1
|
Grattoni E, Travagin F, Kálmán F, Baranyai Z, Negri R, Carniato F, Giovenzana GB, Platas-Iglesias C, Botta M. Evaluation of structurally related acyclic ligands OBETA, EHDTA, and EGTA for stable Mn 2+ complex formation. Dalton Trans 2024; 54:376-388. [PMID: 39545871 DOI: 10.1039/d4dt02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In recent years, significant research efforts have been dedicated to finding efficient and safe alternatives to the currently used gadolinium (Gd)-based MRI contrast agents. Among the most explored alternatives are paramagnetic chelates of the Earth-abundant Mn2+, which form a prominent class of metal complexes. The design of Mn2+ complexes with enhanced relaxation properties and improved safety profiles hinges on a delicate balance between thermodynamic and kinetic stability, as well as the presence of coordinated water molecules. In this study, we present a comprehensive investigation into the coordination chemistry of three structurally related polyetheraminocarboxylic chelating agents. Our aim is to elucidate the structural features, paramagnetic properties, and thermodynamic and kinetic inertness of the corresponding Mn2+ complexes. The most significant finding is the considerable difference in the dissociation rates of the complexes, with the octadentate EGTA complex being the most labile. The observed dissociation rates correlate well with the nitrogen inversion dynamics, as assessed through NMR spectral analysis of the analogous Zn2+ complexes.
Collapse
Affiliation(s)
- Elena Grattoni
- Dip. di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, 34127 Trieste, TS, Italy
| | - Fabio Travagin
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Ferenc Kálmán
- Dep. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q - S.S. 14 Km, 163.5-34149 Basovizza, TS, Italy
| | - Roberto Negri
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
- ITIS "A. Volta", Spalto Marengo 42, 15121 Alessandria, Italy
| | - Fabio Carniato
- Dip. di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| | - Giovanni B Giovenzana
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain
| | - Mauro Botta
- Dip. di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
2
|
Nucera A, Macchia ML, Baranyai Z, Carniato F, Tei L, Ravera M, Botta M. Comprehensive Investigation of [Fe(EDTA)] --Functionalized Derivatives and their Supramolecular Adducts with Human Serum Albumin. Inorg Chem 2024; 63:12992-13004. [PMID: 38949627 DOI: 10.1021/acs.inorgchem.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both 1H and 17O NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)]- and [Fe(EDTA-BOM2)(H2O)]- as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Maria Ludovica Macchia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, Basovizza, TS 34149, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
3
|
Harriswangler C, Omweri JM, Saini S, Valencia L, Esteban-Gómez D, Ranga M, Guidolin N, Baranyai Z, Lapi SE, Platas-Iglesias C. Improving the In Vivo Stability of [ 52Mn]Mn(II) Complexes with 18-Membered Macrocyclic Chelators for PET Imaging. J Med Chem 2024; 67:11242-11253. [PMID: 38935616 PMCID: PMC11247486 DOI: 10.1021/acs.jmedchem.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
We report the [natMn/52Mn]Mn(II) complexes of the macrocyclic chelators PYAN [3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane] and CHXPYAN [(41R,42R,101R,102R)-3,5,9,11-tetraaza-1,7(2,6)-dipyridina-4,10(1,2)-dicyclohexanacyclododecaphane]. The X-ray crystal structures of Mn-PYAN and Mn-CHXPYAN evidence distorted octahedral geometries through coordination of the nitrogen atoms of the macrocycles. Cyclic voltammetry studies evidence reversible processes due to the Mn(II)/Mn(III) pair, indicating that the complexes are resistant to oxidation. CHXPYAN forms a more thermodynamically stable and kinetically inert Mn(II) complex than PYAN. Radiochemical studies with the radioactive isotope manganese-52 (52Mn, t1/2 = 5.6 days) evidenced better radiochemical yields for CHXPYAN than for PYAN. Both [52Mn]Mn(II) complexes remained stable in mouse and human serum, so in vivo stability studies were carried out. Positron emission tomography/computed tomography scans and biodistribution assays indicated that [52Mn]Mn-PYAN has a distribution pattern similar to that of [52Mn]MnCl2, showing persistent radioactivity accumulation in the kidneys. Conversely, [52Mn]Mn-CHXPYAN remained stable in vivo, clearing quickly from the liver and kidneys.
Collapse
Affiliation(s)
- Charlene Harriswangler
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| | - James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - David Esteban-Gómez
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| | - Madalina Ranga
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Nicol Guidolin
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q─S.S. 14 Km 163,5, 34149 Basovizza, TS, Italy
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, A Coruña 15071, Galicia, Spain
| |
Collapse
|
4
|
Rezaei B, Tay ZW, Mostufa S, Manzari ON, Azizi E, Ciannella S, Moni HEJ, Li C, Zeng M, Gómez-Pastora J, Wu K. Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. NANOSCALE 2024; 16:11802-11824. [PMID: 38809214 DOI: 10.1039/d4nr01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Omid Nejati Manzari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ebrahim Azizi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Changzhi Li
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Jian Y, Mo G, Xu W, Liu Y, Zhang Z, Ding Y, Gao R, Xu J, Zhu J, Shu K, Yan Z, Carniato F, Platas-Iglesias C, Ye F, Botta M, Dai L. Chiral Pyclen-Based Heptadentate Chelates as Highly Stable MRI Contrast Agents. Inorg Chem 2024; 63:8462-8475. [PMID: 38642052 DOI: 10.1021/acs.inorgchem.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τMa and τMb. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.
Collapse
Affiliation(s)
- Yong Jian
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Gengshen Mo
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Weiyuan Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Yao Liu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, People's Republic of China 637000
| | - Zhichao Zhang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Yinghui Ding
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Ruonan Gao
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Jiao Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, People's Republic of China 637000
| | - Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325027
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325027
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, Italy 15121
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña, Spain 15008
| | - Fangfu Ye
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, Italy 15121
| | - Lixiong Dai
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| |
Collapse
|
6
|
Travagin F, Macchia ML, Grell T, Bodnár J, Baranyai Z, Artizzu F, Botta M, Giovenzana GB. EHDTA: a green approach to efficient Ln 3+-chelators. Dalton Trans 2024; 53:1779-1793. [PMID: 38170858 DOI: 10.1039/d3dt03292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rich coordination chemistry of lanthanoid ions (Ln3+) is currently exploited in a vast and continuously expanding array of applications. Chelating agents are central in the development of Ln3+-complexes and in tuning their physical and chemical properties. Most chelators for Ln3+-complexation are derived from the macrocyclic DOTA or from linear DTPA platforms, both of which arise from fossil-based starting materials. Herein, we report a green and efficient approach to a chelating agent (EHDTA), derived from cheap and largely available furfurylamine. The oxygenated heterocycle of the latter is converted to a stereochemically defined and rigid heptadentate chelator, which shows good affinity towards Ln3+ ions. A combination of NMR, relaxometric, potentiometric and spectrophotometric techniques allows us to shed light on the interesting coordination chemistry of Ln3+-EHDTA complexes, unveiling a promising ligand for the chelation of this important family of metal ions.
Collapse
Affiliation(s)
- Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| | - Maria Ludovica Macchia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Judit Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., H-4010, Debrecen, Hungary
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q - S.S. 14 Km, 163.5 - 34149 Basovizza, TS, Italy.
