1
|
Bozan N, Koçak ÖF, Demir CY, Avcı K, Erdağ Ö, Turan M, Demir H. Serum levels of heavy metals in patients with Bell's palsy: a case-control study. Eur Arch Otorhinolaryngol 2024; 281:891-896. [PMID: 37768371 DOI: 10.1007/s00405-023-08253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE The exact etiology of Bell's palsy (BP) remains unknown, while its potential etiopathology includes neuritis and inflammation-related demyelination as in optic neuritis. It has been reported that disruption of heavy metal homeostasis may be associated with the inflammatory process of optic neuritis; therefore, heavy metals may be involved in the pathogenesis of facial nerve neuritis. In this study, we aimed to investigate serum levels of heavy metals including essential elements [iron (Fe), zinc (Zn), copper (Cu), cobalt (Co), and manganese (Mn)], and nonessential elements [lead (Pb) and cadmium (Cd)] in patients with BP. METHODS The study included 25 patients with BP and 31 healthy volunteers. For each participant, serum levels of essential and nonessential elements were measured using the atomic absorption spectrophotometer method. RESULTS Serum levels of essential elements were significantly lower in the patient group compared to the control group (p < 0.001, for each). Serum levels of Pb increased in the patient group compared to the control group although no significant difference was achieved (p = 0.105). In contrast, serum Cd levels increased significantly in the patient group compared to the control group (p < 0.001). CONCLUSION Our findings suggest that decreased essential and increased nonessential elements may be associated with BP and thus, serum concentrations of these elements should be taken into account in BP. Studies are warranted to determine the role of these elements in treatment of BP.
Collapse
Affiliation(s)
- Nazim Bozan
- Department of Otorhinolaryngology, Medical Faculty, Van Yüzüncü Yıl University, Van, 65090, Turkey.
| | - Ömer Faruk Koçak
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical Faculty, Van Yüzüncü Yıl University, Van, Turkey
| | - Canser Yılmaz Demir
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical Faculty, Van Yüzüncü Yıl University, Van, Turkey
| | - Koray Avcı
- Department of Otorhinolaryngology, Medical Faculty, Van Yüzüncü Yıl University, Van, 65090, Turkey
| | - Ömer Erdağ
- Department of Otorhinolaryngology, Medical Faculty, Van Yüzüncü Yıl University, Van, 65090, Turkey
| | - Mahfuz Turan
- Department of Otorhinolaryngology, Medical Faculty, Van Yüzüncü Yıl University, Van, 65090, Turkey
| | - Halit Demir
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
2
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
3
|
Balashova MS, Tuluzanovskaya IG, Glotov OS, Glotov AS, Barbitoff YA, Fedyakov MA, Alaverdian DA, Ivashchenko TE, Romanova OV, Sarana AM, Scherbak SG, Baranov VS, Filimonov MI, Skalny AV, Zhuchenko NA, Ignatova TM, Asanov AY. The spectrum of pathogenic variants of the ATP7B gene in Wilson disease in the Russian Federation. J Trace Elem Med Biol 2020; 59:126420. [PMID: 31708252 DOI: 10.1016/j.jtemb.2019.126420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Wilson's disease (WD) is a rare inherited disorder caused by mutations in the ATP7B gene resulting in copper accumulation in different organs. However, data on ATP7B mutation spectrum in Russia and worldwide are insufficient and contradictory. The objective of the present study was estimation of the frequency of ATP7B gene mutations in the Russian population of WD patients. MATERIALS AND METHODS 75 WDpatients were examined by next-generation sequencing (NGS). A targeted panel NimbleGen SeqCap EZ Choice: 151012_HG38_CysFib_EZ_HX3 (ROCHE)was designed for analysis of ATP7B gene and possible modifier genes. Retrospective assessment of a diagnostic WD score (Leipzig, 2001) was also performed. RESULTS 31 mutations in ATP7B gene were detected. Two most frequent mutations were c.3207C > A (51,85% of alleles) and c.3190 G > A (8,64% of alleles). Single rare mutations were detected in 29% of cases. In 96% cases mutations of both copies of the ATP7B were revealed. We also observed 3 novel potentially pathogenic variants which were not previously described (c.1870-8A > G, c.3655A > T (p.Ile1219Phe), c.3036dupC (p.Lys1013fs). For 25% of patients at the time of the manifestation the diagnosis WD could not be established using the earlier proposed diagnostic score. There was a remarkable delay in diagnosis for the majority of patients. Only 33% of patients WD was diagnosed in three months after the first symptoms, 29%patients - in 3-12 months, 30% - in 1-10 years, in 8% - more than 10 years. Generally, clinical appearance of WD may be rather variable at manifestation and genetic profiling at this step is the only way to confirm the presence of WD.
