1
|
Oh M, Cevallos-Urena A, Kim BS. Bacteriophages PECP14, PECP20, and their endolysins as effective biocontrol agents for Escherichia coli O157:H7 and other foodborne pathogens. Int J Food Microbiol 2024; 409:110460. [PMID: 37925886 DOI: 10.1016/j.ijfoodmicro.2023.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Escherichia coli O157:H7 is a notorious foodborne pathogen known to cause severe illnesses such as hemolytic colitis and hemolytic uremic syndrome, with fresh produce consumption being implicated in recent outbreaks. The inappropriate use of antimicrobials to combat pathogens has led to the emergence and rapid dissemination of antimicrobial-resistant microorganisms including pathogenic E. coli, presenting a significant risk to humans. Here, we isolated two E. coli O157:H7 infecting bacteriophages, PECP14 and PECP20, from irrigation water and city sewage, respectively, as alternatives to antimicrobials. Both phages were stable for at least 16 h in a broad range of pH (pH 3-11) and temperature (4-40 °C) conditions and have a double-stranded DNA chromosome. PECP14 and PECP20, classified under the Epseptimavirus and Mosigvirus genera, respectively, exhibit specificity in targeting different host receptors, BtuB protein and lipopolysaccharide. Interestingly, these phages demonstrate the ability to infect not only E. coli O157:H7 but also other foodborne enteric pathogens like Shigella sonnei and S. flexneri. Upon mixing phages with their respective host bacteria, rapid adsorption (at least 68 % adsorption within 10 min) and substantial bacterial lysis were observed. The efficacy of phage treatment was further validated through the reduction of E. coli O157:H7 on radish sprouts. Moreover, purified endolysins, LysPECP14 and LysPECP20, derived from each phage exhibited remarkable bacteriolytic activity against E. coli O157:H7 cells pretreated with EDTA. In particular, the activity of LysPECP20 was also noticeable against Listeria monocytogenes and Bacillus cereus, suggesting its potential for broader antimicrobial applications in food industry. The combined results showed that the phages PECP14, PECP20, and their endolysins could be used for biological control of E. coli O157:H7 in various circumstances, from production, harvesting, and storage stages to processing and distribution steps of agricultural products.
Collapse
Affiliation(s)
- Minjin Oh
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ana Cevallos-Urena
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Sabbione F, Keitelman IA, Shiromizu CM, Vereertbrugghen A, Vera Aguilar D, Rubatto Birri PN, Pizzano M, Ramos MV, Fuentes F, Saposnik L, Cernutto A, Cassataro J, Jancic CC, Galletti JG, Palermo MS, Trevani AS. Regulation of human neutrophil IL-1β secretion induced by Escherichia coli O157:H7 responsible for hemolytic uremic syndrome. PLoS Pathog 2023; 19:e1011877. [PMID: 38127952 PMCID: PMC10769087 DOI: 10.1371/journal.ppat.1011877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) infections can cause from bloody diarrhea to Hemolytic Uremic Syndrome. The STEC intestinal infection triggers an inflammatory response that can facilitate the development of a systemic disease. We report here that neutrophils might contribute to this inflammatory response by secreting Interleukin 1 beta (IL-1β). STEC stimulated neutrophils to release elevated levels of IL-1β through a mechanism that involved the activation of caspase-1 driven by the NLRP3-inflammasome and neutrophil serine proteases (NSPs). Noteworthy, IL-1β secretion was higher at lower multiplicities of infection. This secretory profile modulated by the bacteria:neutrophil ratio, was the consequence of a regulatory mechanism that reduced IL-1β secretion the higher were the levels of activation of both caspase-1 and NSPs, and the production of NADPH oxidase-dependent reactive oxygen species. Finally, we also found that inhibition of NSPs significantly reduced STEC-triggered IL-1β secretion without modulating the ability of neutrophils to kill the bacteria, suggesting NSPs might represent pharmacological targets to be evaluated to limit the STEC-induced intestinal inflammation.
Collapse
Affiliation(s)
- Florencia Sabbione
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene Angelica Keitelman
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Alexia Vereertbrugghen
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Paolo Nahuel Rubatto Birri
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Manuela Pizzano
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de patogénesis e inmunología de procesos infecciosos. Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Federico Fuentes
- Laboratorio de microscopía, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Lucas Saposnik
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín. San Martín, Buenos Aires, Argentina
| | - Agostina Cernutto
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín. San Martín, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jeremías Gaston Galletti
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de patogénesis e inmunología de procesos infecciosos. Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Analía Silvina Trevani
- Laboratorio de inmunidad innata, Instituto de Medicina Experimental (IMEX)—CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Saima S, Ferdous J, Sultana R, Rashid RB, Almeida S, Begum A, Jensen PKM. Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories. Trop Med Infect Dis 2023; 8:321. [PMID: 37368739 DOI: 10.3390/tropicalmed8060321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The microbiological quality of water is usually assessed by fecal coliform bacteria, and the presence of E. coli as an indicator of fecal contamination is widely recommended by international guidelines. This study aimed to assess the prevalence of diarrheagenic pathogens, in both public and personal domain water sources and examine the reliance on the WHO drinking water risk assessment guidelines. This study was conducted in a low-income urban community in Dhaka, Bangladesh between September 2014 and October 2015. Polymerase chain reaction (PCR) was used to detect the marker and virulence genes of Escherichia coli, Vibrio cholerae, Salmonella species, and Campylobacter species, and the culture method was employed for the quantitative assessment of E. coli. According to the WHO guidelines, 48% of the public domain source water and 21% of the personal domain point-of-drinking water were classified in the low-risk group, i.e., 0 CFU of E. coli/100 mL. However, when using PCR, we detected pathogens in 39% (14/36) of the point-of-drinking water samples and 65% (74/114) of the public domain water source samples classified in the low-risk group. Our study showed that relying solely on E. coli detection as a measure of water quality may overlook the presence of other pathogens in the drinking water. In addition to the culture-based method, the detection of virulence genes by PCR should also be considered to add more scrutiny to the detection of diverse types of pathogens.