| | - Flavia Artizzu
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.zza S. Eusebio 5, 13100 Vercelli, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| |
Collapse
|
7
|
Nucera A, Platas-Iglesias C, Carniato F, Botta M. Effect of hydration equilibria on the relaxometric properties of Gd(III) complexes: new insights into old systems. Dalton Trans 2023; 52:17229-17241. [PMID: 37955945 DOI: 10.1039/d3dt03413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We present a detailed relaxometric and computational investigation of three Gd(III) complexes that exist in solution as an equilibrium of two species with a different number of coordinated water molecules: [Gd(H2O)q]3+ (q = 8, 9), [Gd(EDTA)(H2O)q]- and [Gd(CDTA)(H2O)q]- (q = 2, 3). 1H nuclear magnetic relaxation dispersion (NMRD) data were recorded from aqueous solutions of these complexes using a wide Larmor frequency range (0.01-500 MHz). These data were complemented with 17O transverse relaxation rates and chemical shifts recorded at different temperatures. The simultaneous fit of the NMRD and 17O NMR data was guided by computational studies performed at the DFT and CASSCF/NEVPT2 levels, which provided information on Gd⋯H distances, 17O hyperfine coupling constants and the zero-field splitting (ZFS) energy, which affects electronic relaxation. The hydration equilibrium did not have a very important effect in the fits of the experimental data for [Gd(H2O)q]3+ and [Gd(CDTA)(H2O)q]-, as the hydration equilibrium is largely shifted to the species with the lowest hydration number (q = 8 and 2, respectively). The quality of the analysis improves however considerably for [Gd(EDTA)(H2O)q]- upon considering the effect of the hydration equilibrium. As a result, this study provides for the first time an analysis of the relaxation properties of this important model system, as well as accurate parameters for [Gd(H2O)q]3+ and [Gd(CDTA)(H2O)q]-.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
8
|
Keot N, Sarma M. Probing the dynamic behaviour and magnetic identification of seven coordinated Mn(II) complexes: a combined AIMD and multi-reference approach. Phys Chem Chem Phys 2023; 25:31165-31177. [PMID: 37953737 DOI: 10.1039/d3cp04072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We present an in-depth solution phase dynamics of rare seven coordinated pentagonal bipyramidal Mn(II) complexes, together with their binding affinity anticipated using ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT). Moreover, the simulations at different temperatures (25 °C and 90 °C) interpret the rigidity and stability of the ligands with Mn(II) ions. An intuitive approach for modulating the easy plane magnetic anisotropy of the mononuclear Mn(II) complex has been revealed by this work. In this regard, we have performed an extensive theoretical study based on the ab initio CASSCF/NEVPT2 method, exhibiting the presence of an easy plane magnetic anisotropy with a positive value of axial zero-field splitting (ZFS) parameter D. The complex's magnetic properties and electronic relaxation reveal that the rhombic ZFS term (E) can be modulated as the symmetry around the Mn(II) ion varies. The magnitude of the D-value increased with a more symmetrical equatorial ligand as found in the order of [Mn(pydpa)(H2O)] > [Mn(cbda)(H2O)]- > [Mn(dpaaa)(H2O)]- > [Mn(dpasam)(H2O)]-. Furthermore, we found that substituting the equatorial oxygen atom with heavier S and Se-donor atoms switches the sign of magnetic anisotropy for the Mn(II) complexes. The magnitude of the D-value increased when the energy levels of the ground state (GS) and the first excited state (ES) decreased. The observed magneto-structural correlation reveals that shortening the distance of the axial water molecule (Mn-O(w)) increases the D-value by an order of magnitude for the symmetrical [Mn(pydpa)(H2O)] complex. Overall, the combined analysis of solution phase dynamics of Mn(II) complexes and their magnetic characterization opens up new avenues in coordination chemistry, molecular magnetism, spin-crossover materials, and catalysis.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
Welleman IM, Reeβing F, Boersma HH, Dierckx RAJO, Feringa BL, Szymanski W. The Development of a Smart Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer Contrast Agent for the Imaging of Sulfatase Activity. Pharmaceuticals (Basel) 2023; 16:1439. [PMID: 37895910 PMCID: PMC10610007 DOI: 10.3390/ph16101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular imaging of biomarkers plays an increasing role in medical diagnostics. In particular, the imaging of enzyme activity is a promising approach, as it enables the use of its inherent catalytic activity for the amplification of an imaging signal. The increased activity of a sulfatase enzyme has been observed in several types of cancers. We describe the development and in vitro evaluation of molecular imaging agents that allow for the detection of sulfatase activity using the whole-body, non-invasive MRI and CEST imaging methods. This approach relies on a responsive ligand that features a sulfate ester moiety, which upon sulfatase-catalyzed hydrolysis undergoes an elimination process that changes the functional group, coordinating with the metal ion. When Gd3+ is used as the metal, the complex can be used for MRI, showing a 25% decrease at 0.23T and a 42% decrease at 4.7T in magnetic relaxivity after enzymatic conversion, thus providing a "switch-off" contrast agent. Conversely, the use of Yb3+ as the metal leads to a "switch-on" effect in the CEST imaging of sulfatase activity. Altogether, the results presented here provide a molecular basis and a proof-of-principle for the magnetic imaging of the activity of a key cancer biomarker.
Collapse
Affiliation(s)
- Ilse M. Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Friederike Reeβing
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hendrikus H. Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Department of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Mallik R, Saha M, Singh V, Mohan H, Kumaran SS, Mukherjee C. Mn(II) complex impregnated porous silica nanoparticles as Zn(II)-responsive "Smart" MRI contrast agent for pancreas imaging. J Mater Chem B 2023; 11:8251-8261. [PMID: 37575086 DOI: 10.1039/d3tb01289a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Type-1 and type-2 diabetes mellitus are metabolic disorders governed by the functional efficiency of pancreatic β-cells. The activities of the cells toward insulin production, storage, and secretion are accompanied by Zn(II) ions. Thus, for non-invasive pathology of the cell, developing Zn(II) ion-responsive MRI-contrast agents has earned considerable interest. In this report, we have synthesized a seven-coordinate, mono(aquated) Mn(II) complex (1), which is impregnated within a porous silica nanosphere of size 13.2 nm to engender the Mn(II)-based MRI contrast agent, complex 1@SiO2NP. The surface functionalization of the nanosphere by the Py2Pic organic moiety for the selective binding of Zn(II)-ions yields complex 1@SiO2-Py2PicNP, which exhibits r1 = 13.19 mM-1 s-1. The relaxivity value elevates to 20.38 mM-1 s-1 in the presence of 0.6 mM BSA protein at pH 7.4. Gratifyingly, r1 increases linearly with the increase of Zn(II) ion concentration and reaches 39.01 mM-1 s-1 in the presence of a 40 fold excess of the ions. Thus, Zn(II)-responsive contrast enhancement in vivo is envisaged by employing the nanoparticle. Indeed, a contrast enhancement in the pancreas is observed when complex 1@SiO2-Py2PicNP and a glucose stimulus are administered in fasted healthy C57BL/6 mice at 7 T.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, 110029, New Delhi, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.
| |
Collapse
|
11
|
Nucera A, Carniato F, Baranyai Z, Platas-Iglesias C, Botta M. Characterization of the Fe(III)-Tiron System in Solution through an Integrated Approach Combining NMR Relaxometric, Thermodynamic, Kinetic, and Computational Data. Inorg Chem 2023; 62:4272-4283. [PMID: 36862621 PMCID: PMC10015466 DOI: 10.1021/acs.inorgchem.2c04393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The Fe(III)-Tiron system (Tiron = 4,5-dihydroxy-1,3-benzenedisulfonate) was investigated using a combination of 1H and 17O NMR relaxometric studies at variable field and temperature and theoretical calculations at the DFT and NEVPT2 levels. These studies require a detailed knowledge of the speciation in aqueous solution at different pH values. This was achieved using potentiometric and spectrophotometric titrations, which afforded the thermodynamic equilibrium constants characterizing the Fe(III)-Tiron system. A careful control of the pH of the solution and the metal-to-ligand stoichiometric ratio allowed the relaxometric characterization of [Fe(Tiron)3]9-, [Fe(Tiron)2(H2O)2]5-, and [Fe(Tiron)(H2O)4]- complexes. The 1H nuclear magnetic relaxation dispersion (NMRD) profiles of [Fe(Tiron)3]9- and [Fe(Tiron)2(H2O)2]5- complexes evidence a significant second-sphere contribution to relaxivity. A complementary 17O NMR study provided access to the exchange rates of the coordinated water molecules in [Fe(Tiron)2(H2O)2]5- and [Fe(Tiron)(H2O)4]- complexes. Analyses of the NMRD profiles and NEVPT2 calculations indicate that electronic relaxation is significantly affected by the geometry of the Fe3+ coordination environment. Dissociation kinetic studies indicated that the [Fe(Tiron)3]9- complex is relatively inert due to the slow release of one of the Tiron ligands, while the [Fe(Tiron)2(H2O)2]5- complex is considerably more labile.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Zsolt Baranyai
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, Colleretto Giacosa, 10010 Turin, Italy
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
12
|
Botta M, Geraldes CFGC, Tei L. High spin Fe(III)-doped nanostructures as T 1 MR imaging probes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1858. [PMID: 36251471 DOI: 10.1002/wnan.1858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022]
Abstract
Magnetic Resonance Imaging (MRI) T1 contrast agents based on Fe(III) as an alternative to Gd-based compounds have been under intense scrutiny in the last 6-8 years and a number of nanostructures have been designed and proposed for in vivo diagnostic and theranostic applications. Excluding the large family of superparamagnetic iron oxides widely used as T2 -MR imaging agents that will not be covered by this review, a considerable number and type of nanoparticles (NPs) have been employed, ranging from amphiphilic polymer-based NPs, NPs containing polyphenolic binding units such as melanin-like or polycatechols, mixed metals such as Fe/Gd or Fe/Au NPs and perfluorocarbon nanoemulsions. Iron(III) exhibits several favorable magnetic properties, high biocompatibility and improved toxicity profile that place it as the paramagnetic ion of choice for the next generation of nanosized MRI and theranostic contrast agents. An analysis of the examples reported in the last decade will show the opportunities for relaxivity and MR-contrast enhancement optimization that could bring Fe(III)-doped NPs to really compete with Gd(III)-based nanosystems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mauro Botta
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Carlos F G C Geraldes
- Faculty of Science and Technology, Department of Life Sciences and Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal.,CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Lorenzo Tei
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
13
|
Lyons T, Kekedjian C, Glaser P, Ohlin CA, van Eldik R, Rodriguez O, Albanese C, Van Keuren E, Stoll SL. Molecular Parameters Promoting High Relaxivity in Cluster-Nanocarrier Magnetic Resonance Imaging Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10.1021/acsami.2c12584. [PMID: 36283049 PMCID: PMC10502962 DOI: 10.1021/acsami.2c12584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have investigated the mechanism of relaxivity for two magnetic resonance imaging contrast agents that both employ a cluster-nanocarrier design. The first system termed Mn8Fe4-coPS comprises the cluster Mn8Fe4O12(L)16(H2O)4 or Mn8Fe4 (1) (L = carboxylate) co-polymerized with polystyrene to form ∼75 nm nanobeads. The second system termed Mn3Bpy-PAm used the cluster Mn3(O2CCH3)6(Bpy)2 or Mn3Bpy (2) where Bpy = 2,2'-bipyridine, entrapped in ∼180 nm polyacrylamide nanobeads. Here, we investigate the rate of water exchange of the two clusters, and corresponding cluster-nanocarriers, in order to elucidate the mechanism of relaxivity in the cluster-nanocarrier. Swift-Connick analysis of O-17 NMR was used to determine the water exchange rates of the clusters and cluster-nanocarriers. We found distinct differences in the water exchange rate between Mn8Fe4 and Mn8Fe4-coPS, and we utilized these differences to elucidate the nanobead structure. Using the transverse relaxivity from O-17 NMR line widths, we were able to determine the hydration state of the Mn3Bpy (2) cluster as well as Mn3Bpy-PAm. Using these hydration states in the Swift-Connick analysis of O-17 NMR, we found the water exchange rate to be extremely close in value for the cluster Mn3Bpy and cluster-nanocarrier Mn3Bpy-PAm.