Collapse
Affiliation(s)
- Mariya S Balashova
- Sechenov First Moscow State Medical University, Moscow, Russia; Center of Genetics and Reproductive Medicine «Genetico», Moscow, Russia.
| | | | - Oleg S Glotov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Andrey S Glotov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Yury A Barbitoff
- Saint Petersburg State University, St. Petersburg, Russia; Bioinformatics Institute, St. Petersburg, Russia
| | - Mikhail A Fedyakov
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Diana A Alaverdian
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia
| | - Tatiana E Ivashchenko
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga V Romanova
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia
| | - Andrey M Sarana
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Sergey G Scherbak
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Vladislav S Baranov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | | | - Anatoly V Skalny
- Sechenov First Moscow State Medical University, Moscow, Russia; Taipei Medical University, Taipei, Taiwan
| | | | - Tatiana M Ignatova
- Center of Endosurgery and Lithotripsy (CELT), Moscow, Russia; Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Aliy Y Asanov
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA, Tinkov AA. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 2017; 41:41-53. [PMID: 28347462 DOI: 10.1016/j.jtemb.2017.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/21/2017] [Accepted: 02/07/2017] [Indexed: 11/17/2022]
Abstract
Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Jan Aaseth
- Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- RUDN University, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | | | | | - Alexandr A Nikonorov
- Orenburg State University, Orenburg, Russia; Orenburg State Medical University, Orenburg, Russia
| | - Alexey A Tinkov
- RUDN University, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; Orenburg State Medical University, Orenburg, Russia
| |
Collapse
|
5
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1052] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Yan YQ, Zheng ZY, Zeng DH, Liu QH, Zhu YL, Zheng QL, Qu LJ. Clinicopathologic features of Wilson disease of the liver. Shijie Huaren Xiaohua Zazhi 2016; 24:782-789. [DOI: 10.11569/wcjd.v24.i5.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To discuss the clinicopathologic features of Wilson disease (WD) of the liver as well as its diagnosis, treatment and prognosis, so as to deepen the understanding of WD and benefit its early diagnosis.
METHODS: Five WD biopsy specimens were examined by HE staining, Masson staining, PAS staining, and rhodanine staining. Cell ultra microstructure observation was enabled by utilizing an electron microscope.
RESULTS: Among the 5 WD cases, 2 were male. The age at first diagnosis was 24 to 47 years, with a mean age of 38 years. Main clinical manifestations included jaundice, liver dysfunction, and Kayser-Fleischer loop indicated by fundus examinations. All patients revealed a serum ceruloplasmin level less than 89.3 mg/L, and light microscopy suggested that 3 of them were chronic severe hepatitis cases with liver fibrosis or cirrhosis, 1 suffered from mild chronic hepatitis and 1 yielded minimal lesions in the hepatic tissue. Rhodamine staining showed deposit of heterogeneous and varying amounts of particles in hepatic cells, especially in those cells located in zone I around portal areas in some cases. Transmission electron microscopy showed Wilson particles with high electron density in the cytoplasm, accompanied with lipid droplets and/or pigmentary granular bodies.
CONCLUSION: Routine laboratory tests, clinical features, as well as histological changes under a light microscope are unspecific in diagnosing WD, whereas Wilson particles detected by transmission electron microscopy can provide an important diagnostic basis for WD. Therefore, liver biopsy is conducive to diagnosis of WD.
