1
|
Teng CY, Kao NJ, Nguyen NTK, Lin CI, Cross TWL, Lin SH. Effects of xylo-oligosaccharide on gut microbiota, brain protein expression, and lipid profile induced by high-fat diet. J Nutr Biochem 2024; 129:109640. [PMID: 38583497 DOI: 10.1016/j.jnutbio.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.
Collapse
Affiliation(s)
- Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ning-Jo Kao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Ngan Thi Kim Nguyen
- Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-I Lin
- Department of Nutrition and Health Sciences, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzu-Wen L Cross
- Departmen of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food Safety, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Yu L, Duan H, Yu Y, Zhang Q, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Dose-dependent effects of chronic lead toxicity in vivo: Focusing on trace elements and gut microbiota. CHEMOSPHERE 2022; 301:134670. [PMID: 35452643 DOI: 10.1016/j.chemosphere.2022.134670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/26/2023]
Abstract
Dose-dependent effects of chronic Pb exposure-induced injuries, especially on the trace elements and gut microbiota in mice, have not been explored. In the present study, we investigated these aspects using C57BL/6 mouse models that were exposed to Pb via drinking water with Pb concentrations of 0.1, 0.5, and 1.0 g/L for 8 weeks. The results showed that with the increase in chronic Pb exposure dose, the Pb levels in the blood and tissues, Zn levels in the kidney and brain were elevated, and the levels of bone Zn, kidney Fe, brain Mg, Ca, and Fe, renal catalase activity, and glutathione levels, as well as the expression of colonic zonula occludens-1 and occludin, decreased with a strong linear correlation. Moreover, the relative abundance of Marvinbryantia and Ruminococcus 1 increased, while that of Lactobacillus and Roseburia decreased linearly with the Pb exposure dose. PICRUSt analysis revealed that chronic Pb exposure had a greater impact on the metabolism of macronutrients, trace elements, and neurodegenerative injury. These findings suggest that chronic Pb exposure disrupts trace element levels in tissues, especially in the brain, and induces gut dysbiosis in a dose-dependent manner, which is different from the dose-effect of acute Pb toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yaqi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Segal JP. Inflammatory disease of the ileoanal pouch - is it all in the microbiome? Future Microbiol 2022; 17:481-483. [PMID: 35317617 DOI: 10.2217/fmb-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jonathan P Segal
- Department of Gastroenterology, Luton & Dunstable University Hospital, Lewsey Road, Luton, LU40DZ, UK
| |
Collapse
|
4
|
Spisni E, Turroni S, Alvisi P, Spigarelli R, Azzinnari D, Ayala D, Imbesi V, Valerii MC. Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions. Front Pharmacol 2022; 13:841782. [PMID: 35370685 PMCID: PMC8971809 DOI: 10.3389/fphar.2022.841782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical interest in the human intestinal microbiota has increased considerably, because of the increasing number of studies linking the human intestinal microbial ecology to an increasing number of non-communicable diseases. Many efforts at modulating the gut microbiota have been made using probiotics, prebiotics and recently postbiotics. However, there are other, still little-explored opportunities from a pharmaceutical point of view, which appear promising to obtain modifications of the microbiota structure and functions. This review summarizes all in vitro, in vivo and clinical studies demonstrating the possibility to positively modulate the intestinal microbiota by using probiotics, prebiotics, postbiotics, essential oils, fungus and officinal plants. For the future, clinical studies investigating the ability to impact the intestinal microbiota especially by using fungus, officinal and aromatic plants or their extracts are required. This knowledge could lead to effective microbiome modulations that might support the pharmacological therapy of most non-communicable diseases in a near future.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Enzo Spisni,
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Alvisi
- Pediatric Gastroenterology Unit, Maggiore Hospital, Bologna, Italy
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Demetrio Azzinnari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Veronica Imbesi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Li M, Yu L, Zhao J, Zhang H, Chen W, Zhai Q, Tian F. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
Lim SM, Choo JM, Li H, O’Rielly R, Carragher J, Rogers GB, Searle I, Robertson SA, Page AJ, Muhlhausler B. A High Amylose Wheat Diet Improves Gastrointestinal Health Parameters and Gut Microbiota in Male and Female Mice. Foods 2021; 10:foods10020220. [PMID: 33494480 PMCID: PMC7911791 DOI: 10.3390/foods10020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/02/2023] Open
Abstract
High amylose wheat (HAW) contains more resistant starch than standard amylose wheat (SAW) and may have beneficial effects on gastrointestinal health. However, it is currently unclear whether these effects differ according to the level of HAW included in the diet or between males and females. Male and female C57BL/6 mice (n = 8/group/sex) were fed SAW65 (65% SAW; control), HAW35 (35% HAW), HAW50 (50% HAW) or HAW65 (65% HAW) diet for eight weeks. Female but not male, mice consuming any amount of HAW exhibited accelerated gastric emptying compared to SAW65 group. In both sexes, relative colon weights were higher in the HAW65 group compared to SAW65 group and in females, relative weights of the small intestine and cecum were also higher in the HAW65 group. In females only, colonic expression of Pyy and Ocln mRNAs were higher in the HAW65 group compared to HAW35 and HAW50 groups. In both sexes, mice consuming higher amounts of HAW (HAW50 or HAW65) had increased fecal bacterial load and relative abundance of Bacteroidetes phylum and reduced relative abundance of Firmicutes compared to SAW65 group. These data are consistent with a beneficial impact of HAW on gastrointestinal health and indicate dose-dependent and sex-specific effects of HAW consumption.
Collapse
Affiliation(s)
- See Meng Lim
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jocelyn M. Choo
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Hui Li
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - Rebecca O’Rielly
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - John Carragher
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
| | - Geraint B. Rogers
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia;
| | - Sarah A. Robertson
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide 5000, Australia
| | - Amanda J. Page
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - Beverly Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-08-8305-0697
| |
Collapse
|
7
|
Cotozzolo E, Cremonesi P, Curone G, Menchetti L, Riva F, Biscarini F, Marongiu ML, Castrica M, Castiglioni B, Miraglia D, Luridiana S, Brecchia G. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits. Animals (Basel) 2020; 11:ani11010031. [PMID: 33375259 PMCID: PMC7824689 DOI: 10.3390/ani11010031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
The microbiota is extremely important for the animal's health, but, to date, knowledge on the intestinal microbiota of the rabbit is very limited. This study aimed to describe bacterial populations that inhabit the different gastrointestinal compartments of the rabbit: stomach, duodenum, jejunum, ileum, caecum, and colon. Samples of the luminal content from all compartments of 14 healthy New White Zealand rabbits were collected at slaughter and analyzed using next generation 16S rRNA Gene Sequencing. The findings uncovered considerable differences in the taxonomic levels among the regions of the digestive tract. Firmicutes were the most abundant phylum in all of the sections (45.9%), followed by Bacteroidetes in the large intestine (38.9%) and Euryarchaeota in the foregut (25.9%). Four clusters of bacterial populations were observed along the digestive system: (i) stomach, (ii) duodenum and jejunum, (iii) ileum, and (iv) large intestine. Caecum and colon showed the highest richness and diversity in bacterial species, while the highest variability was found in the upper digestive tract. Knowledge of the physiological microbiota of healthy rabbits could be important for preserving the health and welfare of the host as well as for finding strategies to manipulate the gut microbiota in order to also promote productive performance.
Collapse
Affiliation(s)
- Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy;
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40137 Bologna, Italy;
| | - Federica Riva
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
- Correspondence: (F.R.); (G.B.); Tel.: +39-02503-34519 (F.R.); Tel.: +39-02-50334583 (G.B.)
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Maria Laura Marongiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy; (M.L.M.); (S.L.)
| | - Marta Castrica
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Sebastiano Luridiana
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy; (M.L.M.); (S.L.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
- Correspondence: (F.R.); (G.B.); Tel.: +39-02503-34519 (F.R.); Tel.: +39-02-50334583 (G.B.)
| |
Collapse
|
8
|
Nair DVT, Johnson TJ, Noll SL, Kollanoor Johny A. Effect of supplementation of a dairy-originated probiotic bacterium, Propionibacterium freudenreichii subsp. freudenreichii, on the cecal microbiome of turkeys challenged with multidrug-resistant Salmonella Heidelberg. Poult Sci 2020; 100:283-295. [PMID: 33357692 PMCID: PMC7772705 DOI: 10.1016/j.psj.2020.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
A dairy-originated probiotic bacterium, Propionibacterium freudenreichii subsp. freudenreichii B3523 (PF) was found to be effective in reducing multidrug-resistant Salmonella Heidelberg (MDR SH) colonization in turkey poults (2-week-old) and growing (7-week-old) and finishing (12-week-old) turkeys. In this study, we explored the potential for microbiome modulation in the cecum of turkeys of different age groups due to PF supplementation in conjunction with MDR SH challenge. One-day-old commercial turkey poults were allocated to 3 treatment groups: negative control (N; turkeys without PF supplementation or SH challenge), SH control (S; turkeys challenged with SH without PF supplementation), and test group (P; turkeys supplemented with PF and challenged with SH). Turkeys were supplemented with 1010 CFU PF in 5-gallon (18.9 L) water until 7 or 12 week of age. At the 6th or 11th wk, turkeys were challenged with SH at 106 and 108 CFU/bird by crop gavage, respectively. After 2 and 7 d of challenge (2-d postinoculation [PI] and 7-d PI, respectively), cecal samples were collected and microbiome analysis was conducted using Illumina MiSeq. The experiments were repeated twice with 8 and 10 turkeys/group for 7- and 12-wk studies, respectively. Results indicated that the species richness and abundance (Shannon diversity index) was similar among the treatment groups. However, treatments caused apparent clustering of the samples among each other (P < 0.05). Firmicutes was the predominant phylum in the growing and finishing turkey cecum which was evenly distributed among the treatments except on wk 12 where the relative abundance of Firmicutes was significantly higher in P than in N (P = 0.02). The MDR SH challenge resulted in modulation of microflora such as Streptococcus, Gordonibacter, and Turicibacter (P < 0.05) in the S groups compared with the P and N groups, known to be associated with inflammatory responses in birds and mammals. The supplementation of PF increased the relative abundance of carbohydrate-fermenting and short-chain fatty acid–producing genera in the P group compared with the S group (P < 0.05). Moreover, the results revealed that PF supplementation potentially modulated the beneficial microbiota in the P group, which could mitigate SH carriage in turkeys.