Collapse
Affiliation(s)
- Trevor Lyons
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - Chloe Kekedjian
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - Priscilla Glaser
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - C André Ohlin
- Department of Chemistry, Umeå University, Umeå907 36, Sweden
| | - Rudi van Eldik
- Faculty of Chemistry, Nicolaus Copernicus University, Torun87 100, Poland
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, Erlangen91058, Germany
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.20057, United States
- Department of Radiology, Georgetown University Medical Center, Washington, D.C.20057, United States
| | - Edward Van Keuren
- Department of Physics, and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - Sarah L Stoll
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| |
Collapse
|
14
|
Lalli D, Hawala I, Ricci M, Carniato F, D'Andrea LD, Tei L, Botta M. Derivatives of GdAAZTA Conjugated to Amino Acids: A Multinuclear and Multifrequency NMR Study. Inorg Chem 2022; 61:13199-13209. [PMID: 35944034 PMCID: PMC9400103 DOI: 10.1021/acs.inorgchem.2c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GdAAZTA (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic
acid) complex represents a platform of great interest for the design
of innovative MRI probes due to its remarkable magnetic properties,
thermodynamic stability, kinetic inertness, and high chemical versatility.
Here, we detail the synthesis and characterization of new derivatives
functionalized with four amino acids with different molecular weights
and charges: l-serine, l-cysteine, l-lysine,
and l-glutamic acid. The main reason for conjugating these
moieties to the ligand AAZTA is the in-depth study of the chemical
properties in aqueous solution of model compounds that mimic complex
structures based on polypeptide fragments used in molecular imaging
applications. The analysis of the 1H NMR spectra of the
corresponding Eu(III)-complexes indicates the presence of a single
isomeric species in solution, and measurements of the luminescence
lifetimes show that functionalization with amino acid residues maintains
the hydration state of the parent complex unaltered (q = 2). The relaxometric properties of the Gd(III) chelates were analyzed
by multinuclear and multifrequency NMR techniques to evaluate the
molecular parameters that determine their performance as MRI probes.
The relaxivity values of all of the novel chelates are higher than
that of GdAAZTA over the entire range of applied magnetic fields because
of the slower rotational dynamics. Data obtained in reconstituted
human serum indicate the occurrence of weak interactions with the
proteins, which result in larger relaxivity values at the typical
imaging fields. Finally, all of the new complexes are characterized
by excellent chemical stability in biological matrices over time,
by the absence of transmetallation processes, or the formation of
ternary complexes with oxyanions of biological relevance. In particular,
the kinetic stability of the new complexes, measured by monitoring
the release of Gd3+ in the presence of a large excess of
Zn2+, is ca. two orders of magnitude higher than that of
the clinical MRI contrast agent GdDTPA. Novel
GdAAZTA derivatives conjugated to four amino acids
were synthesized and characterized through a multi-technique approach.
The complexes maintained the favorable thermodynamic and kinetic properties
of the parent compound and showed higher relaxivity values in clinical
fields. Therefore, they represent a useful model of more complex bio-conjugated
structures used in molecular imaging applications.
Collapse
Affiliation(s)
- Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Ivan Hawala
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital London, SE1 7EH, UK
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "G. Natta", Consiglio Nazionale delle Ricerche, Via M. Bianco 9, 20131 Milano, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
15
|
Kras EA, Snyder EM, Sokolow GE, Morrow JR. Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Acc Chem Res 2022; 55:1435-1444. [PMID: 35482819 DOI: 10.1021/acs.accounts.2c00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusContrast agents are used in approximately 40% of all magnetic resonance imaging (MRI) procedures to improve the quality of the images based on the distribution and dynamic clearance of the agent. To date, all clinically approved contrast agents are Gd(III) coordination complexes that serve to shorten the longitudinal (T1) and transverse (T2) proton relaxation times of water. Recent interest in replacing Gd with biologically relevant metal ions such as Mn or Fe has led to increased interest in the aqueous coordination chemistry of their complexes. In this Account, we focus on high-spin Fe(III) complexes that have been recently reported as MRI contrast agents or probes in our laboratory.The highly Lewis acidic Fe(III) center has distinct coordination chemistry in aqueous solutions, facilitating alternative strategies in the design of MRI probes. To illustrate this, we describe different classes of Fe(III) MRI probes with a focus on macrocyclic complexes and multinuclear complexes such as self-assembled metal organic polyhedra (MOP). Our initial efforts focused on macrocyclic complexes of Fe(III) in order to tune spin and oxidation states with the goal of stabilizing high-spin Fe(III) in reducing biological environments. Our probes feature six-coordinate Fe(III) complexes of 1,4,7-triazacyclononane with hydroxypropyl, phosphonate, or carboxylate pendant groups to produce Fe(III) complexes that shorten proton T1 times predominantly from second-sphere or outer-sphere interactions at neutral pH. Analogues with pentadentate macrocyclic ligands have an inner-sphere water that does not exchange rapidly on the NMR time scale, yet these complexes are effective relaxation agents. Fe(III) macrocyclic complexes in this class can be modified to modulate their biodistribution and pharmacokinetic clearance in mice. The goal of these studies is for the Fe(III) agents to clear as extracellular fluid agents and produce profiles similar to those of Gd agents. Finally, studies of multimeric Fe(III) complexes are of interest to produce probes that give large proton relaxivity. In this approach the two Fe(III) centers are connected through aryl linkers as demonstrated for several macrocyclic complexes. Even more tightly connected Fe(III) centers are produced in a Fe(III) self-assembled cage with relaxivity of 21 mM-1 s-1 at 4.7 T, 37 °C in the presence of serum albumin to which it is tightly bound. This cage enhances contrast of the vasculature as a blood pool agent and accumulates in tumors. Finally, we present our perspectives on the further development of Fe(III) complexes for various applications in MRI.
Collapse
Affiliation(s)
- Elizabeth A. Kras
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Eric M. Snyder
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Gregory E. Sokolow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
16
|
Carniato F, Ricci M, Tei L, Garello F, Terreno E, Ravera E, Parigi G, Luchinat C, Botta M. High Relaxivity with No Coordinated Waters: A Seemingly Paradoxical Behavior of [Gd(DOTP)] 5- Embedded in Nanogels. Inorg Chem 2022; 61:5380-5387. [PMID: 35316037 PMCID: PMC8985129 DOI: 10.1021/acs.inorgchem.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Nanogels (NGs) obtained
by electrostatic interactions between chitosan
and hyaluronic acid and comprising paramagnetic Gd chelates are gaining
increasing attention for their potential application in magnetic resonance
bioimaging. Herein, the macrocyclic complexes [Gd(DOTP)]5−, lacking metal-bound water molecules (q = 0), were
confined or used as a cross-linker in this type of NG. Unlike the
typical behavior of Gd complexes with q = 0, a remarkable
relaxivity value of 78.0 mM–1 s–1 was measured at 20 MHz and 298 K, nearly 20 times greater than that
found for the free complex. A careful analysis of the relaxation data
emphasizes the fundamental role of second sphere water molecules with
strong and long-lived hydrogen bonding interactions with the complex.
Finally, PEGylated derivatives of nanoparticles were used for the
first in vivo magnetic resonance imaging study of
this type of NG, revealing a fast renal excretion of paramagnetic
complexes after their release from the NGs. Nanogels incorporating [Gd(DOTP)]5− complexes
(q = 0) exhibit remarkable relaxivity values, thanks
to structured water molecules in the second coordination shell of
the metal ion involved in strong H-bonding interactions with the phosphonate
groups.