Collapse
|
7
|
Galano A, Medina ME, Tan DX, Reiter RJ. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res 2015; 58:107-16. [PMID: 25424557 DOI: 10.1111/jpi.12196] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/21/2014] [Indexed: 12/27/2022]
Abstract
The copper sequestering ability of melatonin and its metabolites cyclic 3-hydroxymelatonin (3OHM), N(1) -acetyl-N(2) -formyl-5-methoxykynuramine (AFMK), and N(1) -acetyl-5-methoxykynuramine (AMK) was investigated within the frame of the Density Functional Theory. It was demonstrated that these compounds are capable of chelating copper ions, yielding stable complexes. The most likely chelation sites were identified. Two different mechanisms were modeled, the direct-chelation mechanism (DCM) and the coupled-deprotonation-chelation mechanism (CDCM). It is proposed that, under physiological conditions, CDCM would be the main chelation route for Cu(II). It was found that melatonin and its metabolites fully inhibited the oxidative stress induced by Cu(II)-ascorbate mixtures, via Cu(II) chelation. In the same way, melatonin, AFMK, and 3OHM also prevented the first step of the Haber-Weiss reaction, consequently turning off the ˙OH production via the Fenton reaction. Therefore, it is proposed that, in addition to the previously reported free radical scavenging cascade, melatonin is also involved in a concurrent 'chelating cascade', thereby contributing to a reduction in oxidative stress. 3OHM was identified as the most efficient of the studied compounds for that purpose, supporting the important role of this metabolite in the beneficial effects of melatonin against oxidative stress.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México, D. F, México
| | | | | | | |
Collapse
|
8
|
Alzoubi BM, Weber I, Walther M, van Eikema Hommes N, Puchta R, van Eldik R. HCN exchange on [Cu(HCN) 4] +: a quantum chemical investigation. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.941828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Basam M. Alzoubi
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Basic Science, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
| | - Immo Weber
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Walther
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nico van Eikema Hommes
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ralph Puchta
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rudi van Eldik
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Angajala G, Pavan P, Subashini R. One-step biofabrication of copper nanoparticles from Aegle marmelos correa aqueous leaf extract and evaluation of its anti-inflammatory and mosquito larvicidal efficacy. RSC Adv 2014. [DOI: 10.1039/c4ra10003d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biofabrication of CuNps from AmC aqueous leaf extract of various sizes with good anti-inflammatory and mosquito larvicidal efficacy.
Collapse
Affiliation(s)
- Gangadhara Angajala
- Organic Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore 632014, India
| | - Pasupala Pavan
- Organic Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore 632014, India
| | - R. Subashini
- Organic Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore 632014, India
| |
Collapse
|
10
|
Abstract
Hereditary hemochromatosis and Wilson disease are autosomal recessive storage disorders of iron and copper overload, respectively. These metals are involved in multiple redox reactions, and their abnormal accumulation can cause significant injury in the liver and other organs. Over the last few decades clinicians have developed a much better understanding of these metals and their mechanism of action. Moreover, sophisticated molecular genetic testing techniques that make diagnostic testing less invasive are now available. This article updates and discusses the pathogenesis, diagnosis, and management of these metal storage disorders.
Collapse
Affiliation(s)
- Pushpjeet Kanwar
- Liver Center of Excellence, Department of Gastroenterology, Digestive Disease Institute, Virginia Mason Medical Center, 1100 9th Avenue, Mailstop C3-GAS, Seattle, WA 98101, USA
| | | |
Collapse
|
11
|
Abstract
Knowledge of the basic mechanisms involved in iron metabolism has increased greatly in recent years, improving our ability to deal with the huge global public health problems of iron deficiency and overload. Several million people worldwide suffer iron overload with serious clinical implications. Iron overload has many different causes, both genetic and environmental. The two most common iron overload disorders are hereditary haemochromatosis and transfusional siderosis, which occurs in thalassaemias and other refractory anaemias. The two most important treatment options for iron overload are phlebotomy and chelation. Phlebotomy is the initial treatment of choice in haemochromatosis, while chelation is a mainstay in the treatment of transfusional siderosis. The classical iron chelator is deferoxamine (Desferal), but due to poor gastrointestinal absorption it has to be administered intravenously or subcutaneously, mostly on a daily basis. Thus, there is an obvious need to find and develop new effective iron chelators for oral use. In later years, particularly two such oral iron chelators have shown promise and have been approved for clinical use, namely deferiprone (Ferriprox) and deferasirox (Exjade). Combined subcutaneous (deferoxamine) and oral (deferiprone) treatment seems to hold particular promise.
