the stabilization of the antiphase pattern required combined contributions of both integrated timing and error correction. In sum, increasing frequency was found to induce a shift from predominantly open-loop control to more closed-loop control. The results may be accounted for by means of an internal forward model for sensorimotor integration in which the sensory signals are compared to values predicted on the basis of efference copies.
Collapse
Affiliation(s)
- Betteco J de Boer
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Langan J, Doyle ST, Hurvitz EA, Brown SH. Influence of task on interlimb coordination in adults with cerebral palsy. Arch Phys Med Rehabil 2010; 91:1571-6. [PMID: 20875516 DOI: 10.1016/j.apmr.2010.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To examine movement time and kinematic properties of unilateral and bilateral reaching movements in adults with cerebral palsy (CP), focusing on how different types of bilateral movements, simultaneous or sequential, may influence interlimb coordination. DESIGN Quantitative study using between-group repeated-measures analyses. SETTING Motor control laboratory at a research university. PARTICIPANTS Adults with hemiplegic CP (n=11; mean age ± SD, 33±10y; 4 men) and age-matched controls (mean age ± SD, 32±9y; 4 men). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Movement time (MT), maximum deviation from a straight trajectory to the target, and peak speed. RESULTS Although adults with hemiplegic CP showed strong unilateral deficits, bilateral simultaneous reaching movements were temporally and spatially coupled. Movement of the less affected arm slowed to match the movement of the more affected arm. In contrast, bilateral sequential movements improved MTs of the less affected and more affected arms. CONCLUSIONS Bilateral sequential movements were conducive to faster MT compared with unilateral or bilateral simultaneous movements. Training that includes bilateral sequential movements may be beneficial to adults with hemiplegic CP. Upper-limb movements are coordinated in a variety of ways to perform routine bilateral tasks. Some bilateral tasks, such as stacking boxes, require more symmetric movements of the upper limbs. Other bilateral tasks, such as opening the refrigerator with 1 hand while placing an item on the shelf with the other hand, emphasize coordinated sequential action between upper limbs. Despite the prevalence of integrative upper-limb use, the control of different forms of bilateral movement is not well understood. A more comprehensive knowledge of upper-limb bilateral movements may hold important implications for developing more effective upper-limb movement therapies.
Collapse
|
36
|
Feijen L, Hodges NJ, Beek PJ. Acquiring a Novel Coordination Skill without Practicing the Correct Motor Commands. J Mot Behav 2010; 42:295-306. [DOI: 10.1080/00222895.2010.504760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Donker SF, Daffertshofer A, Beek PJ. Effects of Velocity and Limb Loading on the Coordination Between Limb Movements During Walking. J Mot Behav 2010; 37:217-30. [PMID: 15883119 DOI: 10.3200/jmbr.37.3.217-230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The authors investigated the effects of velocity (increasing from 0.5 to 5.0 km/hr in steps of 0.5 km/hr) and limb loading on the coordination between arm and leg movements during treadmill walking in 7 participants. Both the consistency of the individual limb movements and the stability of their coordination increased with increasing velocity; the frequency coordination between arm and leg movements was 2:1 at the lower velocities and 1:1 at the higher velocities. The mass manipulation affected the individual limb movements but not their coordination, indicating that a stable walking pattern was preserved. The results differed qualitatively from those obtained in studies on bimanual interlimb coordination, implying that the dynamical principles identified therein are not readily applicable to locomotion.
Collapse
Affiliation(s)
- S F Donker
- Biomedical Engineering, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
38
|
Heuninckx S, Wenderoth N, Swinnen S. Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiol Aging 2010; 31:301-14. [DOI: 10.1016/j.neurobiolaging.2008.03.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 02/21/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
39
|
Swinnen SP, Vangheluwe S, Wagemans J, Coxon JP, Goble DJ, Van Impe A, Sunaert S, Peeters R, Wenderoth N. Shared neural resources between left and right interlimb coordination skills: the neural substrate of abstract motor representations. Neuroimage 2009; 49:2570-80. [PMID: 19874897 DOI: 10.1016/j.neuroimage.2009.10.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/14/2009] [Accepted: 10/15/2009] [Indexed: 11/29/2022] Open
Abstract
Functional magnetic resonance imaging was used to reveal the shared neural resources between movements performed with effectors of the left versus right body side. Prior to scanning, subjects extensively practiced a complex coordination pattern involving cyclical motions of the ipsilateral hand and foot according to a 90 degrees out-of-phase coordination mode. Brain activity associated with this (nonpreferred) coordination pattern was contrasted with pre-existing isodirectional (preferred) coordination to extract the learning-related brain networks. To identify the principal candidates for effector-independent movement encoding, the conjunction of training-related activity for left and right limb coordination was determined. A dominantly left-lateralized parietal-to-(pre)motor activation network was identified, with activation in inferior and superior parietal cortex extending into intraparietal sulcus and activation in the premotor areas, including inferior frontal gyrus (pars opercularis). Similar areas were previously identified during observation of complex coordination skills by expert performers. These parietal-premotor areas are principal candidates for abstract (effector-independent) movement encoding, promoting motor equivalence, and they form the highest level in the action representation hierarchy.