Collapse
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Francesca Garello
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enzo Terreno
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
17
|
Martinelli J, Boccalon M, Horvath D, Esteban-Gomez D, Platas-Iglesias C, Baranyai Z, Tei L. The critical role of ligand topology: strikingly different properties of Gd( iii) complexes with regioisomeric AAZTA derivatives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00451h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two regioisomeric Gd(III) complexes with heptadentate AAZTA-like ligands show different hydration state (q = 1 and 2) and astonishingly different thermodynamic stability and dissociation kinetics.
Collapse
Affiliation(s)
- Jonathan Martinelli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Mariangela Boccalon
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, 10010, Colleretto Giacosa, Italy
| | - David Horvath
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, 10010, Colleretto Giacosa, Italy
- University of Debrecen, Faculty of Science and Technology, Department of Physical Chemistry, Doctoral School of Chemistry, Debrecen, Hungary
| | - David Esteban-Gomez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain
| | - Zsolt Baranyai
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, 10010, Colleretto Giacosa, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
18
|
Uzal-Varela R, Lalli D, Brandariz I, Rodríguez-Rodríguez A, Platas-Iglesias C, Botta M, Esteban-Gómez D. Rigid versions of PDTA 4- incorporating a 1,3-diaminocyclobutyl spacer for Mn 2+ complexation: stability, water exchange dynamics and relaxivity. Dalton Trans 2021; 50:16290-16303. [PMID: 34730583 DOI: 10.1039/d1dt02498a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rigid derivatives of the acyclic ligand PDTA4- (H4PDTA = propylenediamine-N,N,N',N'-tetraacetic acid) were prepared by functionalization of a 1,3-diaminocyclobutyl spacer. The new ligands contain either four acetate groups attached to the central scaffold (H4L1) or incorporate pyridyl (H2L2) or propylamide (H2L3) units replacing two of the carboxylate groups. The ligand protonation constants and the stability constants of their Mn2+ complexes were determined using potentiometric and spectrophotometric titrations. The stability of the [Mn(L1)]2- complex was found to be significantly higher than that of the flexible [Mn(PDTA)]2- derivative (log KMnL = 10.78 and 10.01, respectively). A detailed study of the 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles and 17O NMR measurements evidence that the [Mn(L1)]2- and [Mn(L2)] complexes display a hydration equilibrium in solution involving a seven-coordinate species with an inner-sphere water molecule and a six-coordinate species that lacks a coordinated water molecule. As a result the 1H relaxivities of these complexes are somewhat lower than that of [Mn(EDTA)]2- and related systems. The introduction of propylamide groups in [Mn(L3)] shifts the hydration equilibrium to the seven-coordinate species, which results in a 1H relaxivity (r1p = 3.7 mM-1 s-1 at 22 MHz and 25 °C) exceeding that of [Mn(EDTA)]2- (r1p = 3.3 mM-1 s-1 at 22 MHz and 25 °C). The parameters that control the relaxivities in this family of complexes were determined by simultaneous fitting of the experimental 1H NMRD and 17O NMR data (transverse relaxation rates and chemical shifts), with the aid of computational studies performed at the DFT and CASSCF/NEVPT2 levels. These studies provide detailed insight of the parameters that control the efficiency of these relaxation agents at the molecular level.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Daniela Lalli
- Magnetic Resonance Platform (PRISMA-UPO), Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Isabel Brandariz
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Aurora Rodríguez-Rodríguez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Mauro Botta
- Magnetic Resonance Platform (PRISMA-UPO), Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
19
|
Capuana F, Phinikaridou A, Stefania R, Padovan S, Lavin B, Lacerda S, Almouazen E, Chevalier Y, Heinrich-Balard L, Botnar RM, Aime S, Digilio G. Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin. J Med Chem 2021; 64:15250-15261. [PMID: 34661390 PMCID: PMC8558862 DOI: 10.1021/acs.jmedchem.1c01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 μM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Federico Capuana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, Torino 10126, Italy
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans Cedex 2 45071, France
| | - Eyad Almouazen
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Yves Chevalier
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Laurence Heinrich-Balard
- INSA Lyon, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna, Santiago 4860, Chile
| | | | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale ″Amedeo Avogadro″, Viale T. Michel 11, Alessandria 15121, Italy
| |
Collapse
|
20
|
Uzal-Varela R, Valencia L, Lalli D, Maneiro M, Esteban-Gómez D, Platas-Iglesias C, Botta M, Rodríguez-Rodríguez A. Understanding the Effect of the Electron Spin Relaxation on the Relaxivities of Mn(II) Complexes with Triazacyclononane Derivatives. Inorg Chem 2021; 60:15055-15068. [PMID: 34618439 PMCID: PMC8527457 DOI: 10.1021/acs.inorgchem.1c02057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Investigating the relaxation of water 1H nuclei induced by paramagnetic Mn(II) complexes is important to understand the mechanisms that control the efficiency of contrast agents used in diagnostic magnetic resonance imaging (MRI). Herein, a series of potentially hexadentate triazacyclononane (TACN) derivatives containing different pendant arms were designed to explore the relaxation of the electron spin in the corresponding Mn(II) complexes by using a combination of 1H NMR relaxometry and theoretical calculations. These ligands include 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) and three derivatives in which an acetate group is replaced by sulfonamide (H3NO2ASAm), amide (H2NO2AM), or pyridyl (H2NO2APy) pendants. The analogue of H3NOTA containing three propionate pendant arms (H3NOTPrA) was also investigated. The X-ray structure of the derivative containing two acetate groups and a sulfonamide pendant arm [Mn(NO2ASAm)]- evidenced six-coordination of the ligand to the metal ion, with the coordination polyhedron being close to a trigonal prism. The relaxivities of all complexes at 20 MHz and 25 °C (1.1-1.3 mM-1 s-1) are typical of systems that lack water molecules coordinated to the metal ion. The nuclear magnetic relaxation profiles evidence significant differences in the relaxivities of the complexes at low fields (<1 MHz), which are associated with different spin relaxation rates. The zero field splitting (ZFS) parameters calculated by using DFT and CASSCF methods show that electronic relaxation is relatively insensitive to the nature of the donor atoms. However, the twist angle of the two tripodal faces that delineate the coordination polyhedron, defined by the N atoms of the TACN unit (lower face) and the donor atoms of the pendant arms (upper face), has an important effect in the ZFS parameters. A twist angle close to the ideal value for an octahedral coordination (60°), such as that in [Mn(NOTPrA)]-, leads to a small ZFS energy, whereas this value increases as the coordination polyhedron approaches to a trigonal prism.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Facultade de Ciencias, Campus de Lugo, 27002 Lugo, Galicia, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| |
Collapse
|
21
|
Singer PM, Parambathu AV, Pinheiro Dos Santos TJ, Liu Y, Alemany LB, Hirasaki GJ, Chapman WG, Asthagiri D. Predicting 1H NMR relaxation in Gd 3+-aqua using molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:20974-20984. [PMID: 34518855 DOI: 10.1039/d1cp03356e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic molecular dynamics simulations are used to predict 1H NMR T1 relaxation of water from paramagnetic Gd3+ ions in solution at 25 °C. Simulations of the T1 relaxivity dispersion function r1 computed from the Gd3+-1H dipole-dipole autocorrelation function agree within ≃8% of measurements in the range f0 ≃ 5 ↔ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model. Below f0 ≲ 5 MHz, the simulation overestimates r1 compared to measurements, which is used to estimate the zero-field electron-spin relaxation time. The simulations show potential for predicting r1 at high frequencies in chelated Gd3+ contrast-agents used for clinical MRI.
Collapse
Affiliation(s)
- Philip M Singer
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Arjun Valiya Parambathu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | | | - Yunke Liu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Lawrence B Alemany
- Shared Equipment Authority and Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - George J Hirasaki
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Walter G Chapman
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| | - Dilip Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.