Collapse
Affiliation(s)
- Trond Peder Flaten
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | | | | |
Collapse
|
12
|
Letelier ME, Sánchez-Jofré S, Peredo-Silva L, Cortés-Troncoso J, Aracena-Parks P. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem Biol Interact 2010; 188:220-7. [PMID: 20603110 DOI: 10.1016/j.cbi.2010.06.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/11/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Iron and copper ions, in their unbound form, may lead to the generation of reactive oxygen species via Haber-Weiss and/or Fenton reactions. In addition, it has been shown that copper ions can irreversibly and non-specifically bind to thiol groups in proteins. This non-specific binding property has not been fully addressed for iron ions. Thus, the present study compares both the pro-oxidant and the non-specific binding properties of Fe(3+) and Cu(2+), using rat liver cytosol and microsomes as biological systems. Our data show that, in the absence of proteins, Cu(2+)/ascorbate elicited more oxygen consumption than Fe(3+)/ascorbate under identical conditions. Presence of cytosolic and microsomal protein, however, differentially altered oxygen consumption patterns. In addition, Cu(2+)/ascorbate increased microsomal lipid peroxidation and decreased cytosolic and microsomal content of thiol groups more efficiently than Fe(3+)/ascorbate. Finally, Fe(3+)/ascorbate and Cu(2+)/ascorbate inhibited in different ways cytosolic and microsomal glutathione S-transferase (GST) activities, which are differentially sensitive to oxidants. Moreover, in the absence of ascorbate, only Cu(2+) decreased the content of cytosolic and microsomal thiol groups and inhibited cytosolic and microsomal GST activities. Catechin partially prevented the damage to thiol groups elicited by Fe(3+)/ascorbate and Cu(2+)/ascorbate but not by Cu(2+) alone. N-Acetylcysteine completely prevented the damage elicited by Cu(2+)/ascorbate, Fe(3+)/ascorbate and Cu(2+) alone. N-Acetylcysteine also completely reversed the damage to thiol groups elicited by Fe(3+)/ascorbate, partially reversed that of Cu(2+)/ascorbate but failed to reverse the damage promoted by Cu(2+) alone. Our data are discussed in terms to the potential damage that the accumulation of iron and copper ions can promote in biological systems.
Collapse
Affiliation(s)
- María Eugenia Letelier
- Laboratory of Pharmacology and Toxicology, Department of Pharmacological and Toxicological Chemistry, School of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380492, Chile.
| | | | | | | | | |
Collapse
|
13
|
Shupe T, Petersen BE. Potential applications for cell regulatory factors in liver progenitor cell therapy. Int J Biochem Cell Biol 2010; 43:214-21. [PMID: 20851776 DOI: 10.1016/j.biocel.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 08/24/2010] [Accepted: 09/06/2010] [Indexed: 12/18/2022]
Abstract
Orthotopic liver transplant represent the state of the art treatment for terminal liver pathologies such as cirrhosis in adults and hemochromatosis in neonates. A limited supply of transplantable organs in relationship to the demand means that many patients will succumb to disease before an organ becomes available. One promising alternative to liver transplant is therapy based on the transplant of liver progenitor cells. These cells may be derived from the patient, expanded in vitro, and transplanted back to the diseased liver. Inborn metabolic disorders represent the most attractive target for liver progenitor cell therapy, as many of these disorders may be corrected by repopulation of only a portion of the liver by healthy cells. Another potential application for liver progenitor cell therapy is the seeding of bio-artificial liver matrix. These ex vivo bioreactors may someday be used to bridge critically ill patients to other treatments. Conferring a selective growth advantage to the progenitor cell population remains an obstacle to therapy development. Understanding the molecular signaling mechanisms and micro-environmental cues that govern liver progenitor cell phenotype may someday lead to strategies for providing this selective growth advantage. The discovery of a population of cells within the bone marrow possessing the ability to differentiate into hepatocytes may provide an easily accessible source of cells for liver therapies.