Collapse
Affiliation(s)
- Sabera Saima
- Department of Microbiology, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Microbiology, University of Dhaka, 1000 Dhaka, Bangladesh
- Copenhagen Center for Disaster Research, Section for Global Health, Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, 1229 Dhaka, Bangladesh
| | - Rebeca Sultana
- Copenhagen Center for Disaster Research, Section for Global Health, Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
- icddr,b, 1212 Dhaka, Bangladesh
- Institute of Health Economics, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Ridwan Bin Rashid
- Department of Microbiology, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Sara Almeida
- Copenhagen Center for Disaster Research, Section for Global Health, Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Peter Kjær Mackie Jensen
- Copenhagen Center for Disaster Research, Section for Global Health, Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
| |
Collapse
|
4
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
5
|
Baillo AA, Cisneros L, Villena J, Vignolo G, Fadda S. Bioprotective Lactic Acid Bacteria and Lactic Acid as a Sustainable Strategy to Combat Escherichia coli O157:H7 in Meat. Foods 2023; 12:foods12020231. [PMID: 36673323 PMCID: PMC9858170 DOI: 10.3390/foods12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Human infection by Enterohemorrhagic Escherichia coli (EHEC) constitutes a serious threat to public health and a major concern for the meat industry. Presently, consumers require safer/healthier foods with minimal chemical additives, highlighting the need for sustainable solutions to limit and prevent risks. This work evaluated the ability of two antagonistic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum CRL681 and Enterococcus mundtii CRL35, and their combination in order to inhibit EHEC in beef (ground and vacuum sealed meat discs) at 8 °C during 72 h. The effect of lower lactic acid (LA) concentrations was evaluated. Meat color was studied along with how LAB strains interfere with the adhesion of Escherichia coli to meat. The results indicated a bacteriostatic effect on EHEC cells when mixed LAB strains were inoculated. However, a bactericidal action due to a synergism between 0.6% LA and LAB occurred, producing undetectable pathogenic cells at 72 h. Color parameters (a*, b* and L*) did not vary in bioprotected meat discs, but they were significantly modified in ground meat after 24 h. In addition, LAB strains hindered EHEC adhesion to meat. The use of both LAB strains plus 0.6% LA, represents a novel, effective and ecofriendly strategy to inactivate EHEC in meat.
Collapse
Affiliation(s)
- Ayelen A. Baillo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Lucia Cisneros
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| | - Graciela Vignolo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Silvina Fadda
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| |
Collapse
|
6
|
Liu B, Qian C, Wu P, Li X, Liu Y, Mu H, Huang M, Zhang Y, Jia T, Wang Y, Wang L, Zhang X, Huang D, Yang B, Feng L, Wang L. Attachment of Enterohemorrhagic Escherichia coli to Host Cells Reduces O Antigen Chain Length at the Infection Site That Promotes Infection. mBio 2021; 12:e0269221. [PMID: 34903041 PMCID: PMC8669466 DOI: 10.1128/mbio.02692-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Many enteropathogenic bacteria express a needle-like type III secretion system (T3SS) that translocates effectors into host cells promoting infection. O antigen (OAg) constitutes the outer layer of Gram-negative bacteria protecting bacteria from host immune responses. Shigella constitutively shortens the OAg molecule in its three-dimensional conformation by glucosylation, leading to enhanced T3SS function. However, whether and how other enteropathogenic bacteria shorten the OAg molecule that probably facilitates infection remain unknown. For the first time, we report a smart mechanism by which enterohemorrhagic Escherichia coli specifically reduces the size of the OAg molecule at the infection site upon sensing mechanical signals of intestinal epithelial cell attachment via the membrane protein YgjI. YgjI represses expression of the OAg chain length regulator gene fepE via the global regulator H-NS, leading to shortened OAg chains and injection of more T3SS effectors into host cells. However, bacteria express long-chain OAg in the intestinal lumen benefiting their survival. Animal experiments show that blocking this regulatory pathway significantly attenuates bacterial virulence. This finding enhances our understanding of interactions between the surfaces of bacterial and host cells and the way this interaction enhances bacterial pathogenesis. IMPORTANCE Little is known about the regulation of cell wall structure of enteropathogenic bacteria within the host. Here, we report that enterohemorrhagic Escherichia coli regulates its cell wall structure during the infection process, which balances its survival in the intestinal lumen and infection of intestinal epithelial cells. In the intestinal lumen, bacteria express long-chain OAg, which is located in the outer part of the cell wall, leading to enhanced resistance to antimicrobial peptides. However, upon epithelial cell attachment, bacteria sense this mechanical signal via a membrane protein and reduce the OAg chain length, resulting in enhanced injection into epithelial cells of T3SS effectors that mediate host cell infection. Similar regulation mechanisms of cell wall structure in response to host cell attachment may be widespread in pathogenic bacteria and closely related with bacterial pathogenesis.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiaodan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yang Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yuanyuan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiao Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
