1
|
Lee JY, Tiffany CR, Mahan SP, Kellom M, Rogers AWL, Nguyen H, Stevens ET, Masson HLP, Yamazaki K, Marco ML, Eloe-Fadrosh EA, Turnbaugh PJ, Bäumler AJ. High fat intake sustains sorbitol intolerance after antibiotic-mediated Clostridia depletion from the gut microbiota. Cell 2024; 187:1191-1205.e15. [PMID: 38366592 PMCID: PMC11023689 DOI: 10.1016/j.cell.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Matthew Kellom
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Eric T Stevens
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kohei Yamazaki
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Maria L Marco
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Emiley A Eloe-Fadrosh
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Duan R, Zhang C, Li G, Li J, Duan L. Antibiotic Exposure and Risk of New-Onset Inflammatory Bowel Disease: A Systematic Review and Dose-Response Meta-Analysis. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00218-0. [PMID: 38423349 DOI: 10.1016/j.cgh.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS The association between antibiotic exposure and inflammatory bowel disease (IBD) remains controversial, especially whether there is a dose-response relationship. We aimed to conduct a systematic review and meta-analysis to thoroughly evaluate the risk of new-onset IBD associated with antibiotic exposure. METHODS Four databases were searched from their inception to September 30, 2023 for all relevant studies. The risk estimates were pooled together using random-effects models, and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated, stratified by IBD subtype, age, exposure period, study type, and antibiotic classes. Dose-response relationship between the number of antibiotic prescriptions and IBD risk was assessed using generalized least squares regression analysis. RESULTS Twenty-eight studies involving 153,027 patients with IBD were included. Antibiotic exposure was significantly associated with an increased risk of new-onset IBD for prescription-based studies (pooled OR, 1.41; 95% CI, 1.29-1.53) and for questionnaire-based studies (pooled OR, 1.35; 95% CI, 1.08-1.68). This association existed for both Crohn's disease and ulcerative colitis, as well as in children and adults for prescription-based studies. The majority of antibiotic classes were associated with an increased IBD risk, with metronidazole (OR, 1.70; 95% CI, 1.38-2.10) and quinolones (OR, 1.56; 95% CI, 1.37-1.77) having relatively higher risk estimates. A positive nonlinear dose-response association was observed between the number of antibiotic prescriptions and IBD risk. CONCLUSIONS Antibiotic exposure was significantly associated with an increased risk of new-onset IBD, and a positive nonlinear dose-response relationship was observed. Antibiotic stewardship may be important for reducing IBD risk.
Collapse
Affiliation(s)
- Ruqiao Duan
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Gaonan Li
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China.
| |
Collapse
|
3
|
Li Y, Liu LH, Jian ZY, Li PH, Jin X, Li H, Wang KJ. Association between antibiotic exposure and adverse outcomes of children and pregnant women: evidence from an umbrella review. World J Pediatr 2023; 19:1139-1148. [PMID: 36973599 DOI: 10.1007/s12519-023-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Antibiotics are widely prescribed among children and pregnant women, but their safety profile is controversial. This study aimed to summarize and appraise current evidence for the potential impact of antibiotic exposure on pregnancy outcomes and children's health. METHODS PubMed, Embase, Web of Science and the Cochrane Database of Systematic Reviews were searched from inception to June 2022. Meta-analyses of any study design comparing the impact of antibiotic exposure with nonexposure among children, pregnant women and prepregnant women on adverse health outcomes of children and pregnancy were retrieved. The quality of evidence was assessed by a Measurement Tool to Assess Systematic Reviews 2 (AMSTAR2) and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). Data were reanalyzed, and the credibility of the evidence was determined. RESULTS Out of 2956 studies identified, 19 articles with 39 associations were included. Totally 19 of the associations (48.72%) were statistically significant with a P value ≤ 0.05, while only six were supported by highly suggestive evidence. Children with postnatal antibiotic exposure had a higher risk of developing asthma odds ratio (OR): 1.95, 95% confidence interval (CI): 1.76-2.17, wheezing (OR: 1.81, 95% CI 1.65-1.97) and allergic rhinoconjunctivitis (OR: 1.66, 95% CI 1.51-1.83), with prediction intervals excluding the nulls. Quality assessed by both AMSTAR2 and GRADE of included meta-analyses were very low in general. CONCLUSIONS Antibiotic exposure in early life was associated with children's long-term health, especially in cases of allergic diseases. Prenatal exposure might also influence children's health in some aspects but requires more high-quality evidence. Potential adverse effects of antibiotics on pregnancy outcomes were not observed in our study. Studies with higher quality and better quantification of antibiotic exposure are needed in the future.