Collapse
Affiliation(s)
- Thomas Shupe
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610-0275, USA.
| | | |
Collapse
|
14
|
Cao H, Jiang Y, Wang Y. Kinetics of deamination and Cu(II)/H2O2/Ascorbate-induced formation of 5-methylcytosine glycol at CpG sites in duplex DNA. Nucleic Acids Res 2009; 37:6635-43. [PMID: 19706732 PMCID: PMC2770644 DOI: 10.1093/nar/gkp615] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mutation in p53 tumor suppressor gene is a hallmark of human cancers. Six major mutational hotspots in p53 contain methylated CpG (mCpG) sites, and C →T transition is the most common mutation at these sites. It was hypothesized that the formation of 5-methylcytosine glycol induced by reactive oxygen species, its spontaneous deamination to thymine glycol and the miscoding property of the latter may account, in part, for the ubiquitous C →T mutation at CpG site. Here, we assessed the kinetics of deamination for two diastereomers of 5-methylcytosine glycol in duplex DNA. Our results revealed that the half-lives for the deamination of the (5S,6S) and (5R,6R) diastereomers of 5-methylcytosine glycol in duplex DNA at 37°C were 37.4 ± 1.6 and 27.4 ± 1.0 h, respectively. The deamination rates were only slightly lower than those for the two diastereomers in mononucleosides. Next, we assessed the formation of 5-methyl-2′-deoxycytidine glycol in the form of its deaminated product, namely, thymidine glycol (Tg), in methyl-CpG-bearing duplex DNA treated with Cu(II)/H2O2/ascorbate. LC-MS/MS quantification results showed that the yield of Tg is similar as that of 5-(hydroxymethyl)-2′-deoxycytidine. Together, our data support that the formation and deamination of 5-methylcytosine glycol may contribute significantly to the C →T transition mutation at mCpG dinucleotide site.
Collapse
Affiliation(s)
- Huachuan Cao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| | | | | |
Collapse
|
15
|
Abstract
Most individuals seeking consultation at sports medicine clinics are young, healthy athletes with injuries related to a specific activity. However, these athletes may have other systemic pathologies, such as rheumatic diseases, that may initially mimic sports-related injuries. As rheumatic diseases often affect the musculoskeletal system, they may masquerade as traumatic or mechanical conditions. A systematic review of the literature found numerous case reports of athletes who presented with apparent mechanical low back pain, sciatica pain, hip pain, meniscal tear, ankle sprain, rotator cuff syndrome and stress fractures and who, on further investigation, were found to have manifestations of rheumatic diseases. Common systemic, inflammatory causes of these musculoskeletal complaints include ankylosing spondylitis (AS), gout, chondrocalcinosis, psoriatic enthesopathy and early rheumatoid arthritis (RA). Low back pain is often mechanical among athletes, but cases have been described where spondyloarthritis, especially AS, has been diagnosed. Neck pain, another common mechanical symptom in athletes, can be an atypical presentation of AS or early RA. Hip or groin pain is frequently related to injuries in the hip joint and its surrounding structures. However, differential diagnosis should be made with AS, RA, gout, psudeogout, and less often with haemochromatosis and synovial chondochromatosis. In athletes presenting with peripheral arthropathy, it is mandatory to investigate autoimmune arthritis (AS, RA, juvenile idiopathic arthritis and systemic lupus erythematosus), crystal-induced arthritis, Lyme disease and pigmented villonodular synovitis. Musculoskeletal soft tissue disorders (bursitis, tendinopathies, enthesitis and carpal tunnel syndrome) are a frequent cause of pain and disability in both competitive and recreational athletes, and are related to acute injuries or overuse. However, these disorders may occasionally be a manifestation of RA, spondyloarthritis, gout and pseudogout. Effective management of athletes presenting with musculoskeletal complaints requires a structured history, physical examination, and definitive diagnosis to distinguish soft tissue problems from joint problems and an inflammatory syndrome from a non-inflammatory syndrome. Clues to a systemic inflammatory aetiology may include constitutional symptoms, morning stiffness, elevated acute-phase reactants and progressive symptoms despite modification of physical activity. The mechanism of injury or lack thereof is also a clue to any underlying disease. In these circumstances, more complete workup is reasonable, including radiographs, magnetic resonance imaging and laboratory testing for autoantibodies.