7
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
8
|
Is It Human or Animal? The Origin of Pathogenic E. coli in the Drinking Water of a Low-Income Urban Community in Bangladesh. Trop Med Infect Dis 2021; 6:tropicalmed6040181. [PMID: 34698298 PMCID: PMC8544722 DOI: 10.3390/tropicalmed6040181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023] Open
Abstract
This study aimed to investigate the origin of diverse pathotypes of E. coli, isolated from communal water sources and from the actual drinking water vessel at the point-of-drinking inside households in a low-income urban community in Arichpur, Dhaka, Bangladesh, using a polymerase chain reaction (PCR). Forty-six percent (57/125, CI 95%: 41−58) of the isolates in the point-of-drinking water and 53% (55/103, CI 95%: 45−64) of the isolates in the source water were diarrheagenic E. coli. Among the pathotypes, enterotoxigenic E. coli (ETEC) was the most common, 81% (46/57) of ETEC was found in the point-of-drinking water and 87% (48/55) was found in the communal source water. Phylogenetic group B1, which is predominant in animals, was the most frequently found isolate in both the point-of-drinking water (50%, 91/181) and in the source (50%, 89/180) water. The phylogenetic subgroup B23, usually of human origin, was more common in the point-of-drinking water (65%, 13/20) than in the source water (35%, 7/20). Our findings suggest that non-human mammals and birds played a vital role in fecal contamination for both the source and point-of-drinking water. Addressing human sanitation without a consideration of fecal contamination from livestock sources will not be enough to prevent drinking-water contamination and thus will persist as a greater contributor to diarrheal pathogens.
Collapse
|
9
|
Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci 2021; 22:9922. [PMID: 34576083 PMCID: PMC8468683 DOI: 10.3390/ijms22189922] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli are remarkably versatile microorganisms and important members of the normal intestinal microbiota of humans and animals. This harmless commensal organism can acquire a mixture of comprehensive mobile genetic elements that contain genes encoding virulence factors, becoming an emerging human pathogen capable of causing a broad spectrum of intestinal and extraintestinal diseases. Nine definite enteric E. coli pathotypes have been well characterized, causing diseases ranging from various gastrointestinal disorders to urinary tract infections. These pathotypes employ many virulence factors and effectors subverting the functions of host cells to mediate their virulence and pathogenesis. This review summarizes new developments in our understanding of diverse virulence factors associated with encoding genes used by different pathotypes of enteric pathogenic E. coli to cause intestinal and extraintestinal diseases in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
10
|
Development of Decontamination Treatment Techniques for Dry Powder Foods by Atmospheric-Pressure Nonequilibrium DC Pulse Discharge Plasma Jet. J FOOD QUALITY 2021. [DOI: 10.1155/2021/8896716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dry powder food ingredients imported to Japan contain large amounts of viable bacteria and coliform bacteria, and we need a simple, low-cost, dry nonthermal decontamination method without spoiling nutrients, color, fragrance, and flavor. In this study, it is shown that the decontamination performance against viable bacteria and coliform bacteria is proportional to the plasma irradiation time when OH and O3 radicals are incident on the dry powder food ingredients placed in an atmospheric-pressure nonequilibrium DC pulse discharge Ar + O2 mixture gas plasma jet. Our study revealed that there is a correlation between the plasma irradiation time and DC pulse frequency increase and the decontamination effect on the general bacterial count.
Collapse
|
11
|
Liu Y, Li S, Li W, Wang P, Ding P, Li L, Wang J, Yang P, Wang Q, Xu T, Xiong Y, Yang B. RstA, a two-component response regulator, plays important roles in multiple virulence-associated processes in enterohemorrhagic Escherichia coli O157:H7. Gut Pathog 2019; 11:53. [PMID: 31695752 PMCID: PMC6824119 DOI: 10.1186/s13099-019-0335-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) causes bloody diarrhea and hemolytic-uremic syndrome. EHEC O157 encounters varied microenvironments during infection, and can efficiently adapt to these using the two-component system (TCS). Recently, a functional TCS, RstAB, has been implicated in the regulation of virulence of several bacterial pathogens. However, the regulatory function of RstAB in EHEC O157 is poorly understood. This study aimed at providing insights into the global effects of RstA on gene expression in EHEC O157. Results In the present study, we analyzed gene expression differences between the EHEC O157 wild-type strain and a ΔrstA mutant using RNA-seq technology. Genes with differential expression in the ΔrstA mutant compared to that in the wild-type strain were identified and grouped into clusters of orthologous categories. RstA promoted EHEC O157 LEE gene expression, adhesion in vitro, and colonization in vivo by indirect regulation. We also found that RstA could bind directly to the promoter region of hdeA and yeaI to enhance acid tolerance and decrease biofilm formation by modulating the concentration of c-di-GMP. Conclusions In summary, the RstAB TCS in EHEC O157 plays a major role in the regulation of virulence, acid tolerance, and biofilm formation. We clarified the regulatory function of RstA, providing an insight into mechanisms that may be potential drug targets for treatment of EHEC O157-related infections.