Collapse
Affiliation(s)
- D V T Nair
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - T J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - S L Noll
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - A Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
9
|
Zhang Y, Tan L, Li C, Wu H, Ran D, Zhang Z. Sulforaphane alter the microbiota and mitigate colitis severity on mice ulcerative colitis induced by DSS. AMB Express 2020; 10:119. [PMID: 32621086 PMCID: PMC7334330 DOI: 10.1186/s13568-020-01053-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Sulforaphane (SFN) is a kind of natural isothiocyanate, which exists in cruciferous plants. Only few studies were about the anti-inflammatory effects of sulforaphane in ulcerative colitis. In this study, our purpose is to explore the effects of sulforaphane on the intestinal microbial community of UC mice. The severity of mice colitis were measured by colon length, survial rate, body weight and disease activity index (DAI) score. Histological and morphological evaluation of colon tissues were performed by HE. 16S rRNA gene amplicon pyrosequencing was used to analyza the changes of mouse flora. The variety of flora expression were explored using quantitative PCR. Sulforaphane treated mice had larger body weight and longer colon length than DSS-induced mice. The colon tissues of DSS group showed congestion and edema. Meanwhile, treatment with sulforaphane effectively reducted the damage scores and MPO activity. Sulforaphane reversed DSS-induced gut dysbiosis. Sulforaphane would shift the balance to Butyricicoccus on inflammation. The possible anti-inflammatory mechanism of sulforaphane is to coordinate with the probiotics such as Butyricicoccus. In summary, these findings proved that sulforaphane might be a useful content and serve as a potential therapy in the treatment of UC.
Collapse
|
10
|
Wang Z, Lv Y, Zhang D, Liu H, Dong L, Ming T, Su X. In Vivo Effects of Salbutamol Residues on Blood Lipid, Lung Structure, Gene Expression, and Gut Microorganism Composition. ACS OMEGA 2019; 4:20644-20653. [PMID: 31858050 PMCID: PMC6906778 DOI: 10.1021/acsomega.9b02701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 05/20/2023]
Abstract
Salbutamol (SAL), one of the prohibited veterinary drugs, has been proven to be harmful to animals, but very few studies reported the underlying mechanism of actions and the effects after SAL intake. In this study, Ba-Ma minipigs were used as the animal model to demonstrate the impacts of SAL residues on blood lipid and the lung bronchial structures and the regulation of gene expression and gut microorganism population. The results showed that (1) SAL decreased the indexes of serum lipid and organ, (2) SAL widely retained in various tissues and organs, (3) the lung bronchial expanded under the influence of SAL, (4) the gene expression of growth-related ghrelin has increased, and (5) the residues of SAL affected the composition of gut microorganism population, which could be associated with the mechanism of action of SAL on pig. The findings suggest that SAL could be harmful to minipigs by altering the blood lipid, bronchial morphology, gastric mucosal gene expression, and the gut microorganism population.
Collapse
Affiliation(s)
- Zhaoyang Wang
- State
Key Laboratory for Managing Biotic and Chemical Threats to the Quality
and Safety of Agro-products, Ningbo University, Ningbo 315700, China
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yan Lv
- Ningbo
Academy of Agricultural Sciences, Ningbo 315100, China
| | - Diya Zhang
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Haohao Liu
- School
of Bioengineering, East China University
of Science and Technology, Shanghai 200237, China
| | - Lisha Dong
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Xiurong Su
- State
Key Laboratory for Managing Biotic and Chemical Threats to the Quality
and Safety of Agro-products, Ningbo University, Ningbo 315700, China
- School
of Marine Science, Ningbo University, Ningbo 315211, China
- E-mail: . Tel.: 86-0574-87608368. Fax: 86-0574-87608368
| |
Collapse
|
11
|
Finn SMB, Scheuermann U, Holzknecht ZE, Parker W, Granek JA, Lin SS, McKenney EA, Barbas AS. Effect of gastric fluid aspiration on the lung microbiota of laboratory rats. Exp Lung Res 2018; 44:201-210. [PMID: 30465452 DOI: 10.1080/01902148.2018.1482976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM OF THE STUDY The pulmonary microbiota is important for both normal homeostasis and the progression of disease, and may be affected by aspiration of gastric fluid. The aim of this study was to investigate changes in the lung microbiota induced by aspiration of gastric fluid in a laboratory rat model. MATERIAL AND METHODS Using the intratracheal application method, male rats received aspiration with 0.9% normal saline (n = 11); gastric fluid (n = 24) or sterilized (gamma-irradiated) gastric fluid (n = 12) once-weekly for four weeks. On the fifth week, the animals were sacrificed, and the microbiota of the lung was assessed by 16S ribosomal RNA gene sequencing. RESULTS Lungs without aspiration and lungs after aspiration with normal saline had similar microbial compositions, dominated by bacteria of the genera Serratia, Ralstonia and Brucella. Evaluation of the microbiota following aspiration of gastric fluid revealed a much different profile that was dominated by bacteria from the genera Romboutsia and Turicibacter and largely independent of sterilization of the gastric fluid. CONCLUSION In a laboratory rat model, aspiration with gastric fluid caused a substantial shift of the lung microbiota that could be characterized as a shift from Proteobacteria towards Firmicutes, possibly of enteric origin. Bacteria contained in the gastric fluid are not apparently responsible for this change.
Collapse
Affiliation(s)
- Sade M B Finn
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Uwe Scheuermann
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Zoie E Holzknecht
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - William Parker
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Joshua A Granek
- b Department of Bioinformatics and Biostatistics , Duke University School of Medicine , Durham , North Carolina , USA
| | - Shu S Lin
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA.,c Department of Pathology , Duke University Medical Center , Durham , North Carolina , USA.,d Department of Immunology , Duke University Medical Center , Durham , North Carolina , USA
| | - Erin A McKenney
- e Department of Applied Ecology , NC State University , Raleigh , North Carolina , USA
| | - Andrew S Barbas
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| |
Collapse
|
12
|
Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of Colon-Derived Uremic Solutes. Clin J Am Soc Nephrol 2018; 13:1398-1404. [PMID: 30087103 PMCID: PMC6140561 DOI: 10.2215/cjn.03150318] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Colon microbial metabolism produces solutes that are normally excreted in the urine and accumulate in the plasma when the kidneys fail. This study sought to further identify and characterize human colon-derived uremic solutes. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Colon-derived solutes normally excreted in the urine were identified by comparing urine from controls (n=17) and patients with total colectomies (n=12), using an established metabolomic platform. Colon-derived solutes that accumulate in kidney failure were then identified by comparing the plasma of the control patients with that of patients on dialysis (n=14). RESULTS Ninety-one urinary solutes were classified as colon-derived on the basis of the finding of a urine excretion rate at least four-fold higher in control patients than in patients with total colectomies. Forty-six were solutes with known chemical structure, 35 of which had not previously been identified as colon-derived. Sixty of the colon-derived solutes accumulated in the plasma of patients with ESKD to a degree greater than urea and were therefore classified as uremic. The estimated urinary clearance for 27 out of the 32 colon-derived solutes for which clearance could be calculated exceeded that of creatinine, consistent with tubular secretion. Sulfatase treatment revealed that 42 out of the 91 colon-derived solutes detected were likely conjugates. CONCLUSIONS Metabolomic analysis identified numerous colon-derived solutes that are normally excreted in human urine. Clearance by tubular secretion limits plasma levels of many colon-derived solutes.