Collapse
Affiliation(s)
- S P Swinnen
- Laboratory of Motor Control, Research Center for Motor Control and Neuroplasticity, Group Biomedical Sciences, KU Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Difference in the metabolic cost of postural actions during iso- and antidirectional coupled oscillations of the upper limbs in the horizontal plane. Eur J Appl Physiol 2009; 108:93-104. [PMID: 19756702 DOI: 10.1007/s00421-009-1193-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
|
41
|
Goble DJ. The potential for utilizing inter-limb coupling in the rehabilitation of upper limb motor disability due to unilateral brain injury. Disabil Rehabil 2009; 28:1103-8. [PMID: 16966230 DOI: 10.1080/09638280500526537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Symmetry tendencies in human movement have generally been regarded as a constraint to upper limb motor performance. However, several recent studies have suggested that this phenomenon might be utilized in the rehabilitation of individuals with motor disability due to unilateral brain injury. In this paper the efficacy of such a rehabilitative approach is explored by reviewing: (i) examples of symmetry tendencies in healthy individuals, (ii) the potential neurophysiological mechanisms responsible for inter-limb coupling, and (iii) recent studies which have directly assessed the effects of inter-limb coupling on individuals with unilateral brain injury. METHOD A thorough review of current published evidence was conducted utilizing various electronic search engines (Medline, PreMedline, Embase and Cinahl). Studies included those that focused on symmetry tendencies and/or inter-limb coupling in the upper limbs with a particular emphasis placed on studies of individuals with unilateral brain injury. RESULTS Based on the current literature it seems that motor function of the affected upper limb in individuals with unilateral brain injury can be improved through a rehabilitation approach that incorporates inter-limb coupling. CONCLUSION This approach should be considered as an adjunct to more common rehabilitation strategies with future research aimed at determining the most effective means of employing this paradigm.
Collapse
Affiliation(s)
- Daniel J Goble
- Motor Control Laboratory, Division of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109-2214, USA.
| |
Collapse
|
42
|
Van Impe A, Coxon JP, Goble DJ, Wenderoth N, Swinnen SP. Ipsilateral coordination at preferred rate: effects of age, body side and task complexity. Neuroimage 2009; 47:1854-62. [PMID: 19539766 DOI: 10.1016/j.neuroimage.2009.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022] Open
Abstract
Functional imaging studies have shown that elderly individuals activate widespread additional brain networks, compared to young subjects, when performing motor tasks. However, the parameters that effect this unique neural activation, including the spatial distribution of this activation across hemispheres, are still largely unknown. Here, we examined the effect of task complexity and body side on activation differences between older and younger adults while performing cyclical flexion-extension movements of the ipsilateral hand and foot. In particular, easy (isodirectional) and more difficult (non-isodirectional) coordination patterns were performed with either the left or right body side at a self-selected, comfortable rate. Even in the absence of imposed pacing the older group activated a larger brain network, suggestive of increased attentional deployment for monitoring the spatial relationships between the simultaneously moving segments and enhanced sensory processing and integration. Evidence of age-dependent underactivation was also found in contralateral M1, SMA and bilateral putamen, possibly reflecting a functional decline of the basal ganglia-mesial cortex pathway in the older group. An ANOVA model revealed significant main effects of task complexity and body side. However the interaction of these factors with age did not reach significance. Consequently, we conclude that under self-paced conditions, task complexity and body side did not have a modulatory effect on age-related brain activation.
Collapse
Affiliation(s)
- Annouchka Van Impe
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Li Y, Levin O, Forner-Cordero A, Ronsse R, Swinnen SP. Coordination of complex bimanual multijoint movements under increasing cycling frequencies: the prevalence of mirror-image and translational symmetry. Acta Psychol (Amst) 2009; 130:183-95. [PMID: 19166988 DOI: 10.1016/j.actpsy.2008.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 12/06/2008] [Accepted: 12/08/2008] [Indexed: 11/17/2022] Open
Abstract
The present study examined the principles underlying inter and intralimb coordination constraints during performance of bimanual elbow-wrist movements at different cycling frequencies (from 0.75 Hz to 2.50 Hz). Participants performed eight coordination tasks that consisted of a combination of in-phase (IN) and/or anti-phase (AN) coordination modes between both elbows and wrists (interlimb), with isodirectional (Iso) or non-isodirectional (NonI) coordination modes within each limb (intralimb). As expected, the principle of muscle homology (in-phase coordination), giving rise to mirror symmetrical movements with respect to the mid-sagittal plane, had a powerful influence on the quality of global coordinative behavior both between and within limbs. When this principle was violated (i.e., when the anti-phase mode was introduced in one or both joint pairs), the non-isodirectional intralimb mode exhibited a (de)stabilizing role in coordination, which became more pronounced at higher cycling frequencies. However, pattern loss with increasing cycling frequency resulted not only in convergence toward the more stable in-phase patterns with the elbows and wrists but also to the anti-phase patterns (which were associated with directional compatibility of within-limb motions). Moreover, participants generally preserved their initial mode of coordination (either in-phase or anti-phase) in the proximal joints (i.e., elbows) while shifting from anti-phase to in-phase (or vice versa) with their distal joint pair (i.e., wrists). Taken together, these findings reflect the impact of two immanent types of symmetry in bimanual coordination: mirror-image and translational symmetry.