Collapse
Affiliation(s)
- Yutao Liu
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Shujie Li
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Wendi Li
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Peisheng Wang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Peng Ding
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Lingyu Li
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Junyue Wang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Pan Yang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Qian Wang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Tingting Xu
- 3Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 People's Republic of China
| | - Yingying Xiong
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Bin Yang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| |
Collapse
|
12
|
Liu Y, Liu B, Yang P, Wang T, Chang Z, Wang J, Wang Q, Li W, Wu J, Huang D, Jiang L, Yang B. LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence. Virulence 2019; 10:783-792. [PMID: 31502495 PMCID: PMC6768210 DOI: 10.1080/21505594.2019.1661721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 (O157) is a major foodborne pathogen that causes severe illness in humans worldwide. The genome of O157 contains 177 genomic islands known as O islands (OIs), including Shiga toxin-converting phages (OI-45 and OI-93) and the locus for enterocyte effacement (LEE) pathogenicity island (OI-148). However, most genes in OIs are uncharacterized and code for unknown functions. In this study, we demonstrated, for the first time, that OI-9 encodes a novel transcriptional activator, Z0346 (named OvrB), which is required for bacterial adherence to host cells and LEE gene expression in O157. OvrB directly binds to the promoter region of LEE1 and activates the transcription of ler (encoding a master regulator of LEE genes), which in turn activates LEE1–5 genes to promote O157 adherence. Furthermore, mouse oral infection assays showed that OvrB promotes O157 colonization in the mouse intestine. Finally, OvrB is shown to be a widespread transcriptional activator of virulence genes in other enterohemorrhagic and enteropathogenic Escherichia coli serotypes. Our work significantly expands the understanding of bacterial virulence control and provides new evidence suggesting that horizontally transferred regulator genes mediate LEE gene expression.
Collapse
Affiliation(s)
- Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Pan Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Ting Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Zhanhe Chang
- School of Biomedical Engineering, Tianjin Medical University , Tianjin , P. R. China
| | - Junyue Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| |
Collapse
|
13
|
Edalati E, Saneei B, Alizadeh M, Hosseini SS, Zahedi Bialvaei A, Taheri K. Isolation of probiotic bacteria from raw camel's milk and their antagonistic effects on two bacteria causing food poisoning. New Microbes New Infect 2018; 27:64-68. [PMID: 30622712 PMCID: PMC6317326 DOI: 10.1016/j.nmni.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Lactic acid bacteria (LAB) is one of the main classes of acid-producing organisms in the food industry, and they play a vital part in many food and feed fermentations. We isolated and performed molecular identification of LAB from raw camel's milk and assessed their protective effects against pathogenicity induced by Staphylococcus aureus and Escherichia coli. Fourteen samples of camel's milk were obtained from several districts under aseptic conditions. Bacteria isolation was performed by plating the samples on selective media. Isolates were identified by amplification of the 16S ribosomal RNA by PCR and sequencing. A total of 32 isolates were randomly picked, eight of which were analysed in this study. On the basis of phenotypic and genotypic methods, isolated LAB was included Leuconostoc mesenteroides, Lactobacillus plantarum, Weissella paramesenteroides and Weissella confuse. Antagonistic activity of isolated LAB against two pathogenic bacteria showed that they had more inhibitory activity against S. aureus subsp. aureus PTCC 1431 than E. coli ATCC 25922. This study discovered that raw camel's milk obtained from three districts of Kerman province contain LAB bacteria that have antagonistic properties on S. aureus.
Collapse
Affiliation(s)
- E Edalati
- Department of Microbiology, Science and Research Islamic Azad University, Kerman Branch, Kerman, Iran
| | - B Saneei
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - M Alizadeh
- Department of Microbiology, Science and Research Islamic Azad University, Kerman Branch, Kerman, Iran
| | - S S Hosseini
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - A Zahedi Bialvaei
- Department of Microbiology, Faculty of Medicine, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - K Taheri
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
14
|
Khan SB, Zou G, Xiao R, Cheng Y, Rehman ZU, Ali S, Memon AM, Fahad S, Ahmad I, Zhou R. Prevalence, quantification and isolation of pathogenic shiga toxin Escherichia coli O157:H7 along the production and supply chain of pork around Hubei Province of China. Microb Pathog 2018; 115:93-99. [DOI: 10.1016/j.micpath.2017.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022]
|
15
|
Feeney S, Ryan JT, Kilcoyne M, Joshi L, Hickey R. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro. Foods 2017; 6:foods6110093. [PMID: 29077065 PMCID: PMC5704137 DOI: 10.3390/foods6110093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC) strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC) strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER). Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.