Collapse
Affiliation(s)
- Ya Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China
| | - Lin-Hu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China
| | - Zhong-Yu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, People's Republic of China
| | - Pu-Han Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China
| | - Kun-Jie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2023; 20:81-100. [PMID: 36258032 PMCID: PMC9898198 DOI: 10.1038/s41575-022-00685-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Antibiotic use is increasing worldwide. However, the use of antibiotics is clearly associated with changes in gut microbiome composition and function, and perturbations have been identified as potential environmental risk factors for chronic inflammatory disorders of the gastrointestinal tract. In this Review, we examine the association between the use of antibiotics and the onset and development of both type 1 and type 2 diabetes, inflammatory bowel disease, including ulcerative colitis and Crohn's disease, as well as coeliac disease and eosinophilic oesophagitis. We discuss the key findings of epidemiological studies, provide mechanistic insights into the pathways by which the gut microbiota might contribute to these diseases, and assess clinical trials investigating the effects of antibiotics. Such studies indicate that antibiotic exposures, varying in type, timing and dosage, could explain differences in disease risk. There seems to be a critical window in early life in which perturbation of the microbiome has a substantial effect on disease development. Identifying the antibiotic-perturbed gut microbiota as a factor that contributes to the pathophysiology of these inflammatory disorders might stimulate new approaches to prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Weidner
- Department of Paediatrics, Rutgers University, New Brunswick, NJ, USA
| | - Lea Ann Chen
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Max Nieuwdorp
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Martin J Blaser
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA.
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Cohen SP, Wang EJ, Doshi TL, Vase L, Cawcutt KA, Tontisirin N. Chronic pain and infection: mechanisms, causes, conditions, treatments, and controversies. BMJ MEDICINE 2022; 1:e000108. [PMID: 36936554 PMCID: PMC10012866 DOI: 10.1136/bmjmed-2021-000108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 12/20/2022]
Abstract
Throughout human history, infection has been the leading cause of morbidity and mortality, with pain being one of the cardinal warning signs. However, in a substantial percentage of cases, pain can persist after resolution of acute illness, manifesting as neuropathic, nociplastic (eg, fibromyalgia, irritable bowel syndrome), or nociceptive pain. Mechanisms by which acute infectious pain becomes chronic are variable and can include immunological phenomena (eg, bystander activation, molecular mimicry), direct microbe invasion, central sensitization from physical or psychological triggers, and complications from treatment. Microbes resulting in a high incidence of chronic pain include bacteria such as the Borrelia species and Mycobacterium leprae, as well as viruses such as HIV, SARS-CoV-2 and herpeses. Emerging evidence also supports an infectious cause in a subset of patients with discogenic low back pain and inflammatory bowel disease. Although antimicrobial treatment might have a role in treating chronic pain states that involve active infectious inflammatory processes, their use in chronic pain conditions resulting from autoimmune mechanisms, central sensitization and irrevocable tissue (eg, arthropathy, vasculitis) or nerve injury, are likely to cause more harm than benefit. This review focuses on the relation between infection and chronic pain, with an emphasis on common viral and bacterial causes.
Collapse
Affiliation(s)
- Steven P Cohen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Departments of Physical Medicine and Rehabilitation, Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Departments of Physical Medicine and Rehabilitation and Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eric J Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tina L Doshi
- Departments of Anesthesiology & Critical Care Medicine and Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lene Vase
- Department of Psychology, Aarhus University Hospital, Aarhus, Denmark
| | - Kelly A Cawcutt
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nuj Tontisirin
- Department of Anaesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Lorenzo-Pouso AI, Castelo-Baz P, Rodriguez-Zorrilla S, Pérez-Sayáns M, Vega P. Association between periodontal disease and inflammatory bowel disease: a systematic review and meta-analysis. Acta Odontol Scand 2021; 79:344-353. [PMID: 33370548 DOI: 10.1080/00016357.2020.1859132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim of this systematic review was to investigate the association between periodontal disease (PD) and inflammatory bowel disease (IBD), and its two major forms Crohn's disease (CD) and ulcerative colitis (UC). MATERIALS AND METHODS We searched articles in PubMed/MEDLINE, Web of Science, and LILACS published until March 2020. Observational studies evaluating the coexistence of PD in IBD and reported values of clinical periodontal parameters, or radiographic bone loss; and IBD diagnosis established by clinical, radiological, endoscopic and histological criteria were deemed eligible. RESULTS A total of 9 studies were included (33,216 individuals). Only one study reported longitudinal data on IBDs onset in patients with PD. Several case-control studies reported coexistence. Meta-analysis showed that the presence of PD was associated with IBD (2.78 [95%CI 1.36-5.69]). PD was strongly associated both with CD (3.41 [95%CI 1.36-8.56]) and UC (3.98 [95%CI 2.02-7.87]). CONCLUSION This review presents clear evidence for an association between PD and IBDs. Future studies should avoid non-longitudinal designs and focus on addressing direction. PD screening may be included in the multidisciplinary management of IBD patients. The mere theoretical possibility that PD may predispose to IBDs may be of key significance due to the rising incidence of diseases.