Collapse
Affiliation(s)
- Robert D Mair
- Department of Medicine, Veterans Affairs Palo Alto Health Care System and Stanford University, Palo Alto, California
| | | | | | | |
Collapse
|
13
|
Hu R, Guo W, Huang Z, Li L, Liu B, Lv X. Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
14
|
Gut colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae may increase disease activity in biologic-naive outpatients with ulcerative colitis: an interim analysis. Eur J Gastroenterol Hepatol 2018; 30:92-100. [PMID: 29076938 DOI: 10.1097/meg.0000000000000989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Certain Enterobacteriaceae strains have been associated with the development of ulcerative colitis (UC). Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae are the most commonly found multi-drug-resistant (MDR) bacteria colonizing the gut in UC patients and might trigger a more severe disease activity in UC patients. OBJECTIVE The aim of this study was to evaluate whether disease activity is higher in UC patients with gut colonization with ESBL-producing Enterobacteriaceae. MATERIALS AND METHODS A cross-sectional, pilot study was carried out in a tertiary medical center in Latvia. Demographic data were collected; UC disease activity and extent were evaluated according to the full Mayo score, Montreal classification, and adapted Truelove and Witt's index. Rectal swabs with fecal biomaterial were collected, ESBL-producing Enterobacteriaceae were isolated, and bacterial plasmid genes responsible for ESBL production, blaCTX-M, blaTEM, and blaSHV, were detected. UC disease activity was compared in patients with and without gut colonization with ESBL-producing Enterobacteriaceae. RESULTS A total of 65 patients with UC were included in the initial analysis. Gut colonization with ESBL-producing Enterobacteriaceae was found in seven (11%) patients - mostly Escherichia coli [5 (71%)] containing the blaCTX-M bacterial plasmid gene. Patients with gut colonization with ESBL-producing Enterobacteriaceae had more severe disease compared with patients without gut colonization according to the full Mayo score (5.86 vs. 3.40; P=0.015), Montreal classification (moderate disease vs. clinical remission; P=0.031), and adapted Truelove and Witt's index (moderate disease vs. mild disease; P=0.008). CONCLUSION Gut colonization with ESBL-producing Enterobacteriaceae may increase UC disease activity. Further research is needed to analyze the possible confounding factors that could contribute toward this outcome.
Collapse
|
15
|
Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, Yamashiro Y. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef Microbes 2017; 8:353-365. [PMID: 28504574 DOI: 10.3920/bm2016.0216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein we investigated the intestinal carriage of α-toxigenic and enterotoxigenic Clostridium perfringens during infancy, focusing on its association with other gut microbes and mode of delivery and feeding. Faecal samples from 89 healthy term infants were collected at age 7 days, 1 month, 3 months, 6 months and 3 years. C. perfringens was quantified by qPCR; other gut bacteria were quantified by reverse-transcription-qPCR. Alpha-toxigenic C. perfringens was detected in 3.4% infants at day 7 but was present in 35-40% infants at subsequent time-points, with counts ranging from 103-107 cells/g faeces. Enterotoxigenic C. perfringens remained undetected at day 7 but was detected in 1.1, 4.5, 10.1 and 4.5% infants at 1 month, 3 months, 6 months and 3 years, respectively. Intriguingly, infants carrying α-toxigenic C. perfringens had lower levels of Bacteroides fragilis group, bifidobacteria, lactobacilli and organic acids as compared to non-carriers. Further analyses revealed that, compared to vaginally-born infants, caesarean-born infants had higher carriage of C. perfringens and lower levels of B. fragilis group, bifidobacteria, lactobacilli and faecal organic acids during first 6 months. Compared to formula-fed infants, breast-fed infants were slightly less often colonised with C. perfringens; and within caesarean-born infants, breast-fed infants had slightly lower levels of C. perfringens and higher levels of B. fragilis group, bifidobacteria, and lactobacilli than formula-fed infants. This study demonstrates the quantitative dynamics of toxigenic C. perfringens colonisation in infants during the early years of life. Caesarean-born infants acquire a somewhat perturbed microbiota, and breast-feeding might be helpful in ameliorating this dysbiosis. Higher carriage of toxigenic C. perfringens in healthy infants is intriguing and warrants further investigation of its sources and clinical significance in infants, particularly the caesarean-born who may represent a potential reservoir of this opportunistic pathogen and might be more prone to associated illnesses.
Collapse
Affiliation(s)
- R Nagpal
- 1 Laboratory for Probiotics Research (Yakult), Juntendo University, Graduate School of Medicine, Hongo 2-9-8-3F, Bunkyo-ku, Tokyo 113-0033, Japan
| | - H Tsuji
- 2 Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - T Takahashi
- 2 Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - K Nomoto
- 2 Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - K Kawashima
- 3 Gonohashi Obstetrics and Gynecology Hospital, 6 Chome-1-6 Kameido, Koto, Tokyo 136-0071, Japan
| | - S Nagata
- 4 Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Y Yamashiro
- 1 Laboratory for Probiotics Research (Yakult), Juntendo University, Graduate School of Medicine, Hongo 2-9-8-3F, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z, Zhang H, Chen YQ, Chen W. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Sci Rep 2017; 8:45840. [PMID: 28374781 PMCID: PMC5379200 DOI: 10.1038/srep45840] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities.
Collapse
Affiliation(s)
- Dongyao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China.,Departments of Cancer Biology and Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China
| |
Collapse
|
17
|
Machiels K, Sabino J, Vandermosten L, Joossens M, Arijs I, de Bruyn M, Eeckhaut V, Van Assche G, Ferrante M, Verhaegen J, Van Steen K, Van Immerseel F, Huys G, Verbeke K, Wolthuis A, de Buck Van Overstraeten A, D'Hoore A, Rutgeerts P, Vermeire S. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut 2017; 66:79-88. [PMID: 26423113 DOI: 10.1136/gutjnl-2015-309398] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pouchitis is the most common complication after colectomy with ileal pouch-anal anastomosis (IPAA) for UC and the risk is the highest within the 1st year after surgery. The pathogenesis is not completely understood but clinical response to antibiotics suggests a role for gut microbiota. We hypothesised that the risk for pouchitis can be predicted based on the faecal microbial composition before colectomy. DESIGN Faecal samples from 21 patients with UC undergoing IPAA were prospectively collected before colectomy and at predefined clinical visits at 1 month, 3 months, 6 months and 12 months after IPAA. The predominant microbiota was analysed using community profiling with denaturing gradient gel electrophoresis followed by quantitative real-time PCR validation. RESULTS Cluster analysis before colectomy distinguished patients with pouchitis from those with normal pouch during the 1st year of follow-up. In patients developing pouchitis, an increase of Ruminococcus gnavus (p<0.001), Bacteroides vulgatus (p=0.043), Clostridium perfringens (p=0.011) and a reduction of two Lachnospiraceae genera (Blautia (p=0.04), Roseburia (p=0.008)) was observed. A score combining these five bacterial risk factors was calculated and presence of at least two risk factors showed a sensitivity and specificity of 100% and 63.6%, respectively. CONCLUSIONS Presence of R. gnavus, B. vulgatus and C. perfringens and absence of Blautia and Roseburia in faecal samples of patients with UC before surgery is associated with a higher risk of pouchitis after IPAA. Our findings suggest new predictive and therapeutic strategies in patients undergoing colectomy with IPAA.
Collapse
Affiliation(s)
- Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Marie Joossens
- Department Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Center for the Biology of Disease, VIB, Leuven, Belgium.,Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Magali de Bruyn
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Jan Verhaegen
- Department of Microbiology and Immunology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Kristel Van Steen
- Department of Electrical Engineering and Computer Science, Montefiore Institute, Liège, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Albert Wolthuis
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | | | - Andre D'Hoore
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Li KY, Wang JL, Wei JP, Gao SY, Zhang YY, Wang LT, Liu G. Fecal microbiota in pouchitis and ulcerative colitis. World J Gastroenterol 2016; 22:8929-8939. [PMID: 27833384 PMCID: PMC5083798 DOI: 10.3748/wjg.v22.i40.8929] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the changes in microbiota in feces of patients with ulcerative colitis (UC) and pouchitis using genomic technology.
METHODS Fecal samples were obtained from UC patients with or without an ileal pouch-anal anastomosis (IPAA) procedure, as well as healthy controls. The touchdown polymerase chain reaction technique was used to amplify the whole V3 region of the 16S rRNA gene, which was transcribed from DNA extracted from fecal samples. Denaturing gradient gel electrophoresis was used to separate the amplicons. The band profiles and similarity indices were analyzed digitally. The predominant microbiota in different groups was confirmed by sequencing the 16S rRNA gene.
RESULTS Microbial biodiversity in the healthy controls was significantly higher compared with the UC groups (P < 0.001) and IPAA groups (P < 0.001). Compared with healthy controls, the UC patients in remission and those in the mildly active stage, the predominant species in patients with moderately and severely active UC changed obviously. In addition, the proportion of the dominant microbiota, which was negatively correlated with the disease activity of UC (r = -6.591, P < 0.01), was decreased in pouchitis patients. The numbers of two types of bacteria, Faecalibacterium prausnitzii and Eubacterium rectale, were reduced in UC. Patients with pouchitis had an altered microbiota composition compared with UC patients. The microbiota from pouchitis patients was less diverse than that from severely active UC patients. Sequencing results showed that similar microbiota, such as Clostridium perfringens, were shared in both UC and pouchitis.
CONCLUSION Less diverse fecal microbiota was present in patients with UC and pouchitis. Increased C. perfringens in feces suggest its role in the exacerbation of UC and pouchitis.