Collapse
Affiliation(s)
- Shane Feeney
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Joseph Thomas Ryan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Rita Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| |
Collapse
|
16
|
Hamed OM, Sabry MA, Hassanain NA, Hamza E, Hegazi AG, Salman MB. Occurrence of virulent and antibiotic-resistant Shiga toxin-producing Escherichia coli in some food products and human stool in Egypt. Vet World 2017; 10:1233-1240. [PMID: 29184370 PMCID: PMC5682269 DOI: 10.14202/vetworld.2017.1233-1240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
AIM Shiga toxin-producing Escherichia coli (STEC) represent a severe public health issue worldwide, causing life-threatening diseases in the human gastrointestinal tract. This study aimed to determine the occurrence of virulent and antibiotic-resistant STEC in retail meat and milk products and human stool samples and to characterize the genes encoding for virulence and antibiotic resistance among the identified STEC isolates. MATERIALS AND METHODS A total of 260 food samples were randomly collected from retail markets in different localities of El Giza Governorate, Egypt. 50 stool specimens were obtained from children that had diarrhea at Embaba Fever Hospital. All collected samples were initially subjected to bacteriological examination and serotyping, and then subsequently, the isolates were exposed to polymerase chain reaction application and sequencing for the identification of the virulence-related genes. Finally, the virulent STEC isolates were tested for antibiotic susceptibility. RESULTS Serotyping of the 76 biochemically identified isolates showed that 18 were STEC with a predominance of non-O157 (16) while 2 O157:K-serotype was detected only in one food and one human isolate. Molecular identification of the virulence genes illustrated that the minced meat showed the highest prevalence of STEC (8%) as compared to the other food products. In the humans, the O157 was the only serotype that expresses the Shiga toxin-associated gene (eaeA). Antibiotic susceptibility test displayed that 13 of the 17 food and human isolates (76.47%) were resistant to cephalothin (KF30). 9 of the 13 cephalothin-resistant isolates harbor the β lactamase (blaTEM )-resistant gene. All isolates were sensitive to chloramphenicol, ciprofloxacin, amikacin, and gentamicin. DNA sequencing and phylogenetic analysis of the stx2-positive minced meat isolate revealed a high genetic relatedness with beef minced meat from the USA and Australia. CONCLUSION This study showed the predominance of non-O157 among the identified isolates. Minced meat showed the highest prevalence of STEC as compared to the other food products, and this work illustrates the necessity to consider the food products as a potential source of the non-O157 STEC serotypes. DNA sequencing and phylogenetic analysis revealed a high genetic relatedness with beef minced meat from the USA and Australia. This highlights the high probability of worldwide spread of such serotypes, signifying the importance of the one world concept.
Collapse
Affiliation(s)
- Osman Mohamed Hamed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha Ahmed Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nawal A. Hassanain
- Department of Zoonotic Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Eman Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ahmed G. Hegazi
- Department of Zoonotic Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Marwa Badawy Salman
- Department of Zoonotic Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
17
|
Naseer U, Løbersli I, Hindrum M, Bruvik T, Brandal LT. Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992-2013. Eur J Clin Microbiol Infect Dis 2017; 36:1613-1620. [PMID: 28391537 PMCID: PMC5554284 DOI: 10.1007/s10096-017-2974-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 10/26/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause haemolytic uraemic syndrome (HUS). Age ≤5 years and presence of stx2a and eae are risk factors for the development of HUS. In this study, we investigated STEC isolates for the presence of adhesins, toxins and molecular risk assessment (MRA) factors to identify virulence genes associated with HUS development. We included non-duplicate isolates from all STEC infections (n = 340, HUS = 32) reported to the Norwegian National Reference Laboratory (NRL) for Enteropathogenic Bacteria from 1992 to 2013. The most common STEC were O157:H7/H- (34%) and O103:H2 (14%). We retrospectively screened the isolates by three multiplex polymerase chain reactions (PCRs) for adhesins (n = 11), toxins (n = 5) and MRA (n = 15). We calculated odds ratios (ORs) and adjusted odds ratios (aORs) for associations with HUS development. On average, isolates were positive for 15 virulence genes (range: 1-24); two toxins (range: 0-4), five adhesins (range: 0-8) and eight MRA genes (range: 0-13). The gene combinations were clustered within serotypes. Isolates from HUS cases were positive for eae and IpfA O26, and negative for saa, eibG, astA, cnf, subA and pic. We identified 11 virulence genes with a significant association to HUS development. Multivariable analyses adjusted for age group and Shiga toxin identified nleH1-2 [aOR 8.4, 95% confidence interval (CI); 2.18-32.3] as an independent risk factor for the development of HUS from an STEC infection. This study demonstrated that the non-LEE effector protein nleH1-2 may be an important predictor for elevated risk of developing HUS from STEC infections. We recommend the NRL for Enteropathogenic Bacteria to consider including nleH1-2 screening as part of routine STEC surveillance.