Collapse
Affiliation(s)
- Yong Li
- Laboratory of Motor Control, Research Center for Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, Katholieke Universiteit Leuven, KU Leuven, Tervuursevest 101, 3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
45
|
Caeyenberghs K, Wenderoth N, Smits-Engelsman BCM, Sunaert S, Swinnen SP. Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns. Brain 2009; 132:684-94. [PMID: 19153150 DOI: 10.1093/brain/awn344] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and controls (n = 17) were scanned while performing cyclical movements with their dominant and non-dominant hand and foot according to the easy isodirectional (same direction) and more difficult non-isodirectional (opposite direction) mode. Even though the children with TBI were shown to be less successful on various items of a clinical motor test battery than the control group, performance on the coordination task during scanning was similar between groups, allowing a meaningful interpretation of their brain activation differences. fMRI analysis revealed that the TBI children showed enhanced activity in medial and anterior parietal areas as well as posterior cerebellum as compared with the control group. Brain activation generally increased during the non-isodirectional as compared with the isodirectional mode and additional regions were involved, consistent with their differential degree of difficulty. However, this effect did not interact with group. Overall, the findings indicate that motor impairment in TBI children is associated with changes in functional cerebral activity, i.e. they exhibit compensatory activation reflecting increased recruitment of neural resources for attentional deployment and somatosensory processing.
Collapse
Affiliation(s)
- K Caeyenberghs
- Department of Biomedical Kinesiology, Motor Control Laboratory, Research Center for Motor Control and Neuroplasticity, Group Biomedical Sciences, K.U. Leuven, Belgium
| | | | | | | | | |
Collapse
|
46
|
Raethjen J, Govindan RB, Binder S, Zeuner KE, Deuschl G, Stolze H. Cortical representation of rhythmic foot movements. Brain Res 2008; 1236:79-84. [PMID: 18675792 DOI: 10.1016/j.brainres.2008.07.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 12/31/2022]
Affiliation(s)
- Jan Raethjen
- Department of Neurology, University of Kiel, Schittenhelmstrasse 10, 24105 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Jantzen KJ, Oullier O, Scott Kelso JA. Neuroimaging coordination dynamics in the sport sciences. Methods 2008; 45:325-35. [PMID: 18602998 PMCID: PMC2570103 DOI: 10.1016/j.ymeth.2008.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/29/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022] Open
Abstract
Key methodological issues for designing, analyzing, and interpreting neuroimaging experiments are presented from the perspective of the framework of Coordination Dynamics. To this end, a brief overview of Coordination Dynamics is introduced, including the main concepts of control parameters and collective variables, theoretical modeling, novel experimental paradigms, and cardinal empirical findings. Basic conceptual and methodological issues for the design and implementation of coordination experiments in the context of neuroimaging are discussed. The paper concludes with a presentation of neuroimaging findings central to understanding the neural basis of coordination and addresses their relevance for the sport sciences. The latter include but are not restricted to learning and practice-related issues, the role of mental imagery, and the recovery of function following brain injury.
Collapse
Affiliation(s)
- Kelly J Jantzen
- Human Cognition and Neural Dynamics Laboratory, Western Washington University, Bellingham, Washington, USA.
| | | | | |
Collapse
|
48
|
Visual–spatial and anatomical constraints interact in a bimanual coordination task with transformed visual feedback. Exp Brain Res 2008; 191:13-24. [DOI: 10.1007/s00221-008-1490-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
49
|
Postural adjustments in arm and leg muscles associated with isodirectional and antidirectional coupling of upper limb movements in the horizontal plane. Exp Brain Res 2008; 190:289-305. [PMID: 18594800 DOI: 10.1007/s00221-008-1470-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
50
|
Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci 2008; 28:91-9. [PMID: 18171926 DOI: 10.1523/jneurosci.3300-07.2008] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional imaging studies have shown that seniors exhibit more elaborate brain activation than younger controls while performing motor tasks. Here, we investigated whether this age-related overactivation reflects compensation or dedifferentiation mechanisms. "Compensation" refers to additional activation that counteracts age-related decline of brain function and supports successful performance, whereas "dedifferentiation" reflects age-related difficulties in recruiting specialized neural mechanisms and is not relevant to task performance. To test these predictions, performance on a complex interlimb coordination task was correlated with brain activation. Findings revealed that coordination resulted in activation of classical motor coordination regions, but also higher-level sensorimotor regions, and frontal regions in the elderly. Interestingly, a positive correlation between activation level in these latter regions and motor performance was observed in the elderly. This performance enhancing additional recruitment is consistent with the compensation hypothesis and characterizes neuroplasticity at the systems level in the aging brain.
Collapse
|