Collapse
|
19
|
Schieffer KM, Williams ED, Yochum GS, Koltun WA. Review article: the pathogenesis of pouchitis. Aliment Pharmacol Ther 2016; 44:817-35. [PMID: 27554912 PMCID: PMC5785099 DOI: 10.1111/apt.13780] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND A total proctocolectomy followed by ileal pouch-anal anastomosis is a potentially curative surgery for ulcerative colitis or familial adenomatous polyposis. About 5-35% of patients with ulcerative colitis and 0-11% of patients with familial adenomatous polyposis develop subsequent inflammation of the ileal pouch termed pouchitis. AIM To provide a comprehensive analysis of the research studying the possible pathogenesis of pouchitis. The goals were to identify promising areas of investigation, to help focus clinicians, researchers and patients on how to better understand and then potentially manage ileal pouchitis, and to provide avenues for future research investigations. METHODS This review examined manuscripts from 1981 to 2015 that discussed and/or proposed hypotheses with supportive evidence for the potential underlying pathogenic mechanism for pouchitis. RESULTS The pathogenesis of pouchitis is not definitively understood, but various hypotheses have been proposed, including (i) recurrence of ulcerative colitis, (ii) dysbiosis of the ileal pouch microbiota, (iii) deprivation of nutritional short-chain fatty acids, (iv) mucosal ischaemia and oxygen-free radical injury, (v) host genetic susceptibility and (vi) immune dysregulation. However, none of these alone are able to fully explain pouchitis pathogenesis. CONCLUSIONS Pouchitis, similar to inflammatory bowel disease, is a complex disorder that is not caused by any one single factor. More likely, pouchitis occurs through a combination of both dysregulated host inflammatory mechanisms and interaction with luminal microbiota.
Collapse
Affiliation(s)
- Kathleen M. Schieffer
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| | - Emmanuelle D. Williams
- Department of Medicine, Division of Gastroenterology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| | - Gregory S. Yochum
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA 17033
| |
Collapse
|
20
|
Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep 2016; 6:31027. [PMID: 27503127 PMCID: PMC4977522 DOI: 10.1038/srep31027] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota dysbiosis are associated with a wide range of human diseases, including inflammatory bowel diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors, particularly pollution could play a crucial role. Among the different pollutants listed, Polycyclic Aromatic Hydrocarbons (PAHs) are subject to increased monitoring due to their wide distribution and high toxicity on Humans. Here, we used 16S rRNA gene sequencing to investigate the impact of benzo[a]pyrene (BaP, most toxic PAH) oral exposure on the faecal and intestinal mucosa-associated bacteria in C57BL/6 mice. Intestinal inflammation was also evaluated by histological observations. BaP oral exposure significantly altered the composition and the abundance of the gut microbiota and led to moderate inflammation in ileal and colonic mucosa. More severe lesions were observed in ileal segment. Shifts in gut microbiota associated with moderate inflammatory signs in intestinal mucosa would suggest the establishment of a pro-inflammatory intestinal environment following BaP oral exposure. Therefore, under conditions of genetic susceptibility and in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies.
Collapse
|
21
|
Stanisavljević S, Lukić J, Momčilović M, Miljković M, Jevtić B, Kojić M, Golić N, Mostarica Stojković M, Miljković D. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis. Benef Microbes 2016; 7:363-73. [PMID: 26839070 DOI: 10.3920/bm2015.0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gut microbiota and gut-associated lymphoid tissue have been increasingly appreciated as important players in pathogenesis of various autoimmune diseases, including multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that can be induced with an injection of spinal cord homogenate emulsified in complete Freund's adjuvant in Dark Agouti (DA) rats, but not in Albino Oxford (AO) rats. In this study, mesenteric lymph nodes (MLN), Peyer's patches (PP) and gut microbiota were analysed in these two rat strains. There was higher proportion of CD4(+) T cells and regulatory T cells in non-immunised DA rats in comparison to AO rats. Also, DA rat MLN and PP cells were higher producers of pro-inflammatory cytokines interferon-γ and interleukin-17. Finally, microbial analyses showed that uncultivated species of Turicibacter and Atopostipes genus were exclusively present in AO rats, in faeces and intestinal tissue, respectively. Thus, it is clear that in comparison of an EAE-susceptible with an EAE-resistant strain of rats, various discrepancies at the level of gut associated lymphoid tissue, as well as at the level of gut microbiota can be observed. Future studies should determine if the differences have functional significance for EAE pathogenesis.
Collapse
Affiliation(s)
- S Stanisavljević
- 1 Department of Immunology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - J Lukić
- 2 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - M Momčilović
- 1 Department of Immunology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - M Miljković
- 2 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - B Jevtić
- 1 Department of Immunology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - M Kojić
- 2 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - N Golić
- 2 Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - M Mostarica Stojković
- 3 Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, dr. Subotica 1, 11000 Belgrade, Serbia
| | - D Miljković
- 1 Department of Immunology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology. Sci Rep 2016; 6:19200. [PMID: 26752005 PMCID: PMC4707487 DOI: 10.1038/srep19200] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
Although the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated. We sought to determine whether subchronic oral exposure to Cd or Pb is a risk factor for the development and progression of inflammatory bowel disease (IBD). Mice were exposed to various doses of CdCl2 or PbCl2 in drinking water for 1, 4 or 6 weeks prior to infection with Salmonella, the induction of colitis with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). In human cell-based models, exposure to Cd and Pb is associated with reduced transepithelial electric resistance and changes in bacteria-induced cytokine responses. Although 1- and 6-week exposures did not have clear effects on the response to Salmonella infectious challenges, 1-week short-term treatments with CdCl2 tended to enhance intestinal inflammation in mice. Unexpectedly, subchronic exposure to Cd and (to a lesser extent) Pb significantly mitigated some of the symptoms of DSS-induced colitis and reduced the severity of TNBS colitis in a dose-dependent manner. The possible adaptive and immunosuppressive mechanisms by which heavy metals might reduce intestinal inflammation are explored and discussed.
Collapse
|
23
|
Cook MD, Allen JM, Pence BD, Wallig MA, Gaskins HR, White BA, Woods JA. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol Cell Biol 2015; 94:158-63. [PMID: 26626721 DOI: 10.1038/icb.2015.108] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/16/2022]
Abstract
There is robust evidence that habitual physical activity is anti-inflammatory and protective against developing chronic inflammatory disease. Much less is known about the effects of habitual moderate exercise in the gut, the compartment that has the greatest immunological responsibility and interactions with the intestinal microbiota. The link between the two has become evident, as recent studies have linked intestinal dysbiosis, or the disproportionate balance of beneficial to pathogenic microbes, with increased inflammatory disease susceptibility. Limited animal and human research findings imply that exercise may have a beneficial role in preventing and ameliorating such diseases by having an effect on gut immune function and, recently, microbiome characteristics. Emerging data from our laboratory show that different forms of exercise training differentially impact the severity of intestinal inflammation during an inflammatory insult (for example, ulcerative colitis) and may be jointly related to gut immune cell homeostasis and microbiota-immune interactions. The evidence we review and present will provide data in support of rigorous investigations concerning the effects of habitual exercise on gut health and disease.
Collapse
Affiliation(s)
- Marc D Cook
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Brandt D Pence
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew A Wallig
- College of Veterinarian Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bryan A White
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jeffrey A Woods
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, White BA, Fryer JD, Woods JA. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol (1985) 2015; 118:1059-66. [PMID: 25678701 DOI: 10.1152/japplphysiol.01077.2014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that voluntary wheel running (VWR) attenuates, whereas forced treadmill running (FTR) exacerbates, intestinal inflammation and clinical outcomes in a mouse model of colitis. As the gut microbiome is implicated in colitis, we hypothesized that VWR and FTR would differentially affect the gut microbiome. Mice (9-10/treatment) were randomly assigned to VWR, FTR, or sedentary home cage control (SED) for 6 wk. VWR were given running wheel access, whereas FTR ran on a treadmill for 40 min/day at 8-12 m/min, 5% grade. Forty-eight hours after the last exercise session, DNA was isolated from the fecal pellets and cecal contents, and the conserved bacterial 16S rRNA gene was amplified and sequenced using the Illumina Miseq platform. Permutational multivariate analysis of variance based on weighted UniFrac distance matrix revealed different bacterial clusters between feces and cecal contents in all groups (P < 0.01). Interestingly, the community structures of the three treatment groups clustered separately from each other in both gut regions (P < 0.05). Contrary to our hypothesis, the α-diversity metric, Chao1, indicated that VWR led to reduced bacterial richness compared with FTR or SED (P < 0.05). Taxonomic evaluation revealed that both VWR and FTR altered many individual bacterial taxa. Of particular interest, Turicibacter spp., which has been strongly associated with immune function and bowel disease, was significantly lower in VWR vs. SED/FTR. These data indicate that VWR and FTR differentially alter the intestinal microbiome of mice. These effects were observed in both the feces and cecum despite vastly different community structures between each intestinal region.