| |
Collapse
|
22
|
Baranyai Z, Carniato F, Nucera A, Horváth D, Tei L, Platas-Iglesias C, Botta M. Defining the conditions for the development of the emerging class of Fe III-based MRI contrast agents. Chem Sci 2021; 12:11138-11145. [PMID: 34522311 PMCID: PMC8386674 DOI: 10.1039/d1sc02200h] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023] Open
Abstract
Fe(iii) complexes are attracting growing interest in chemists developing diagnostic probes for Magnetic Resonance Imaging because they leverage on an endogenous metal and show superior stability. However, in this case a detailed understanding of the relationship between the chemical structure of the complexes, their magnetic, thermodynamic, kinetic and redox properties and the molecular parameters governing the efficacy (relaxivity) is still far from being available. We have carried out an integrated 1H and 17O NMR relaxometric study as a function of temperature and magnetic field, on the aqua ion and three complexes chosen as reference models, together with theoretical calculations, to obtain accurate values of the parameters that control their relaxivity. Moreover, thermodynamic stability and dissociation kinetics of the Fe(iii) chelates, measured in association with the ascorbate reduction behaviour, highlight their role and mutual influence in achieving the stability required for use in vivo. An integrated 1H and 17O NMR relaxometric study on model systems allowed to highlight that the Fe(III) complexes might represent the best alternative to Gd-based MRI contrast agents at the magnetic fields of current and future clinical scanners.![]()
Collapse
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre, Bracco Imaging S.p.A. Via Ribes 5 10010 Colleretto Giacosa Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Dávid Horváth
- Bracco Research Centre, Bracco Imaging S.p.A. Via Ribes 5 10010 Colleretto Giacosa Italy.,Department of Physical Chemistry, University of Debrecen Egyetem tér 1. H-4010 Debrecen Hungary
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña 15071 A Coruña Galicia Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| |
Collapse
|
23
|
Leone L, Guarnieri L, Martinelli J, Sisti M, Penoni A, Botta M, Tei L. Rigid and Compact Binuclear Bis-hydrated Gd-complexes as High Relaxivity MRI Agents. Chemistry 2021; 27:11811-11817. [PMID: 34114699 PMCID: PMC8456821 DOI: 10.1002/chem.202101701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/21/2022]
Abstract
The first binuclear Gd‐complex of the 12‐membered pyridine‐based polyaminocarboxylate macrocyclic ligand PCTA was synthesized by C−C connection of the pyridine units through two different synthetic procedures. A dimeric AAZTA‐ligand was also synthesized with the aim to compare the relaxometric results or the two ditopic Gd‐complexes. Thus, the 1H relaxometric study on [Gd2PCTA2(H2O)4] and on [Gd2AAZTA2(H2O)4]2− highlighted the remarkable rigidity and compactness of the two binuclear complexes, which results in molar relaxivities (per Gd), at 1.5 T and 298 K of ca. 12–12.6 mM−1 s−1 with an increase of ca. 80 % at 1.5 T and 298 K (+70 % at 310 K) with respect to the corresponding mononuclear complexes.
Collapse
Affiliation(s)
- Loredana Leone
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale T. Michel 11, 50121, Alessandria, Italy
| | - Luca Guarnieri
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale T. Michel 11, 50121, Alessandria, Italy
| | - Jonathan Martinelli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale T. Michel 11, 50121, Alessandria, Italy
| | - Massimo Sisti
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, Como, 22100, Italy
| | - Andrea Penoni
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, Como, 22100, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale T. Michel 11, 50121, Alessandria, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale T. Michel 11, 50121, Alessandria, Italy
| |
Collapse
|
24
|
Boccalon M, Leone L, Marino G, Demitri N, Baranyai Z, Tei L. Underlining the Importance of Peripheral Protic Functional Groups to Enhance the Proton Exchange of Gd-Based MRI Contrast Agents. Inorg Chem 2021; 60:13626-13636. [PMID: 34387463 PMCID: PMC8769378 DOI: 10.1021/acs.inorgchem.1c01927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
In
this study, we report the synthesis and the equilibrium, kinetic,
relaxation, and structural properties of two new GdIII complexes
based on modified 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic
acid (HPDO3A) designed to modulate the relaxivity at acidic and basic
pH due to intra- and intermolecular proton exchange. The presence
of a carboxylic or ester moieties in place of the methyl group of
HPDO3A allowed differentiation of a protic and nonprotic functional
group, highlighting the importance of the formation of an intramolecular
hydrogen bond between the coordinated hydroxyl and the carboxylate
groups for proton exchange (kH = 1.5 ×
1011 M–1 s–1, kOH = 1.7 × 109 M–1 s–1). The determination of the thermodynamic stability
and kinetic inertness of the GdIII complexes confirmed
that the modification of peripheral groups does not significantly
affect the coordination environment and thus the stability (log KGdL = 19.26, t1/2 = 2.14 × 107 hours, pH = 7.4, 0.15 M NaCl, 25 °C).
The relaxivity (r1) was measured as a
function of pH to investigate the proton exchange kinetics, and as
a function of the magnetic field strength to extrapolate the relaxometric
parameters (r1GdL1 = 4.7 mM–1 s–1 and r1GdL2 = 5.1 mM–1 s–1 at 20 MHz, 25 °C, and pH 7.4). Finally, the X-ray crystal structure
of the complex crystallized at basic pH showed the formation of a
tetranuclear dimer with alkoxide and hydroxide groups bridging the
GdIII ions. The peripheral
carboxylic moiety of a 2-hydroxypropanoic
pendant arm of a GdHPDO3A-like complex forms an intramolecular hydrogen
bond with the −OH group that allows both acid- and base-catalyzed
proton exchange and thus a relaxivity enhancement. Conversely, the
nonprotic ester group in the same position permits only the base-catalyzed
mechanism.
Collapse
Affiliation(s)
- Mariangela Boccalon
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, 10010 Colleretto Giacosa, Italy
| | - Loredana Leone
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Giuseppe Marino
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, 10010 Colleretto Giacosa, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Zsolt Baranyai
- Bracco Research Centre, Bracco Imaging S.p.A., Via Ribes 5, 10010 Colleretto Giacosa, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
25
|
Padovan S, Carrera C, Catanzaro V, Grange C, Koni M, Digilio G. Glycol Chitosan Functionalized with a Gd(III) Chelate as a Redox-responsive Magnetic Resonance Imaging Probe to Label Cell Embedding Alginate Capsules. Chemistry 2021; 27:12289-12293. [PMID: 34160090 DOI: 10.1002/chem.202101657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/13/2022]
Abstract
One possibility for the non-invasive imaging of encapsulated cell grafts is to label the lumen of cell embedding capsules with a redox-responsive probe, as an increased extracellular reducing potential can be considered as a marker of hypoxia-induced necrosis. A Gd(III)-HPDO3A-like chelate has been conjugated to glycol-chitosan through a redox-responsive disulphide bond to obtain a contrast agent for Magnetic Resonance Imaging (MRI). Such a compound can be interspersed with fibroblasts within the lumen of alginate-chitosan capsules. Increasing reducing conditions within the extracellular microenvironment lead to the reductive cleavage of the disulphide bond and to the release of gadolinium in the form of a low molecular weight, non-ionic chelate. The efflux of such chelate from capsules is readily detected by a decrease of contrast enhancement in T1 -weighted MR images.
Collapse
Affiliation(s)
- Sergio Padovan
- Institute for Biostructures and Bioimages c/o Molecular Biotechnology Centre CNR, Via Nizza 52, 10126, Torino, Italy
| | - Carla Carrera
- Institute for Biostructures and Bioimages c/o Molecular Biotechnology Centre CNR, Via Nizza 52, 10126, Torino, Italy
| | - Valeria Catanzaro
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy.,Technology Transfer and Industrial Liaison Department, Politecnico di Torino, Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126, Torino, Italy
| | - Malvina Koni
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126, Torino, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
26
|
Asik D, Abozeid SM, Turowski SG, Spernyak JA, Morrow JR. Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes. Inorg Chem 2021; 60:8651-8664. [PMID: 34110140 PMCID: PMC9942924 DOI: 10.1021/acs.inorgchem.1c00634] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Four high-spin Fe(III) macrocyclic complexes, including three dinuclear and one mononuclear complex, were prepared toward the development of more effective iron-based magnetic resonance imaging (MRI) contrast agents. All four complexes contain a 1,4,7-triazacyclononane macrocyclic backbone with two hydroxypropyl pendant groups, an ancillary aryl or biphenyl group, and a coordination site for a water ligand. The pH potentiometric titrations support one or two deprotonations of the complexes, most likely deprotonation of hydroxypropyl groups at near-neutral pH. Variable-temperature 17O NMR studies suggest that the inner-sphere water ligand is slow to exchange with bulk water on the NMR time scale. Water proton T1 relaxation times measured for solutions of the Fe(III) complexes at pH 7.2 showed that the dinuclear complexes have a 2- to 3-fold increase in r1 relaxivity in comparison to the mononuclear complex per molecule at field strengths ranging from 1.4 T to 9.4 T. The most effective agent, a dinuclear complex with macrocycles linked through para-substitution of an aryl group (Fe2(PARA)), has an r1 of 6.7 mM-1 s-1 at 37 °C and 4.7 T or 3.3 mM-1 s-1 per iron center in the presence of serum albumin and shows enhanced blood pool and kidney contrast in mice MRI studies.
Collapse
Affiliation(s)
- Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Samira M. Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
27
|
Bödenler M, Maier O, Stollberger R, Broche LM, Ross PJ, MacLeod M, Scharfetter H. Joint multi-field T 1 quantification for fast field-cycling MRI. Magn Reson Med 2021; 86:2049-2063. [PMID: 34110028 PMCID: PMC8362152 DOI: 10.1002/mrm.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Purpose Recent developments in hardware design enable the use of fast field‐cycling (FFC) techniques in MRI to exploit the different relaxation rates at very low field strength, achieving novel contrast. The method opens new avenues for in vivo characterizations of pathologies but at the expense of longer acquisition times. To mitigate this, we propose a model‐based reconstruction method that fully exploits the high information redundancy offered by FFC methods. Methods The proposed model‐based approach uses joint spatial information from all fields by means of a Frobenius ‐ total generalized variation regularization. The algorithm was tested on brain stroke images, both simulated and acquired from FFC patients scans using an FFC spin echo sequences. The results are compared to three non‐linear least squares fits with progressively increasing complexity. Results The proposed method shows excellent abilities to remove noise while maintaining sharp image features with large signal‐to‐noise ratio gains at low‐field images, clearly outperforming the reference approach. Especially patient data show huge improvements in visual appearance over all fields. Conclusion The proposed reconstruction technique largely improves FFC image quality, further pushing this new technology toward clinical standards.