Collapse
Affiliation(s)
- Fabio Jennings
- Division of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305-5336, USA
| | | | | |
Collapse
|
16
|
Ellor S, Shupe T, Petersen B. Stem cell therapy for inherited metabolic disorders of the liver. Exp Hematol 2008; 36:716-725. [PMID: 18375039 DOI: 10.1016/j.exphem.2008.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/28/2008] [Accepted: 02/06/2008] [Indexed: 12/16/2022]
Abstract
Modern medicine has conquered an enormous spectrum of health concerns, from the neonatal to the geriatric, the chronically ill to the acutely injured. Among the unmet challenges remaining in modern medicine are inborn disorders of metabolism within the liver. Such inherited metabolic disorders (IMDs) often leave an otherwise healthy individual with a crippling imbalance. As the principal regulator of the body's many metabolic pathways, malencoded hepatic enzymes can drastically disrupt homeostasis throughout the entire body. Severe phenotypes are usually detected within the first few days of life, and treatments range from palliative lifestyle modifications to aggressive surgical procedures. While orthotopic liver transplantation is the single last resort "cure" for these conditions, research during the past few years has brought new therapeutic technologies ever closer to the clinic. Stem cells, therapeutic viral vectors, or a combination thereof, are projected to be the next, best, and final cure for IMDs, which is well-reflected by this generation's research initiatives.
Collapse
Affiliation(s)
- Susan Ellor
- Department of Pathology, Immunology and Laboratory Medicine; University of Florida
- The Program for Stem Cell Biology and Regenerative Medicine; University of Florida
| | - Thomas Shupe
- Department of Pathology, Immunology and Laboratory Medicine; University of Florida
- The Program for Stem Cell Biology and Regenerative Medicine; University of Florida
| | - Bryon Petersen
- Department of Pathology, Immunology and Laboratory Medicine; University of Florida
- The Program for Stem Cell Biology and Regenerative Medicine; University of Florida
| |
Collapse
|
17
|
Gellein K, Skogholt JH, Aaseth J, Thoresen GB, Lierhagen S, Steinnes E, Syversen T, Flaten TP. Trace elements in cerebrospinal fluid and blood from patients with a rare progressive central and peripheral demyelinating disease. J Neurol Sci 2008; 266:70-8. [PMID: 17900623 DOI: 10.1016/j.jns.2007.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
A hereditary neurological disease in a family in Norway has been reported recently. The disease, which we refer to as Skogholt's disease, is a demyelinating disorder of both the central and the peripheral nervous system with adult onset. We investigated whether changes in trace element concentrations could play a role in Skogholt's disease. Using high resolution inductively coupled plasma mass spectrometry, we determined 31 elements in cerebrospinal fluid (CSF), blood plasma and whole blood from these patients, multiple sclerosis patients and a control group. More than threefold increased levels of Cu and Fe, and a twofold increase in Zn were found in the CSF of Skogholt patients compared to controls. Several other significant differences in trace element levels were also found. The increased levels of Cu and Fe in CSF may indicate an active role of these metals in the pathogenesis of Skogholt's disease. Apparently, these metal ions are transferred into the CSF through their protein chelation, as raised protein levels were also seen. We suggest that redistribution of metals from transport proteins into vulnerable sites in the central (and peripheral) nervous system may initiate critical lesions.
Collapse
Affiliation(s)
- Kristin Gellein
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|