Collapse
Affiliation(s)
- Jacob M Allen
- Department of Kinesiology and Community Health, Mayo Clinic, Rochester, Minnesota; Integrative Immunology and Behavior Program, Mayo Clinic, Rochester, Minnesota
| | - Margret E Berg Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brandt D Pence
- Department of Kinesiology and Community Health, Mayo Clinic, Rochester, Minnesota; Integrative Immunology and Behavior Program, Mayo Clinic, Rochester, Minnesota
| | - Keith Whitlock
- Department of Kinesiology and Community Health, Mayo Clinic, Rochester, Minnesota
| | - Vandana Nehra
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bryan A White
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Jeffrey A Woods
- Department of Kinesiology and Community Health, Mayo Clinic, Rochester, Minnesota; Integrative Immunology and Behavior Program, Mayo Clinic, Rochester, Minnesota; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| |
Collapse
|
25
|
Abstract
BACKGROUND Tight junction proteins (TJPs) and dendritic cells (DC) are critical in the pathogenesis of inflammatory bowel diseases. The ileal pouch formed by restorative proctocolectomy provides a unique human model for studying the pathogenesis of inflammatory bowel diseases. Data implicate the microbiota in the pathogenesis of pouchitis, while the role of innate immune factors remains unclear. We performed longitudinal and cross-sectional studies of patients after restorative proctocolectomy and assessed TJP and DC characteristics in the ileal pouch. METHODS Mucosal biopsies were taken from the ileal pouch of patients with ulcerative colitis (UC) and familial adenomatous polyposis (n = 8). Of patients with UC, one group (n = 5) was followed longitudinally over the first year after ileostomy closure, another group had pouchitis (n = 15), and another group no inflammation (n = 18). Dendritic cell phenotype and epithelial cell TJP expression were assessed using flow cytometric analysis. RESULTS Increased epithelial expression of the "pore-forming" TJP claudin 2, and DC expression of gut-homing markers CCR 9 and integrin β7, occurred early after ileostomy closure. In patients with UC with pouchitis, epithelial expression of ZO-1 and claudin 1 were reduced, DC were activated with increased CD40, and Toll-like receptor 4 expression increased. In pouchitis, DC expressing CCR 9 were decreased, whereas DC expressing β7 increased. CONCLUSIONS Abnormalities were found in TJP expression in the pouch of patients with UC, in particular, increased expression of the pore-forming claudin 2 as an early event in the development of pouch inflammation and an aberrant DC phenotype was characterized in the ileal pouch of patients with UC.
Collapse
|
26
|
Angriman I, Scarpa M, Castagliuolo I. Relationship between pouch microbiota and pouchitis following restorative proctocolectomy for ulcerative colitis. World J Gastroenterol 2014; 20:9665-9674. [PMID: 25110406 PMCID: PMC4123357 DOI: 10.3748/wjg.v20.i29.9665] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/23/2013] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) has become the surgical treatment of choice for many patients with medically refractory ulcerative colitis (UC) and familial adenomatous polyposis (FAP). UC patients with IPAA (UC-IPAA) are, nevertheless, susceptible to inflammatory and noninflammatory sequelae such as pouchitis, which is only rarely noted in FAP patients with IPAA. Pouchitis is the most frequent long-term complication of UC-IPAA patients, with a cumulative prevalence of up to 50%. Although the aetiology of pouchitis remains unclear, accumulating evidence suggests that a dysbiosis of the pouch microbiota and an abnormal mucosal immune response are implicated in its pathogenesis. Studies using culture and molecular techniques have detected a dysbiosis of the pouch microbiota in patients with pouchitis. Risk factors, genetic associations, and serological markers suggest that interactions between the host immune response and the pouch microbiota underlie the aetiology of this idiopathic inflammatory condition. This systematic review focuses on the dysbiosis of the microbiota that inhabit the pouch in UC and FAP patients and its interaction with the mucosal immune system. A meta-analysis was not attempted due to the highly heterogeneous microbiota composition and the different detection methods used by the various studies. Although no specific bacterial species, genus, or family has as yet been identified as pathogenic, there is evidence that a dysbiosis characterized by decreased gut microbiota diversity in UC-IPAA patients may, in genetically predisposed subjects, lead to aberrant mucosal immune regulation triggering an inflammatory process.
Collapse
|
27
|
Abstract
Pouchitis is a common complication seen in patients with ulcerative colitis who undergo total proctocolectomy with ileal pouch anal anastomosis. Bacteria seem to play an important role in the development of pouchitis, although this role is not well defined. Because technology has advanced, we are able to apply molecular techniques to describe the structure and function of the pouch microbial community. In recent years, several studies have been performed comparing the pouch microbiota in patients with ulcerative colitis with healthy pouches and pouchitis. Many of these studies have suggested that pouchitis is characterized by dysbiosis and/or decreased microbial diversity. There has not been a clear pattern identifying a pathogenic organism or a group of organisms responsible for pouchitis. This review summarizes recent studies exploring the pouch microbiota in health and disease, the relationship of bacterial metabolites and pouchitis, and the role of antibiotics and probiotics for the treatment and prevention of pouchitis.
Collapse
|
28
|
Håkansson Å, Tormo-Badia N, Baridi A, Xu J, Molin G, Hagslätt ML, Karlsson C, Jeppsson B, Cilio CM, Ahrné S. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med 2014; 15:107-20. [PMID: 24414342 PMCID: PMC4308640 DOI: 10.1007/s10238-013-0270-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/14/2013] [Indexed: 12/17/2022]
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammation of the colonic mucosa. Administration of dextran sulfate sodium (DSS) to animals is a frequently used model to mimic human colitis. Deregulation of the immune response to the enteric microflora or pathogens as well as increased intestinal permeability have been proposed as disease-driving mechanisms. To enlarge the understanding of the pathogenesis, we have studied the effect of DSS on the immune system and gut microbiota in mice. Intestinal inflammation was verified through histological evaluation and myeloperoxidase activity. Immunological changes were assessed by flow cytometry in spleen, Peyer′s patches and mesenteric lymph nodes and through multiplex cytokine profiling. In addition, quantification of the total amount of bacteria on colonic mucosa as well as the total amount of lactobacilli, Akkermansia, Desulfovibrio and Enterobacteriaceae was performed by the use of quantitative PCR. Diversity and community structure were analysed by terminal restriction fragment length polymorphism (T-RFLP) patterns, and principal component analysis was utilized on immunological and T-RFLP patterns. DSS-induced colitis show clinical and histological similarities to UC. The composition of the colonic microflora was profoundly changed and correlated with several alterations of the immune system. The results demonstrate a relationship between multiple immunological changes and alterations of the gut microbiota after DSS administration. These data highlight and improve the definition of the immunological basis of the disease and suggest a role for dysregulation of the gut microbiota in the pathogenesis of colitis.
Collapse
Affiliation(s)
- Å Håkansson
- Food Hygiene, Division of Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol 2013; 14:62. [PMID: 24325943 PMCID: PMC3874687 DOI: 10.1186/2050-6511-14-62] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/04/2013] [Indexed: 02/08/2023] Open
Abstract
Background The gut microbiota is critical for intestinal homeostasis. Recent studies have revealed the links between different types of dysbiosis and diseases inside and outside the intestine. Environmental exposure to pollutants (such as heavy metals) can also impair various physiological functions for good health. Here, we studied the impact of up to 8 weeks of oral lead and cadmium ingestion on the composition of the murine intestinal microbiome. Results Pyrosequencing of 16S RNA sequences revealed minor but specific changes in bacterial commensal communities (at both family and genus levels) following oral exposure to the heavy metals, with notably low numbers of Lachnospiraceae and high numbers levels of Lactobacillaceae and Erysipelotrichaceacae (mainly due to changes in Turicibacter spp), relative to control animals. Conclusions Non-absorbed heavy metals have a direct impact on the gut microbiota. In turn, this may impact the alimentary tract and overall gut homeostasis. Our results may enable more accurate assessment of the risk of intestinal disease associated with heavy metal ingestion.
Collapse
Affiliation(s)
| | | | | | | | | | - Benoît Foligné
- Bactéries Lactiques & Immunité des Muqueuses, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, U1019, UMR 8204, Université Lille Nord de France, 1 rue du Pr Calmette, Lille cedex, BP 245, F-59019, France.
| |
Collapse
|
30
|
Exclusive elemental diet impacts on the gastrointestinal microbiota and improves symptoms in patients with chronic pouchitis. J Crohns Colitis 2013; 7:460-6. [PMID: 22857825 DOI: 10.1016/j.crohns.2012.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/24/2012] [Accepted: 07/08/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Treatment resistant chronic pouchitis causes significant morbidity. Elemental diet is effective treatment for Crohn's disease. Since pouchitis shares some similarities to Crohn's disease we hypothesised that elemental diet may be an effective treatment. METHOD Seven pouchitis patients (with ulcerative colitis) were studied. All had active pouchitis with a pouch disease activity index (PDAI) ≥7. Exclusion criteria were recent NSAIDs, antibiotics or probiotics. Sufficient elemental diet to achieve energy requirements was provided. Flexible-pouchoscopy was performed, and the Cleveland Global Quality of Life score (CGQoL), Pouch Disease Activity Index (PDAI) and BMI were recorded at baseline and following 28 days of elemental diet. Faecal samples were also collected at these time points and analysed for major bacterial groups using culture independent fluorescence in situ hybridisation. Data were analysed using Wilcoxon's signed-rank test. RESULTS Following 28 days of exclusive elemental diet, median stool frequency decreased from 12 to 6 per day (p=0.028), median clinical PDAI decreased from 4 to 1 (p=0.039). There was no significant difference in quality of life scores or PDAI before and following treatment. There was a trend towards an increase in the concentration of Clostridium coccoides-Eubacterium rectale (median 7.9 to 8.5 log₁₀/g, p=0.08) following exclusive elemental diet. CONCLUSION Treatment with four weeks elemental diet appeared to improve the symptoms of chronic pouchitis in some patients but is not an effective strategy for inducing remission. Although a potential symptom modifier, elemental diet cannot be recommended for the routine treatment of active pouchitis.