Collapse
Affiliation(s)
- U Naseer
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway. .,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | - I Løbersli
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway.,Nextera AS, Oslo, Norway
| | - M Hindrum
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - T Bruvik
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - L T Brandal
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| |
Collapse
|
18
|
Han R, Xu L, Wang T, Liu B, Wang L. A Small Regulatory RNA Contributes to the Preferential Colonization of Escherichia coli O157:H7 in the Large Intestine in Response to a Low DNA Concentration. Front Microbiol 2017; 8:274. [PMID: 28289405 PMCID: PMC5326754 DOI: 10.3389/fmicb.2017.00274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 (O157) is one of the most notorious human pathogens, causing severe disease in humans worldwide. O157 specifically colonizes the large intestine of mammals after passing through the small intestine, and this process is influenced by differential signals between the two regions. Small regulatory RNAs (sRNAs) are able to sense and respond to environmental changes and regulate diverse physiological processes in pathogenic bacteria. Although some sRNAs of O157 have been extensively investigated, whether these molecules can sense differences between the small and large intestine and influence the preferential colonization in the large intestine by O157 remains unknown. In this study, we identified a new sRNA, Esr055, in O157 which senses the low DNA concentration in the large intestine and contributes to the preferential colonization of the bacteria in this region. The number of O157 wild-type that adhered to the colon is 30.18 times higher than the number that adhered to the ileum of mice, while the number of the ΔEsr055 mutant that adhered to the colon decreased to 13.27 times higher than the number adhered to the ileum. Furthermore, we found that the expression of Esr055 is directly activated by the regulator, DeoR, and its expression is positively affected by DNA, which is significantly more abundant in the ileum than in the colon of mice. Additionally, combining the results of informatics predictions and transcriptomic analysis, we found that several virulence genes are up-regulated in the ΔEsr055 mutant and five candidate genes (z0568, z0974, z1356, z1926, and z5187) may be its direct targets.
Collapse
Affiliation(s)
- Runhua Han
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China
| | - Letian Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China; Tianjin Key Laboratory of Microbial Functional GenomicsTianjin, China
| | - Ting Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China; Tianjin Key Laboratory of Microbial Functional GenomicsTianjin, China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai UniversityTianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of EducationTianjin, China; Tianjin Key Laboratory of Microbial Functional GenomicsTianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjin, China
| |
Collapse
|
19
|
|
20
|
Ferdous M, Zhou K, de Boer RF, Friedrich AW, Kooistra-Smid AMD, Rossen JWA. Comprehensive Characterization of Escherichia coli O104:H4 Isolated from Patients in the Netherlands. Front Microbiol 2015; 6:1348. [PMID: 26696970 PMCID: PMC4667096 DOI: 10.3389/fmicb.2015.01348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
In 2011, a Shiga toxin-producing Enteroaggregative Escherichia coli (EAEC Stx2a+) O104:H4 strain caused a serious outbreak of acute gastroenteritis and hemolytic-uremic syndrome (HUS) in Germany. In 2013, E. coli O104:H4 isolates were obtained from a patient with HUS and her friend showing only gastrointestinal complaints. The antimicrobial resistance and virulence profiles of these isolates together with three EAEC Stx2a+ O104:H4 isolates from 2011 were determined and compared. Whole-genome sequencing (WGS) was performed for detailed characterization and to determine genetic relationship of the isolates. Four additional genomes of EAEC Stx2a+ O104:H4 isolates of 2009 and 2011 available on NCBI were included in the virulence and phylogenetic analysis. All E. coli O104:H4 isolates tested were positive for stx2a, aatA, and terD but were negative for escV. All, except one 2011 isolate, were positive for aggR and were therefore considered EAEC. The EAEC Stx2a+ O104:H4 isolates of 2013 belonged to sequence type (ST) ST678 as the 2011 isolates and showed slightly different resistance and virulence patterns compared to the 2011 isolates. Core-genome phylogenetic analysis showed that the isolates of 2013 formed a separate cluster from the isolates of 2011 and 2009 by 27 and 20 different alleles, respectively. In addition, only a one-allele difference was found between the isolate of the HUS-patient and that of her friend. Our study shows that EAEC Stx2a+ O104:H4 strains highly similar to the 2011 outbreak clone in their core genome are still circulating necessitating proper surveillance to prevent further outbreaks with these potentially pathogenic strains. In addition, WGS not only provided a detailed characterization of the isolates but its high discriminatory power also enabled us to discriminate the 2013 isolates from the isolates of 2009 and 2011 expediting the use of WGS in public health services to rapidly apply proper infection control strategies.