Collapse
Affiliation(s)
- Markus Bödenler
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
- Institute of eHealthUniversity of Applied Sciences FH JOANNEUMGrazAustria
| | - Oliver Maier
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
| | - Rudolf Stollberger
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Lionel M. Broche
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenForesterhill, AberdeenUK
| | - P. James Ross
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenForesterhill, AberdeenUK
| | - Mary‐Joan MacLeod
- Institute of Medical SciencesUniversity of AberdeenForesterhill, AberdeenUK
| | | |
Collapse
|
28
|
Anbu S, Hoffmann SHL, Carniato F, Kenning L, Price TW, Prior TJ, Botta M, Martins AF, Stasiuk GJ. A Single-Pot Template Reaction Towards a Manganese-Based T 1 Contrast Agent. Angew Chem Int Ed Engl 2021; 60:10736-10744. [PMID: 33624910 PMCID: PMC8252504 DOI: 10.1002/anie.202100885] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Manganese-based contrast agents (MnCAs) have emerged as suitable alternatives to gadolinium-based contrast agents (GdCAs). However, due to their kinetic lability and laborious synthetic procedures, only a few MnCAs have found clinical MRI application. In this work, we have employed a highly innovative single-pot template synthetic strategy to develop a MnCA, MnLMe , and studied the most important physicochemical properties in vitro. MnLMe displays optimized r1 relaxivities at both medium (20 and 64 MHz) and high magnetic fields (300 and 400 MHz) and an enhanced r1b =21.1 mM-1 s-1 (20 MHz, 298 K, pH 7.4) upon binding to BSA (Ka =4.2×103 M-1 ). In vivo studies show that MnLMe is cleared intact into the bladder through renal excretion and has a prolonged blood half-life compared to the commercial GdCA Magnevist. MnLMe shows great promise as a novel MRI contrast agent.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Department of Biomedical SciencesUniversity of HullCottingham RoadHullHU6 7RXUK
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Sabrina H. L. Hoffmann
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
| | - Fabio Carniato
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Lawrence Kenning
- MRI centreHull Royal Infirmary Hospital NHS TrustAnlaby RoadHullHU3 2JZUK
| | - Thomas W. Price
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| | - Timothy J. Prior
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Mauro Botta
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Andre F. Martins
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”University of TuebingenGermany
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| |
Collapse
|
29
|
Anbu S, Hoffmann SHL, Carniato F, Kenning L, Price TW, Prior TJ, Botta M, Martins AF, Stasiuk GJ. A Single-Pot Template Reaction Towards a Manganese-Based T1 Contrast Agent. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:10831-10839. [PMID: 38505690 PMCID: PMC10947048 DOI: 10.1002/ange.202100885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Manganese-based contrast agents (MnCAs) have emerged as suitable alternatives to gadolinium-based contrast agents (GdCAs). However, due to their kinetic lability and laborious synthetic procedures, only a few MnCAs have found clinical MRI application. In this work, we have employed a highly innovative single-pot template synthetic strategy to develop a MnCA, MnLMe, and studied the most important physicochemical properties in vitro. MnLMe displays optimized r 1 relaxivities at both medium (20 and 64 MHz) and high magnetic fields (300 and 400 MHz) and an enhanced r 1 b=21.1 mM-1 s-1 (20 MHz, 298 K, pH 7.4) upon binding to BSA (K a=4.2×103 M-1). In vivo studies show that MnLMe is cleared intact into the bladder through renal excretion and has a prolonged blood half-life compared to the commercial GdCA Magnevist. MnLMe shows great promise as a novel MRI contrast agent.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Department of Biomedical SciencesUniversity of HullCottingham RoadHullHU6 7RXUK
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Sabrina H. L. Hoffmann
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
| | - Fabio Carniato
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Lawrence Kenning
- MRI centreHull Royal Infirmary Hospital NHS TrustAnlaby RoadHullHU3 2JZUK
| | - Thomas W. Price
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| | - Timothy J. Prior
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Mauro Botta
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Andre F. Martins
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”University of TuebingenGermany
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| |
Collapse
|
30
|
Subasinghe SAAS, Romero J, Ward CL, Bailey MD, Zehner DR, Mehta PJ, Carniato F, Botta M, Yustein JT, Pautler RG, Allen MJ. Magnetic resonance thermometry using a Gd III-based contrast agent. Chem Commun (Camb) 2021; 57:1770-1773. [PMID: 33475101 PMCID: PMC7897303 DOI: 10.1039/d0cc06400a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complexes described here serve as contrast agents for magnetic resonance imaging thermometry. The complexes differentially enhance contrast between 275 and 325 K. The basis of the temperature response of the fluorinated contrast complex is the modulation of water exchange caused by trifluoromethyl groups that can be chemically controlled.
Collapse
Affiliation(s)
- S A Amali S Subasinghe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bellomo G, Ravera E, Calderone V, Botta M, Fragai M, Parigi G, Luchinat C. Revisiting paramagnetic relaxation enhancements in slowly rotating systems: how long is the long range? MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:25-31. [PMID: 37904766 PMCID: PMC10539754 DOI: 10.5194/mr-2-25-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 11/01/2023]
Abstract
Cross-relaxation terms in paramagnetic systems that reorient rigidly with slow tumbling times can increase the effective longitudinal relaxation rates of protons of more than 1 order of magnitude. This is evaluated by simulating the time evolution of the nuclear magnetization using a complete relaxation rate-matrix approach. The calculations show that the Solomon dependence of the paramagnetic relaxation rates on the metal-proton distance (as r - 6 ) can be incorrect for protons farther than 15 Å from the metal and thus can cause sizable errors in R 1 -derived distance restraints used, for instance, for protein structure determination. Furthermore, the chemical exchange of these protons with bulk water protons can enhance the relaxation rate of the solvent protons by far more than expected from the paramagnetic Solomon equation. Therefore, it may contribute significantly to the water proton relaxation rates measured at magnetic resonance imaging (MRI) magnetic fields in the presence of slow-rotating nanoparticles containing paramagnetic ions and a large number of exchangeable surface protons.
Collapse
Affiliation(s)
- Giovanni Bellomo
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
- present address: Laboratory of Clinical Neurochemistry, Neurology
Clinic, University of Perugia, Piazzale Lucio Severi 1/8, 06132 Perugia
(PG), Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry,
University of Florence, via Sacconi 6, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Sesto Fiorentino, Italy
| |
Collapse
|
32
|
Nan A, Suciu M, Ardelean I, Şenilă M, Turcu R. Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1731522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alexandrina Nan
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Maria Suciu
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Ioan Ardelean
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Marin Şenilă
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Rodica Turcu
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Porcar-Tost O, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM. Stability, relaxometric and computational studies on Mn 2+ complexes with ligands containing a cyclobutane scaffold. Dalton Trans 2021; 50:1076-1085. [PMID: 33367361 DOI: 10.1039/d0dt03402a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability constants of Mn2+ complexes with ligands containing a trans-1,2-cyclobutanediamine spacer functionalized with picolinate and/or carboxylate functions were determined using potentiometric titrations (25 °C, 0.1 M KCl). The stability constant of the complex with a hexadentate ligand containing four acetate groups (L14-, log KMnL = 10.26) is improved upon replacing one (L24-, log KMnL = 14.71) or two (L34-, log KMnL = 15.81) carboxylate groups with picolinates. The [Mn(L1)]2- complex contains a water molecule coordinated to the metal ion in aqueous solutions, as evidenced by 1H NMRD studies and 17O chemical shifts and transverse relaxation rates. The 1H relaxivities determined at 60 MHz (3.3 and 2.4 mM-1 s-1 at 25 and 37 °C, respectively) are comparable to those of monohydrated complexes such as [Mn(edta)]2-. The exchange rate of the inner-sphere water molecule (k = 248 × 106 s-1) is slightly lower than that of the edta4- analogue. DFT calculations (M11/def2-TZVP) suggest that the water exchange reaction follows a dissociatively activated mechanism, providing activation parameters in reasonably good agreement with the experimental data. DFT calculations also show that the 17O hyperfine coupling constant A/ℏ is affected slightly by changes in the Mn-Owater distance and the orientation of the water molecule with respect to the Mn-O vector.