Collapse
|
31
|
Young VB, Raffals LH, Huse SM, Vital M, Dai D, Schloss PD, Brulc JM, Antonopoulos DA, Arrieta RL, Kwon JH, Reddy KG, Hubert NA, Grim SL, Vineis JH, Dalal S, Morrison HG, Eren AM, Meyer F, Schmidt TM, Tiedje JM, Chang EB, Sogin ML. Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis. MICROBIOME 2013; 1:9. [PMID: 24451366 PMCID: PMC3971607 DOI: 10.1186/2049-2618-1-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/10/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND The indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis. A subset of patients who undergo IPAA develops an inflammatory condition known as pouchitis, which is thought to mirror the pathogenesis of ulcerative colitis. Following the development of the microbiome of the pouch would allow characterization of the microbial community that predates the development of overt disease. RESULTS We monitored the development of the pouch microbiota in four patients who underwent IPAA. Mucosal and luminal samples were obtained prior to takedown of the diverting ileostomy and compared to samples obtained 2, 4 and 8 weeks after intestinal continuity had been restored. Through the combined analysis of 16S rRNA-encoding gene amplicons, targeted 16S amplification and microbial cultivation, we observed major changes in structure and function of the pouch microbiota following ileostomy. There is a relative increase in anaerobic microorganisms with the capacity for fermentation of complex carbohydrates, which corresponds to the physical stasis of intestinal contents in the ileal pouch. Compared to the microbiome structure encountered in the colonic mucosa of healthy individuals, the pouch microbial community in three of the four individuals was quite distinct. In the fourth patient, a community that was much like that seen in a healthy colon was established, and this patient also had the most benign clinical course of the four patients, without the development of pouchitis 2 years after IPAA. CONCLUSIONS The microbiota that inhabit the ileal-anal pouch of patients who undergo IPAA for treatment of ulcerative colitis demonstrate significant structural and functional changes related to the restoration of fecal flow. Our preliminary results suggest once the pouch has assumed the physiologic role previously played by the intact colon, the precise structure and function of the pouch microbiome, relative to a normal colonic microbiota, will determine if there is establishment of a stable, healthy mucosal environment or the reinitiation of the pathogenic cascade that results in intestinal inflammation.
Collapse
Affiliation(s)
- Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura H Raffals
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Susan M Huse
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marius Vital
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Dongjuan Dai
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer M Brulc
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Argonne, IL, USA
| | | | - Rose L Arrieta
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - John H Kwon
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - K Gautham Reddy
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Nathaniel A Hubert
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Sharon L Grim
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Joseph H Vineis
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Sushila Dalal
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Folker Meyer
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Argonne, IL, USA
| | - Thomas M Schmidt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, IL, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
32
|
Axling U, Olsson C, Xu J, Fernandez C, Larsson S, Ström K, Ahrné S, Holm C, Molin G, Berger K. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab (Lond) 2012. [PMID: 23181558 PMCID: PMC3538623 DOI: 10.1186/1743-7075-9-105] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Type 2 diabetes is associated with obesity, ectopic lipid accumulation and low-grade inflammation. A dysfunctional gut microbiota has been suggested to participate in the pathogenesis of the disease. Green tea is rich in polyphenols and has previously been shown to exert beneficial metabolic effects. Lactobacillus plantarum has the ability to metabolize phenolic acids. The health promoting effect of whole green tea powder as a prebiotic compound has not been thoroughly investigated previously. Methods C57BL/6J mice were fed a high-fat diet with or without a supplement of 4% green tea powder (GT), and offered drinking water supplemented with Lactobacillus plantarum DSM 15313 (Lp) or the combination of both (Lp + GT) for 22 weeks. Parameters related to obesity, glucose tolerance, lipid metabolism, hepatic steatosis and inflammation were examined. Small intestinal tissue and caecal content were collected for bacterial analysis. Results Mice in the Lp + GT group had significantly more Lactobacillus and higher diversity of bacteria in the intestine compared to both mice in the control and the GT group. Green tea strongly reduced the body fat content and hepatic triacylglycerol and cholesterol accumulation. The reduction was negatively correlated to the amount of Akkermansia and/or the total amount of bacteria in the small intestine. Markers of inflammation were reduced in the Lp + GT group compared to control. PLS analysis of correlations between the microbiota and the metabolic variables of the individual mice showed that relatively few components of the microbiota had high impact on the correlation model. Conclusions Green tea powder in combination with a single strain of Lactobacillus plantarum was able to promote growth of Lactobacillus in the intestine and to attenuate high fat diet-induced inflammation. In addition, a component of the microbiota, Akkermansia, correlated negatively with several metabolic parameters known to be risk factors for the development of type 2 diabetes.
Collapse
Affiliation(s)
- Ulrika Axling
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Crister Olsson
- Department of Applied Nutrition and Food Chemistry, Section of Food Hygiene, Lund University, Lund, Sweden
| | - Jie Xu
- Department of Applied Nutrition and Food Chemistry, Section of Food Hygiene, Lund University, Lund, Sweden
| | - Céline Fernandez
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Larsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kristoffer Ström
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Present address: Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Siv Ahrné
- Department of Applied Nutrition and Food Chemistry, Section of Food Hygiene, Lund University, Lund, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Molin
- Department of Applied Nutrition and Food Chemistry, Section of Food Hygiene, Lund University, Lund, Sweden
| | - Karin Berger
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Abstract
BACKGROUND Pouchitis is the most common long-term complication in ulcerative colitis that follows restorative proctocolectomy. Clinical evidence suggests that dysbiosis plays a key role in its pathogenesis. METHODS Current literature on the topic was reviewed. A therapeutic approach was proposed based on the literature along with personal experience from the subspecialty Pouchitis Clinic. RESULTS Pouchitis represents a disease spectrum in the reservoir, with ranging etiopathogenesis, clinical phenotypes, disease courses and prognoses. Dysbiosis plays a critical role in disease initiation and progress, with antibiotic therapy as the mainstay for treatment. On the other hand, superimposed infection from pathogens contributes to flare-up of the disease. Pouchitis can progress into an 'IBD-like' condition, requiring anti-inflammatory, immunomodulator or even biological therapy. CONCLUSION Pouchitis represents a unique form of IBD. Investigation on the evolution from an antibiotic-responsive phenotype to chronic antibiotic-refractory pouchitis may shed some light on the pathogenesis and therapeutic targets of IBD.
Collapse
Affiliation(s)
- Bo Shen
- Digestive Disease Institute, the Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
34
|
Landy J, Al-Hassi HO, McLaughlin SD, Knight SC, Ciclitira PJ, Nicholls RJ, Clark SK, Hart AL. Etiology of pouchitis. Inflamm Bowel Dis 2012; 18:1146-55. [PMID: 22021180 DOI: 10.1002/ibd.21911] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022]
Abstract
Restorative proctocolectomy with ileal-pouch anal anastomosis (RPC) is the operation of choice for ulcerative colitis (UC) patients requiring surgery. It is also used for patients with familial adenomatous polyposis (FAP). Pouchitis accounts for 10% of pouch failures. It is an idiopathic inflammatory condition that may occur in up to 50% of patients after RPC for UC. It is rarely seen in FAP patients after RPC. The etiology of pouchitis remains unclear. An overlap with UC is suggested by the frequency with which pouchitis affects patients with UC compared with FAP patients. There is significant clinical evidence implicating bacteria in the pathogenesis of pouchitis. Studies using culture and molecular methods demonstrate a dysbiosis of the pouch microbiota in pouchitis. Risk factors, genetic associations, and serological markers of pouchitis suggest that the interactions between the host immune responses and the pouch microbiota underlie the etiology of this idiopathic inflammatory condition. Here we present a detailed review of the data focusing on the pouch microbiota and the immune responses that support this hypothesis. We also discuss the contribution of luminal metabolic factors and the epithelial membrane in the etiology of this inflammatory process. The ileoanal pouch offers a unique opportunity to study the inter-relationships between the gut microbiota and host immune responses from before the onset of disease. For this reason the study of pouchitis could serve as a human model that significantly enhances our understanding of inflammatory bowel diseases in general.