Collapse
Affiliation(s)
- Mithila Ferdous
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Kai Zhou
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Richard F. de Boer
- Department of Medical Microbiology, Certe-Laboratory for Infectious DiseasesGroningen, Netherlands
| | - Alexander W. Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
- *Correspondence: Alexander W. Friedrich,
| | - Anna M. D. Kooistra-Smid
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
- Department of Medical Microbiology, Certe-Laboratory for Infectious DiseasesGroningen, Netherlands
| | - John W. A. Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
21
|
Abstract
The anatomic pathologist's ability to diagnose infections, including gastrointestinal infections, in tissue sections has improved greatly in recent years. With the increasing number and availability of new molecular assays and immunostains, pathologists' understanding of the correlation between histologic patterns of inflammation and specific organisms or groups of organisms has expanded, as well as our understanding of how closely infections can mimic other frequently encountered diseases in gastrointestinal pathology (such as chronic idiopathic inflammatory bowel disease and ischemia). Anatomic pathologists continue to play a critical role in the diagnosis of gastrointestinal infections, as the examination of slides may provide a much more rapid result than microbiological cultures or other laboratory assays, and often cultures are not obtained before the patient is treated with antibiotics. Because many gastrointestinal infections are acquired through contaminated water and food, this review will focus primarily on food and water-borne infectious enterocolitides.
Collapse
Affiliation(s)
- Laura W Lamps
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
22
|
Sun J, Ji J, Sun Y, Abdalhai MH, Zhang Y, Sun X. DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods. Biosens Bioelectron 2015; 70:239-45. [DOI: 10.1016/j.bios.2015.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/28/2023]
|
23
|
Upadhyay A, Mooyottu S, Yin H, Nair MS, Bhattaram V, Venkitanarayanan K. Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts. MEDICINES (BASEL, SWITZERLAND) 2015; 2:186-211. [PMID: 28930207 PMCID: PMC5456214 DOI: 10.3390/medicines2030186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 06/07/2023]
Abstract
Many pathogenic bacteria and fungi produce potentially lethal toxins that cause cytotoxicity or impaired cellular function either at the site of colonization or other locations in the body through receptor-mediated interactions. Various factors, including biotic and abiotic environments, competing microbes, and chemical cues affect toxin expression in these pathogens. Recent work suggests that several natural compounds can modulate toxin production in pathogenic microbes. However, studies explaining the mechanistic basis for their effect are scanty. This review discusses the potential of various plant-derived compounds for reducing toxin production in foodborne and other microbes. In addition, studies highlighting their anti-toxigenic mechanism(s) are discussed.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Hsinbai Yin
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|
24
|
Ravan H, Amandadi M. Analysis of yeh Fimbrial Gene Cluster in Escherichia coli O157:H7 in Order to Find a Genetic Marker for this Serotype. Curr Microbiol 2015; 71:274-82. [DOI: 10.1007/s00284-015-0842-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/24/2015] [Indexed: 11/28/2022]
|
25
|
Kwak MJ, Kwon SK, Cho SH, Kim JF. Genome sequences of the Shiga-like toxin-producing Escherichia coli NCCP15655 and NCCP15656. Gut Pathog 2015; 7:13. [PMID: 25991925 PMCID: PMC4436796 DOI: 10.1186/s13099-015-0060-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Background Virulence genes can spread among commensal bacteria through horizontal gene transfer. The bacterium with novel virulence factors may pose a severe threat to public health because of the absence of a management system unlike known pathogens. Especially, when a pathogenic bacterium acquires a new kind of virulence genes, it tends to exhibit stronger virulence. In this study, we analyzed the genomes of the two strains of Escherichia coli that were isolated from the feces of patients with diarrhea and produce Shiga-like toxin. Results Phylogenetic analysis of conserved genes and average nucleotide identity values of the draft genome sequences indicate that strains NCCP15655 and NCCP15656, isolated from diarrhea patients, belong to the B1 group of E. coli and form a sister clade with strain E24377A. However, the proportion the genes belonging to the subsystem category “phages, prophages, transposable elements, plasmids” and “virulence, disease and defense” are higher than E24377A. Indeed, in their genomes, genes encoding Shiga toxin type 1, Shiga toxin type 2, and type 1 fimbriae were detected. Moreover, a plasmid encoding hemolysin and entropathogenic E. coli secreted protein C was identified in both genomes. Conclusions Through the genome analysis of NCCP15655 and NCCP15656, we identified two types of Shiga-like toxin genes that could be responsible for the manifestation of the diarrhea symptom. However, the LEE island, which is one of the major virulence factors of enterohemorrhagic E. coli, was not detected and they are most similar with non-Shiga-like toxin-producing E. coli at the genomic level. NCCP15655 and NCCP15656 will be good examples of Shiga-like toxin-producing E. coli whose genomes are not as similar with typical enterohemorrhagic E. coli as non-Shiga-like toxin-producing E. coli.
Collapse
Affiliation(s)
- Min-Jung Kwak
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea ; Biosystems and Bioengineering Program, University of Science and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon, 305-350, Republic of Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Heungdeok-Gu, Cheongju, 363-951 Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
26
|
Yang B, Feng L, Wang F, Wang L. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat Commun 2015; 6:6592. [PMID: 25791315 PMCID: PMC4382993 DOI: 10.1038/ncomms7592] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans. Enterohaemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that colonizes the large intestine. Here, the authors identify a signalling pathway that controls EHEC adherence to host cells in response to variations in biotin levels, ensuring selective colonization of the large intestine.