Collapse
Affiliation(s)
- Alejandro I. Lorenzo-Pouso
- Faculty of Medicine and Odontology, Oral Medicine, Oral Surgery and Implantology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
- MedOralRes Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Castelo-Baz
- Department of Endodontics, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Samuel Rodriguez-Zorrilla
- Faculty of Medicine and Odontology, Oral Medicine, Oral Surgery and Implantology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mario Pérez-Sayáns
- Faculty of Medicine and Odontology, Oral Medicine, Oral Surgery and Implantology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
- MedOralRes Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Vega
- Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| |
Collapse
|
7
|
Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel) 2021; 10:antiox10010064. [PMID: 33430227 PMCID: PMC7825667 DOI: 10.3390/antiox10010064] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which external and environmental factors have a large influence on its onset and development, especially in genetically susceptible individuals. Crohn’s disease (CD), one of the two types of IBD, is characterized by transmural inflammation, which is most frequently located in the region of the terminal ileum. Oxidative stress, caused by an overabundance of reactive oxygen species, is present locally and systemically in patients with CD and appears to be associated with the well-described imbalanced immune response and dysbiosis in the disease. Oxidative stress could also underlie some of the environmental risk factors proposed for CD. Although the exact etiopathology of CD remains unknown, the key role of oxidative stress in the pathogenesis of CD is extensively recognized. Epigenetics can provide a link between environmental factors and genetics, and numerous epigenetic changes associated with certain environmental risk factors, microbiota, and inflammation are reported in CD. Further attention needs to be focused on whether these epigenetic changes also have a primary role in the pathogenesis of CD, along with oxidative stress.
Collapse
|
8
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
9
|
Lee JY, Cevallos SA, Byndloss MX, Tiffany CR, Olsan EE, Butler BP, Young BM, Rogers AWL, Nguyen H, Kim K, Choi SW, Bae E, Lee JH, Min UG, Lee DC, Bäumler AJ. High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel Disease. Cell Host Microbe 2020; 28:273-284.e6. [PMID: 32668218 DOI: 10.1016/j.chom.2020.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The clinical spectra of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) intersect to form a scantily defined overlap syndrome, termed pre-IBD. We show that increased Enterobacteriaceae and reduced Clostridia abundance distinguish the fecal microbiota of pre-IBD patients from IBS patients. A history of antibiotics in individuals consuming a high-fat diet was associated with the greatest risk for pre-IBD. Exposing mice to these risk factors resulted in conditions resembling pre-IBD and impaired mitochondrial bioenergetics in the colonic epithelium, which triggered dysbiosis. Restoring mitochondrial bioenergetics in the colonic epithelium with 5-amino salicylic acid, a PPAR-γ (peroxisome proliferator-activated receptor gamma) agonist that stimulates mitochondrial activity, ameliorated pre-IBD symptoms. As with patients, mice with pre-IBD exhibited notable expansions of Enterobacteriaceae that exacerbated low-grade mucosal inflammation, suggesting that remediating dysbiosis can alleviate inflammation. Thus, environmental risk factors cooperate to impair epithelial mitochondrial bioenergetics, thereby triggering microbiota disruptions that exacerbate inflammation and distinguish pre-IBD from IBS.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea; Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Stephanie A Cevallos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brian P Butler
- School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kyongchol Kim
- Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea
| | - Sang-Woon Choi
- Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea
| | - Eunsoo Bae
- Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea
| | - Je Hee Lee
- ChunLab, Inc., Seoul 06725, Republic of Korea
| | - Ui-Gi Min
- ChunLab, Inc., Seoul 06725, Republic of Korea
| | - Duk-Chul Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|