Collapse
Affiliation(s)
- J Landy
- Department of Gastroenterology St Mark's Hospital, Harrow, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tannock GW, Lawley B, Munro K, Lay C, Taylor C, Daynes C, Baladjay L, Mcleod R, Thompson-Fawcett M. Comprehensive analysis of the bacterial content of stool from patients with chronic pouchitis, normal pouches, or familial adenomatous polyposis pouches. Inflamm Bowel Dis 2012; 18:925-34. [PMID: 22114001 DOI: 10.1002/ibd.21936] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Chronic pouchitis is an important long-term complication following ileal pouch-anal anastomosis for ulcerative colitis. Antibiotic administration reduces symptoms of pouchitis, indicating that bacteria have a role in pathogenesis. The aim of the research was to investigate the bacterial content of pouches using nucleic acid-based methods. METHODS Stool microbiota of 17 patients with normal pouches (NP), 17 patients with pouchitis (CP) utilizing samples collected from each patient when antibiotic-treated (CP-on, asymptomatic) and when untreated (CP-off, symptomatic), and 14 familial adenomatous polyposis (FAP) patients were analyzed by high-throughput sequencing, fluorescence in situ hybridization technologies, and quantitative polymerase chain reaction (qPCR). RESULTS Fluorescence in situ hybridization analysis revealed an expanded phylogenetic gap in NP and CP-off patients relative to FAP. Antibiotic treatment reduced the gap in CP stool. The phylogenetic gap of CP-off patients was due to members of the bacterial families Caulobacteriaceae, Sphingomonadaceae, Comamonadaceae, Peptostreptococcaceae, and Clostridiaceae. There was a greater diversity of phylotypes of Clostridiaceae in CP-off subjects. The phylogenetic gap of NP stool was enriched by Ruminococcaceae and Bifidobacteriaceae. CP stool microbiota had reduced diversity relative to NP and FAP stool due largely to a reduction in Lachnospiraceae/Insertae Sedis XIV/clostridial cluster IV groups. CONCLUSIONS Bacterial groups within the expanded phylogenetic gap of pouch patients may have roles in the pathogenesis of pouchitis. Further research concerning the physiology of cultured members of these groups will be necessary to explain their specific roles. Members of the Lachnospiraceae, Incertae Sedis XIV, and clostridial cluster IV could be useful biomarkers of pouch health.
Collapse
Affiliation(s)
- Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis has become the procedure of choice for the majority of patients with ulcerative colitis who require surgical treatment. Pouchitis, the most common long-term complication of the procedure, involves a spectrum of disease processes with heterogeneous risk factors, clinical features, disease courses and prognoses. In addition, clinical symptoms of pouchitis are not specific and often overlap with those of other inflammatory and functional pouch disorders, such as Crohn's disease of the pouch and irritable pouch syndrome. Pouchoscopy and biopsy, along with laboratory and radiographic evaluations, are often required for accurate diagnosis in patients with symptoms indicative of pouchitis. Dysbiosis has been implicated as a triggering factor for pouchitis, and concurrent infection with pathogens, such as Clostridium difficile, might contribute to disease relapse and exacerbation. Antibiotic therapy is the main treatment modality. However, the management of antibiotic-dependent and antibiotic-refractory pouchitis remains challenging. Secondary causes of pouchitis, such as ischaemia, NSAID use, the presence of concurrent primary sclerosing cholangitis and other systemic immune-mediated disorders, should be evaluated and properly managed.
Collapse
|
37
|
Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R, Haslberger AG. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One 2011; 6:e28654. [PMID: 22194876 PMCID: PMC3237468 DOI: 10.1371/journal.pone.0028654] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/11/2011] [Indexed: 12/14/2022] Open
Abstract
Background We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. Methodology/Principal Findings Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. Conclusions/Significance Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C.difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.
Collapse
Affiliation(s)
| | | | - Berit Hippe
- Department of Nutritional Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
38
|
Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC, McNabb WC, Ansell J. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(-/-) mice, a model of inflammatory bowel diseases. Nutrition 2011; 28:324-30. [PMID: 22113065 DOI: 10.1016/j.nut.2011.07.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Enteric microbiota has been shown to be associated with various pathological conditions such as inflammatory bowel disease (IBD). This study aimed to determine the anti-inflammatory colonic effects of blueberries and broccoli in mdr1a(-/-) mice (IBD mouse model) through modification of microbiota composition in the gastrointestinal tract. METHODS The mdr1a(-/-) mice were fed either a control diet or the control diet supplemented with either 10% blueberry or broccoli for 21 wk. We investigated the influence of these diets on cecal microbiota and organic acids, colon morphology, and bacterial translocation to mesenteric lymph nodes. RESULTS In comparison to mice fed the control diet, blueberry and broccoli supplementation altered cecum microbiota similarly with the exception of Faecalibacterium prausnitzii, which was found to be significantly lower in broccoli-fed mice. High concentrations of butyric acid and low concentrations of succinic acid were observed in the cecum of broccoli-fed mice. Blueberry- and broccoli-supplemented diets increased colon crypt size and the number of goblet cells per crypt. Only the broccoli-supplemented diet significantly lowered colonic inflammation compared to mice fed the control diet. Translocation of total microbes to mesenteric lymph nodes was lower in broccoli-fed mice compared to blueberry and control diet groups. CONCLUSION Dietary blueberries and/or broccoli altered the composition and metabolism of the cecal microbiota and colon morphology. Overall, these results warrant further investigation through clinical studies to establish whether the consumption of blueberries and/or broccoli is able to alter the composition and metabolism of large intestine microbiota and promote colon health in humans.
Collapse
Affiliation(s)
- Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
39
|
Scarpa M, Grillo A, Pozza A, Faggian D, Ruffolo C, Scarpa M, D'Incà R, Plebani M, Sturniolo GC, Castagliuolo I, Angriman I. TLR2 and TLR4 up-regulation and colonization of the ileal mucosa by Clostridiaceae spp. in chronic/relapsing pouchitis. J Surg Res 2011; 169:e145-54. [PMID: 21601883 DOI: 10.1016/j.jss.2011.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Chronic pouchitis, which can lead to pouch failure, occurs in approximately 5% of patients after restorative proctocolectomy for ulcerative colitis (UC). This work examined the interplay between the microbiota adherent to the ileal pouch mucosa and the mucosal immune system in chronic/relapsing pouchitis. PATIENTS AND METHODS Thirty-two consecutive patients attending our surgical gastroenterological department following restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) for UC were considered eligible candidates for this study. Biopsy samples of bacteria adherent to the mucosa were collected. TLR4 and TLR2 mucosal expression was measured by Real Time RT-PCR. Serum and mucosal IL-1β, IL-6, and TNF-α levels were assessed using immunometric assays. Fecal lactoferrin concentrations were determined by quantitative ELISA. After a median follow-up of 23 months (IQR 20-24 months) each patient underwent a global assessment of their clinical condition and disease activity status. RESULTS Six patients were diagnosed with relapsing/chronic pouchitis during the follow-up period. Mucosal TLR2 and TLR4 expression was higher in the chronic/relapsing pouchitis group than in the no or only one episode of pouchitis group (P = 0.036 and P = 0.016, respectively). The number of colony forming units (CFU) of mucosa-associated Clostridiaceae spp. was higher in the former than in the latter group (P = 0.031). Clostridiaceae were associated to a significant risk of chronic/relapsing pouchitis [OR: 14 (95% CI 0.887-224.021), P = 0.045]. CONCLUSION Chronic/relapsing pouchitis is associated to higher mucosal TLR2 and TLR4 expression. Mucosal colonization by Clostridiaceae spp seems to play a role in the pathogenesis of chronic/relapsing pouchitis.
Collapse
Affiliation(s)
- Marco Scarpa
- Oncological Surgery Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pruteanu M, Hyland NP, Clarke DJ, Kiely B, Shanahan F. Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:1189-200. [PMID: 20853433 DOI: 10.1002/ibd.21475] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Proteolytic degradation of the extracellular matrix, a feature of mucosal homeostasis and tissue renewal, also contributes to the complications of intestinal inflammation. Whether this proteolytic activity is entirely host-derived, or, in part, produced by the gut microbiota, is unknown. METHODS We screened the bacterial colonies for gelatinolytic activity from fecal samples of 20 healthy controls, 23 patients with ulcerative colitis, and 18 with Crohn's disease (CD). In addition, the genes encoding metalloproteases were detected by conventional or real-time polymerase chain reaction (PCR). RESULTS Gelatinolytic activity was found in approximately one-quarter of samples regardless of the presence of inflammation and without any attempt to enhance the sensitivity of the culture-based screen. This was associated with a diversity of bacteria, particularly in CD, but was predominantly linked with Clostridium perfringens. Culture supernatants from C. perfringens degraded gelatin, azocoll, type I collagen, and basement membrane type IV collagen, but different isolates varied in the degree of proteolytic activity. Results were confirmed by detection of the C. perfringens colA gene (encoding collagenase) in fecal DNA, again regardless of the presence or absence of inflammation. However, the biologic significance and potential implications of microbial-derived proteolytic activity were confirmed by reduced transepithelial resistance (TER) after exposure of rat distal colon to culture supernatants of C. perfringens in Ussing chambers. CONCLUSIONS The study shows that microbial-derived proteolytic activity has the capacity to contribute to mucosal homeostasis and may participate in the pathogenesis of inflammatory bowel disease.