Collapse
Affiliation(s)
- Oriol Porcar-Tost
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Tei L, Gugliotta G, Marchi D, Cossi M, Geninatti Crich S, Botta M. Optimizing the relaxivity at high fields: systematic variation of the rotational dynamics in polynuclear Gd-complexes based on the AAZTA ligand. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00904d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A homogeneous series of polynuclear Gd-complexes (n = 1–8) based on a stable and bis-hydrated [Gd(AAZTA)]− chelate shows high relaxivity values at high fields (1.5–7 T), per Gd, particularly pronounced for the more rigid and compact members.
Collapse
Affiliation(s)
- Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica and Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, I-15121, Alessandria, Italy
| | - Giuseppe Gugliotta
- Dipartimento di Scienze e Innovazione Tecnologica and Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, I-15121, Alessandria, Italy
| | - Davide Marchi
- Dipartimento di Scienze e Innovazione Tecnologica and Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, I-15121, Alessandria, Italy
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica and Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, I-15121, Alessandria, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences and Molecular Imaging Center, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica and Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, I-15121, Alessandria, Italy
| |
Collapse
|
35
|
Yang J, Shan P, Zhao Q, Zhang S, Li L, Yang X, Yu X, Lu Z, Wang Z, Zhang X. A design strategy of ultrasmall Gd 2O 3 nanoparticles for T1 MRI with high performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj00508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proposing a design strategy of Gd3+ based nanoparticles for high performance magnetic resonance imaging.
Collapse
Affiliation(s)
- Jianfeng Yang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Pengyuan Shan
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Qingling Zhao
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Shuquan Zhang
- Department of Orthopedics
- Tianjin Nankai Hospital
- Nankai
- Tianjin
- China
| | - Lanlan Li
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Xiaojing Yang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Xiaofei Yu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Zunming Lu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Ziwu Wang
- Department of Physics
- Tianjin University
- Tianjin
- China
| | - Xinghua Zhang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| |
Collapse
|
36
|
Leone L, Camorali S, Freire-García A, Platas-Iglesias C, Esteban Gomez D, Tei L. Scrutinising the role of intramolecular hydrogen bonding in water exchange dynamics of Gd(iii) complexes. Dalton Trans 2021; 50:5506-5518. [DOI: 10.1039/d1dt00204j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The water exchange rate in GdIII-complexes bearing substituted acetophenone moieties is modulated by the ability of peripherical substituents to establish hydrogen bonds with the coordinated and/or second sphere water molecules.
Collapse
Affiliation(s)
- Loredana Leone
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT). Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Sara Camorali
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT). Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Antía Freire-García
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - David Esteban Gomez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT). Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| |
Collapse
|
37
|
A Photocleavable Contrast Agent for Light-Responsive MRI. Pharmaceuticals (Basel) 2020; 13:ph13100296. [PMID: 33050049 PMCID: PMC7599822 DOI: 10.3390/ph13100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Thanks to its innocuousness and high spatiotemporal resolution, light is used in several established and emerging applications in biomedicine. Among them is the modulation of magnetic resonance imaging (MRI) contrast agents’ relaxivity with the aim to increase the sensitivity, selectivity and amount of functional information obtained from this outstanding whole-body medical imaging technique. This approach requires the development of molecular contrast agents that show high relaxivity and strongly pronounced photo-responsiveness. To this end, we report here the design and synthesis of a light-activated MRI contrast agent, together with its evaluation using UV–vis spectroscopy, Fast Field Cycling (FFC) relaxometry and relaxometric measurements on clinical MRI scanners. The high relaxivity of the reported agent changes substantially upon irradiation with light, showing a 17% decrease in relaxivity at 0.23T upon irradiation with λ = 400 nm (violet) light for 60 min. On clinical MRI scanners (1.5T and 3.0T), irradiation leads to a decrease in relaxivity of 9% and 19% after 3 and 60 min, respectively. The molecular design presents an important blueprint for the development of light-activatable MRI contrast agents.
Collapse
|
38
|
Uzal-Varela R, Rodríguez-Rodríguez A, Martínez-Calvo M, Carniato F, Lalli D, Esteban-Gómez D, Brandariz I, Pérez-Lourido P, Botta M, Platas-Iglesias C. Mn 2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorg Chem 2020; 59:14306-14317. [PMID: 32962345 DOI: 10.1021/acs.inorgchem.0c02098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present two ligands containing a N-ethyl-4-(trifluoromethyl)benzenesulfonamide group attached to either a 6,6'-(azanediylbis(methylene))dipicolinic acid unit (H3DPASAm) or a 2,2'-(1,4,7-triazonane-1,4-diyl)diacetic acid macrocyclic platform (H3NO2ASAm). These ligands were designed to provide a pH-dependent relaxivity response upon complexation with Mn2+ in aqueous solution. The protonation constants of the ligands and the stability constants of the Mn2+ complexes were determined using potentiometric titrations complemented by spectrophotometric experiments. The deprotonations of the sulfonamide groups of the ligands are characterized by protonation constants of log KiH = 10.36 and 10.59 for DPASAm3- and HNO2ASAm2-, respectively. These values decrease dramatically to log KiH = 6.43 and 5.42 in the presence of Mn2+, because of the coordination of the negatively charged sulfonamide groups to the metal ion. The higher log KiH value in [Mn(DPASAm)]- is related to the formation of a seven-coordinate complex, while the metal ion in [Mn(NO2ASAm)]- is six-coordinated. The X-ray crystal structure of Na[Mn(DPASAm)(H2O)]·2H2O confirms the formation of a seven-coordinate complex, where the coordination environment is fulfilled by the donor atoms of the two picolinate groups, the amine N atom, the N atom of the sulfonamide group, and a coordinated water molecule. The lower conditional stability of the [Mn(NO2ASAm)]- complex and the lower protonation constant of the sulfonamide group results in complex dissociation at relatively high pH (<7.0). However, protonation of the sulfonamide group in [Mn(DPASAm)]- falls into the physiologically relevant pH window and causes a significant increase in relaxivity from r1p = 3.8 mM-1 s-1 at pH 9.0 to r1p = 8.9 mM-1 s-1 at pH 4.0 (10 MHz, 25 °C).
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Miguel Martínez-Calvo
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - David Esteban-Gómez
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Isabel Brandariz
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Paulo Pérez-Lourido
- Departamento de Quı́mica Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
39
|
Frías JC, Soriano J, Blasco S, García-España E, Rodríguez-Rodríguez A, Esteban-Gómez D, Carniato F, Botta M, Platas-Iglesias C, Albelda MT. Macrocyclic Pyclen-Based Gd 3+ Complex with High Relaxivity and pH Response. Inorg Chem 2020; 59:7306-7317. [PMID: 32379437 DOI: 10.1021/acs.inorgchem.0c00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis and characterization of the macrocyclic ligand 2,2'-((2-(3,9-bis(carboxymethyl)-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-6-yl)ethyl)azanediyl)diacetic acid (H4L) and several of its complexes with lanthanide ions. The structure of the free ligand was determined using X-ray diffraction measurements. Two N atoms of the pyclen moiety in the trans position are protonated in the solid state, together with the exocyclic N atom and one of the carboxylate groups of the ligand. The relaxivity of the Gd3+ complex was found to increase from 6.7 mM-1 s-1 at pH 8.6 to 8.5 mM-1 s-1 below pH ≈ 6.0. Luminescence lifetime measurements recorded from H2O and D2O solutions of the Eu3+ complex evidence the presence of a single complex species in solution at low pH (∼5.0) that contains two inner-sphere water molecules. DFT calculations suggest that the coordination environment of the Ln3+ ion is fulfilled by the four N atoms of the pyclen unit, two oxygen atoms of the macrocyclic acetate groups, and an oxygen atom of an exocyclic carboxylate group. The two inner-sphere water molecules complete coordination number nine around the metal ion. At high pH (∼9.3), the lifetime of the excited 5D0 level of Eu3+ displays a biexponential behavior that can be attributed to the presence of two species in solution with hydration numbers of q = 0 and q = 1. The 1H NMR and DOSY spectra recorded from solutions of the Eu3+ and Y3+ complexes reveal a structural change triggered by pH and the formation of small aggregates at high pH values.
Collapse
Affiliation(s)
- Juan C Frías
- Departamento de Ciencias Biomédicas, Universidad CEU-Cardenal Herrera, CEU Universities, C/Ramón y Cajal, s/n, 46115 Alfara del Patriarca, Valencia, Spain
| | - José Soriano
- Departamento de Quı́mica Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, Edificio de Institutos de Paterna, Apdo 22085, 46071 Valencia, Spain
| | - Salvador Blasco
- Departamento de Quı́mica Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, Edificio de Institutos de Paterna, Apdo 22085, 46071 Valencia, Spain
| | - Enrique García-España
- Departamento de Quı́mica Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, Edificio de Institutos de Paterna, Apdo 22085, 46071 Valencia, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Quı́mica, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Quı́mica, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Cientı́ficas Avanzadas (CICA) and Departamento de Quı́mica, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - M Teresa Albelda
- Departamento de Quı́mica Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
40
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
41
|
Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020; 59:6648-6678. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | | | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | | |
Collapse
|
42
|
Charpentier C, Salaam J, Nonat A, Carniato F, Jeannin O, Brandariz I, Esteban-Gomez D, Platas-Iglesias C, Charbonnière LJ, Botta M. pH-Dependent Hydration Change in a Gd-Based MRI Contrast Agent with a Phosphonated Ligand. Chemistry 2020; 26:5407-5418. [PMID: 31923335 DOI: 10.1002/chem.201904904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Indexed: 12/12/2022]
Abstract
The heptadentate ligand L was shown to form an extremely stable Gd complex at neutral pH with a pGd value of 18.4 at pH 7.4. The X-ray crystal structures of the complexes formed with Gd and Tb displayed two very different coordination behaviors being, respectively, octa- and nonacoordinated. The relaxometric properties of the Gd complex were studied by field-dependent relaxivity measurements at various temperatures and by 17 O NMR spectroscopy. The pH-dependence of the longitudinal relaxivity profile indicated large changes around neutral pH leading to a very large value of 10.1 mm-1 ⋅s-1 (60 MHz, 298 K) at pH 4.7. The changes were attributed to an increase of the hydration number from one water molecule in basic conditions to two at acidic pH. A similar trend was observed for the luminescence of the Eu complex, confirming the change in hydration state. DOSY experiments were performed on the Lu analogue, pointing to the absence of dimers in solution in the considered pH range. A breathing mode of the complex was postulated, which was further supported by 1 H and 31 P NMR spectroscopy of the Yb complex at varying pH and was finally modeled by DFT calculations.
Collapse
Affiliation(s)
- Cyrille Charpentier
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Bâtiment R1N0, 67087, Strasbourg Cedex 02, France
| | - Jérémy Salaam
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Bâtiment R1N0, 67087, Strasbourg Cedex 02, France
| | - Aline Nonat
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Bâtiment R1N0, 67087, Strasbourg Cedex 02, France
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Olivier Jeannin
- CNRS, ISCR-UMR6226, Université de Rennes, 35000, Rennes, France
| | - Isabel Brandariz
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008, A Coruña, Spain
| | - David Esteban-Gomez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Bâtiment R1N0, 67087, Strasbourg Cedex 02, France
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
43
|
Bödenler M, Malikidogo KP, Morfin J, Aigner CS, Tóth É, Bonnet CS, Scharfetter H. High-Field Detection of Biomarkers with Fast Field-Cycling MRI: The Example of Zinc Sensing. Chemistry 2019; 25:8236-8239. [PMID: 30990914 PMCID: PMC6618089 DOI: 10.1002/chem.201901157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Many smart magnetic resonance imaging (MRI) probes provide response to a biomarker based on modulation of their rotational correlation time. The magnitude of such MRI signal changes is highly dependent on the magnetic field and the response decreases dramatically at high fields (>2 T). To overcome the loss of efficiency of responsive probes at high field, with fast-field cycling magnetic resonance imaging (FFC-MRI) we exploit field-dependent information rather than the absolute difference in the relaxation rate measured in the absence and in the presence of the biomarker at a given imaging field. We report here the application of fast field-cycling techniques combined with the use of a molecular probe for the detection of Zn2+ to achieve 166 % MRI signal enhancement at 3 T, whereas the same agent provides no detectable response using conventional MRI. This approach can be generalized to any biomarker provided the detection is based on variation of the rotational motion of the probe.
Collapse
Affiliation(s)
- Markus Bödenler
- Institute of Medical EngineeringGraz University of TechnologyGrazAustria
| | | | - Jean‐François Morfin
- Centre de Biophysique MoléculaireCNRSRue Charles Sadron45071Orléans Cedex 2France
| | | | - Éva Tóth
- Centre de Biophysique MoléculaireCNRSRue Charles Sadron45071Orléans Cedex 2France
| | - Célia S. Bonnet
- Centre de Biophysique MoléculaireCNRSRue Charles Sadron45071Orléans Cedex 2France
| | | |
Collapse
|
44
|
Pujales-Paradela R, Savić T, Pérez-Lourido P, Esteban-Gómez D, Angelovski G, Botta M, Platas-Iglesias C. Lanthanide Complexes with 1H paraCEST and 19F Response for Magnetic Resonance Imaging Applications. Inorg Chem 2019; 58:7571-7583. [DOI: 10.1021/acs.inorgchem.9b00869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rosa Pujales-Paradela
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia Spain
| | - Tanja Savić
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia Spain
| |
Collapse
|
45
|
Pujales-Paradela R, Carniato F, Esteban-Gómez D, Botta M, Platas-Iglesias C. Controlling water exchange rates in potential Mn 2+-based MRI agents derived from NO2A 2. Dalton Trans 2019; 48:3962-3972. [PMID: 30834411 DOI: 10.1039/c9dt00211a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of pentadentate ligands based on a 1,4,7-triazacyclononane-1,4-diacetic acid (H2NO2A) containing different substituents attached to the third nitrogen atom of the macrocyclic unit. Detailed 1H Nuclear Magnetic Relaxation Dispersion (NMRD) characterisation of the corresponding Mn2+ complexes suggests the formation of six-coordinate species in solution containing an inner-sphere water molecule. This was confirmed by recording the transverse 17O relaxation time and chemical shift measurements. The water exchange rate of the coordinated water molecule was found to be strongly influenced by the nature of the substituent R at position 7 of the triazacyclononane unit (R = Me, k298ex = 62.6 × 107 s-1; R = Bz, k298ex = 4.4 × 107 s-1; R = 1-phenylethyl, k298ex = 2.6 × 107 s-1). The decreasing exchange rates are explained by the increasing bulkiness of the substituent, which hinders the approach of the entering water molecule in an associatively activated water exchange mechanism. This is supported by DFT calculations (M062X/TZVP), which confirm the associative nature of the water exchange reaction. A potentially decadentate ligand containing two NO2A units linked by a xylenyl spacer in the meta position was also synthesised. The corresponding binuclear Mn2+ complex contains two metal ions with different hydration numbers, as evidenced by 1H NMRD and 17O NMR measurements. DFT calculations show that this is related to the presence of a bridging bidentate μ-η1-carboxylate group connecting the two metal centers. The results reported in this work provide a straightforward strategy to control the exchange rate of the coordinated water molecule in this family of MRI contrast agent candidates.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | |
Collapse
|
46
|
Pujales-Paradela R, Carniato F, Uzal-Varela R, Brandariz I, Iglesias E, Platas-Iglesias C, Botta M, Esteban-Gómez D. A pentadentate member of the picolinate family for Mn(ii) complexation and an amphiphilic derivative. Dalton Trans 2019; 48:696-710. [PMID: 30547165 DOI: 10.1039/c8dt03856b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a pentadentate ligand containing a 2,2'-azanediyldiacetic acid moiety functionalized with a picolinate group at the nitrogen atom (H3paada), as well as a lipophylic derivative functionalized with a dodecyloxy group at position 4 of the pyridyl ring (H3C12Opaada). The protonation constants of the paada3- ligand and the stability constant of the Mn(ii) complex were determined using a combination of potentiometric and spectrophotometric titrations (25 °C, 0.15 M NaCl). A detailed relaxometric characterisation was accomplished by recording 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles and 17O chemical shifts and relaxation rates. These studies provide detailed information on the microscopic parameters that control their efficiency as relaxation agents in vitro. For the sake of completeness and to facilitate comparison, we also characterised the related [Mn(nta)]- complex (nta = nitrilotriacetate). Both the [Mn(paada)]- and [Mn(nta)]- complexes turned out to contain two inner-sphere water molecules in aqueous solution. The exchange rate of these coordinated water molecules was slower in [Mn(paada)]- (k298ex = 90 × 107 s-1) than in [Mn(nta)]- (k298ex = 280 × 107 s-1). The complexes were also characterised using both DFT (TPSSh/def2-TZVP) and ab initio CAS(5,5) calculations. The lipophylic [Mn(C12Opaada)]- complex forms micelles in solution characterised by a critical micellar concentration (cmc) of 0.31 ± 0.01 mM. This complex also forms a rather strong adduct with Bovine Serum Albumin (BSA) with an association constant of 5.5 × 104 M-1 at 25 °C. The enthalpy and entropy changes obtained for the formation of the adduct indicate that the binding event is driven by hydrophobic interactions.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bödenler M, de Rochefort L, Ross PJ, Chanet N, Guillot G, Davies GR, Gösweiner C, Scharfetter H, Lurie DJ, Broche LM. Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1557349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Markus Bödenler
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Ludovic de Rochefort
- CNRS, Center for Magnetic Resonance in Biology and Medicine (CRMBM) UMR 7339, Aix Marseille Univ, Marseille, France
| | - P. James Ross
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Nicolas Chanet
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M UMR 8081, Université Paris Saclay, Orsay, France
| | - Geneviève Guillot
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M UMR 8081, Université Paris Saclay, Orsay, France
| | - Gareth R. Davies
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Christian Gösweiner
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Hermann Scharfetter
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - David J. Lurie
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Lionel M. Broche
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|