Collapse
|
41
|
Zella GC, Hait EJ, Glavan T, Gevers D, Ward DV, Kitts CL, Korzenik JR. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflamm Bowel Dis 2011; 17:1092-100. [PMID: 20845425 DOI: 10.1002/ibd.21460] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pouchitis occurs in up to 50% of patients with ulcerative colitis (UC) undergoing ileal pouch anal anastomosis (IPAA). Pouchitis rarely occurs in patients with familial adenomatous polyposis (FAP) who undergo IPAA. Our aim was to compare mucosal and luminal flora in patients with UC-associated pouchitis (UCP), healthy UC pouches (HUC), and healthy FAP pouches (FAP). METHODS Nineteen patients were enrolled in this cross-sectional study (nine UCP, three HUC, seven FAP). Patients with active pouchitis were identified using the Pouchitis Disease Activity Index (PDAI). Ileal pouch mucosal biopsies and fecal samples were analyzed with a 16S rDNA-based terminal restriction fragment length polymorphism (TRFLP) approach. Pooled fecal DNA from four UCP and four FAP pouches were sequenced for further speciation. RESULTS TRFLP data revealed statistically significant differences in the mucosal and fecal microbiota between each group of patients. UCP samples exhibited significantly more TRFLP peaks matching Clostridium and Eubacterium genera compared to HUC and FAP pouches and fewer peaks matching Lactobacillus and Streptococcus genera compared to FAP. DNA Sanger sequencing of a subset of luminal samples revealed UCP having more identifiable sequences of Firmicutes (51.2% versus 21.2%) and Verrucomicrobia (20.2% versus 3.2%), and fewer Bacteroidetes (17.9% versus 60.5%) and Proteobacteria (9.8% versus 14.7%) compared to FAP. CONCLUSIONS The pouch microbial environment appears to be distinctly different in the settings of UC pouchitis, healthy UC, and FAP. These findings suggest that a dysbiosis may exist in pouchitis which may be central to understanding the disease.
Collapse
Affiliation(s)
- Garrett C Zella
- Division of Pediatric Gastroenterology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To highlight the recent studies which have enhanced our appreciation of the composition of the microbiota in the human small intestine and its relevance to the health of the host. RECENT FINDINGS In the past number of years, the composition of the microorganisms present in our small intestines has been the subject of greater scrutiny than ever before. These investigations have been possible as a consequence of the development and utilization of new molecular tools which have revolutionized the field of microbial ecology and have focused predominantly on the small intestinal microbiota associated with pediatric celiac disease, inflammatory bowel disease, irritable bowel syndrome and pouchitis. The impact of invasive procedures, such as small bowel transplant, ileostomy and ileal pouch anal anastomosis, on the ileal microbiota has also been investigated. SUMMARY The ever greater appreciation of the link between the small intestinal microbiota and the health status of the host has the potential to lead to the development of new strategies to alter this microbiota in a targeted way to prevent or treat specific disorders.
Collapse
|
43
|
Draft genome sequence of Turicibacter sanguinis PC909, isolated from human feces. J Bacteriol 2010; 193:1288-9. [PMID: 21183674 DOI: 10.1128/jb.01328-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the microbiota resident in the human gut is now known to provide a range of functions relevant to host health, many of the microbial members of the community have not yet been cultured or are represented by a limited number of isolates. We describe here the draft genome sequence of Turicibacter sanguinis PC909, isolated from a pooled healthy human fecal sample as part of the Australian Human Gut Microbiome Project.
Collapse
|
44
|
Navaneethan U, Shen B. Diagnosis and management of pouchitis and ileoanal pouch dysfunction. Curr Gastroenterol Rep 2010; 12:485-94. [PMID: 20890738 DOI: 10.1007/s11894-010-0143-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) has become the surgical treatment of choice for patients with medically refractory ulcerative colitis (UC) or UC with dysplasia and for the majority of patients with familial adenomatous polyposis. However, UC patients with IPAA are susceptible to inflammatory and noninflammatory sequelae, such as pouchitis, Crohn's disease of the pouch, cuffitis, and irritable pouch syndrome, in addition to common surgery-associated complications, which adversely affect the surgical outcome and compromise health-related quality of life. Pouchitis is the most frequent long-term complication of IPAA in patients with UC, with a cumulative prevalence of up to 50%. Pouchitis may be classified based on the etiology into idiopathic and secondary types, and the management is often different. Pouchoscopy is the most important tool for the diagnosis and differential diagnosis in patients with pouch dysfunction. Antibiotic therapy is the mainstay of treatment for active pouchitis. Some patients may develop dependency on antibiotics, requiring long-term maintenance therapy. Although management of antibiotic-dependent or antibiotic-refractory pouchitis has been challenging, secondary etiology for pouchitis should be evaluated and modified, if possible.
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- The Pouchitis Clinic, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
45
|
Abstract
Restorative proctocolectomy (RPC) with ileal pouch-anal anastomosis is the operation of choice for patients with ulcerative colitis. Pouchitis is the most common cause of pouch dysfunction. Although the pathogenesis of this disease is not well understood, bacteria have been implicated in the disease process. Numerous bacterial studies have been reported over the last 25 years with few unifying findings. In addition, many different treatments for pouchitis have been reported with varying results. Antibiotic treatment remains the most studied and is the mainstay of treatment. In this article we review the aetiology of pouchitis and the evidenced-based treatment options.
Collapse
|
46
|
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis has become the surgical treatment of choice for most patients with ulcerative colitis who require surgery. Although the surgical procedure offers a cure in some patients, postoperative inflammatory and noninflammatory complications are common. Pouchitis is the most common long-term complication of the procedure. Pouchitis represents a spectrum of disease processes with heterogeneous risk factors, clinical phenotypes, natural history, and prognosis. Accurate diagnosis and classification are important for proper treatment and prognosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
47
|
Abstract
This study examined bacteria-immune interactions in a mouse model possessing microbiota-dependent immune regulatory features similar to those occurring in human atopy, colitis, and immune regulation. Associations between the abundance of several bacterial phylotypes and immunoregulatory target cell types were identified, suggesting that they may play a role in these phenotypes.
Collapse
|
48
|
Abstract
Restorative proctocolectomy with ileal pouch-anal anastomosis has become the surgical treatment of choice for most patients with ulcerative colitis who require surgery. Although the surgical procedure offers a cure in some patients, postoperative inflammatory and noninflammatory complications are common. Pouchitis is the most common long-term complication of the procedure. Pouchitis represents a spectrum of disease processes with heterogeneous risk factors, clinical phenotypes, natural history, and prognosis. Accurate diagnosis and classification are important for proper treatment and prognosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
49
|
Lim M, Adams JDW, Wilcox M, Finan P, Sagar P, Burke D. An assessment of bacterial dysbiosis in pouchitis using terminal restriction fragment length polymorphisms of 16S ribosomal DNA from pouch effluent microbiota. Dis Colon Rectum 2009; 52:1492-500. [PMID: 19617766 DOI: 10.1007/dcr.0b013e3181a7b77a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Previous studies on dysbiosis and pouchitis using conventional culture techniques have been disappointing because of inherent limitations associated with the technique. This study was designed to use terminal restriction fragment length polymorphism to evaluate patients with and without pouchitis. METHODS Bacterial microbiota in 20 pouch patients (15 healthy and 5 with inflamed) were studied. DNA was extracted from feces, and polymerase chain reaction was performed using primers (V6-V8 region) that were modified at the 5' end with cyanine dyes. Amplicons were digested with merozoite surface protein-1 enzyme. The restricted fragments were analyzed by capillary electrophoresis, and the electrophenograms were studied. Electrophenograms provide information about operational taxonomic units, which correspond to specific organisms. Principal component analysis was performed to identify dominant and important operational taxonomic units in the 20 patients. Bacterial diversity and counts of these operational taxonomic units were compared in the two groups of patients. RESULTS Total bacterial diversity in patients with pouchitis was similar to that in patients with healthy pouches (16 (11-20) vs. 12 (9-13), P = 0.279). Using principal component analysis, 29 operational taxonomic units were found to be important. Bacterial counts of seven dominant organisms (operational taxonomic unit 79 (enterococci), 85 (Pantoea), 88 (Enterobacteriaceae), 90 (eubacteria), 91 (Pseudomonas), 146 (clostridia), and 148 (bacilli)) were similar in patients with pouchitis and those with a healthy pouch (P > 0.05). Seventeen (operational taxonomic unit 73 (Leptospira), 93 (Pseudoalteromonas), 96, 100 (Desulfosporosinus), 114, 121, 134, 137, 141 (Microcystis), 159, 174 (Methylobacter), 193 (uncultured proteobacteria), 232, 376, 381, 414, and 465) of the remaining 22 nondominant organisms were seen exclusively in patients with pouchitis. The majority of these organisms were novel. CONCLUSION Terminal restriction fragment length polymorphism can be used to identify candidate organisms that may be associated with pouchitis.
Collapse
Affiliation(s)
- Michael Lim
- John Goligher Colorectal Unit, The General Infirmary at Leeds, Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW One of the significant limitations to the investigation of inflammatory bowel disease (IBD) in humans is the impossibility of studying this condition from the beginning of the disease process to understand the individual contribution of the various microbiological and immunological components to its pathogenesis. Pouchitis can serve as a human model for IBD, as the time of the pouch creation is known, which allows to prospectively study the events that might eventually lead to the development of a form of intestinal inflammation (i.e., pouchitis) that mimics IBD. RECENT FINDINGS A considerable amount of progress has been made in the last few years on the mechanisms underlying the pathogenesis of pouchitis. Recent literature suggests that pouchitis may present a spectrum of disease processes, with a wide range of causes, risk factors, clinical phenotypes, disease courses, and prognoses. Genetic, microbiological, and immunological profiles in pouchitis were evaluated. SUMMARY Ileal pouch and pouchitis represent a valuable human model to study the evolution of bacterial communities and host-bacteria interactions in IBD by sequentially monitoring microbiological and immunological profile before, during, and after pouch construction and before and after development and treatment of pouchitis.
Collapse
|