Collapse
Affiliation(s)
- Bin Yang
- 1] TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Lu Feng
- 1] TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China [3] Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, P.R. China [4] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China [5] SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Fang Wang
- 1] TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Lei Wang
- 1] TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China [2] Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China [3] Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, P.R. China [4] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
27
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
28
|
Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:761741. [PMID: 25298964 PMCID: PMC4178913 DOI: 10.1155/2014/761741] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Kumar Venkitanarayanan
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| |
Collapse
|
29
|
Evaluation of therapeutic properties of fermented vegetables extract (OM-X®) in the model of colitis induced by Citrobacter rodentium in mice. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
30
|
Vogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb Drug Resist 2014; 20:485-94. [PMID: 24773305 DOI: 10.1089/mdr.2013.0210] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prevalence and genetic relatedness were determined for third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) detected in Swiss beef, veal, pork, and poultry retail meat. Samples from meat-packing plants (MPPs) processing 70% of the slaughtered animals in Switzerland were purchased at different intervals between April and June 2013 and analyzed. Sixty-nine 3GC-R-Ec isolates were obtained and characterized by microarray, PCR/DNA sequencing, Multi Locus Sequence Typing (MLST), and plasmid replicon typing. Plasmids of selected strains were transformed by electroporation into E. coli TOP10 cells and analyzed by plasmid MLST. The prevalence of 3GC-R-Ec was 73.3% in chicken and 2% in beef meat. No 3GC-R-Ec were found in pork and veal. Overall, the bla(CTX-M-1) (79.4%), bla(CMY-2) (17.6%), bla(CMY-4) (1.5%), and bla(SHV-12) (1.5%) β-lactamase genes were detected, as well as other genes conferring resistance to chloramphenicol (cmlA1-like), sulfonamides (sul), tetracycline (tet), and trimethoprim (dfrA). The 3GC-R-Ec from chicken meat often harbored virulence genes associated with avian pathogens. Plasmid incompatibility (Inc) groups IncI1, IncFIB, IncFII, and IncB/O were the most frequent. A high rate of clonality (e.g., ST1304, ST38, and ST93) among isolates from the same MPPs suggests that strains persist at the plant and spread to meat at the carcass-processing stage. Additionally, the presence of the blaCTX-M-1 gene on an IncI1 plasmid sequence type 3 (IncI1/pST3) in genetically diverse strains indicates interstrain spread of an epidemic plasmid. The bla(CMY-2) and bla(CMY-4) genes were located on IncB/O plasmids. This study represents the first comprehensive assessment of 3GC-R-Ec in meat in Switzerland. It demonstrates the need for monitoring contaminants and for the adaptation of the Hazard Analysis and Critical Control Point concept to avoid the spread of multidrug-resistant bacteria through the food chain.
Collapse
Affiliation(s)
- Debora Vogt
- 1 Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern , Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Leimi A, Mikkelä A, Tuominen P. Evaluating Escherichia coli O157 control in finnish primary production. J Food Prot 2014; 77:371-9. [PMID: 24674427 DOI: 10.4315/0362-028x.jfp-13-231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) has become a threat in the modern cattle sector because of its adverse impact on human health. Systems have been developed to reduce the risk of EHEC infection associated with the beef production chain. In Finland, the risk management of EHEC is mainly targeted at primary production, which is controlled by a national program. The prevalence of E. coli O157 in slaughter animals and herds appears to have remained relatively low over the years (0.2 to 1.2% and 0.3 to 1.5%, respectively). The effectiveness of the Finnish EHEC control program (FECP) was analyzed with a Bayesian statistical model based on the results from 2006 through 2010. According to the model, the estimated true prevalence of EHEC in slaughter animals was at its highest in 2007 (95% credible interval [CI], 0.94 to 1.85% of animals), and the estimated true prevalence in herds was its highest in 2007 (95% CI, 1.28 to 2.55% of herds). However, the estimated probability of the FECP detecting an EHEC-positive slaughter animal or herd was 0.52 to 0.58% and 4.74 to 6.49%, respectively. The inability to detect EHEC-positive animals was partly due to animal-based random sampling, which ignores herd-level testing and therefore emphasizes the testing of slaughter animals from herds that send more animals to slaughter. Some slaughterhouses collected samples incorrectly as a consequence of an incorrectly implemented FECP. Farmers may also have questionable reasons for choosing to send animals to be slaughtered in small abattoirs, in which testing is less likely, to avoid suspicion of EHEC or other zoonotic infections.
Collapse
Affiliation(s)
- Anna Leimi
- Risk Assessment Research Unit, Finnish Food Safety Authority, Evira, Mustialankatu 3, FI-00790, Helsinki, Finland
| | - Antti Mikkelä
- Risk Assessment Research Unit, Finnish Food Safety Authority, Evira, Mustialankatu 3, FI-00790, Helsinki, Finland
| | - Pirkko Tuominen
- Risk Assessment Research Unit, Finnish Food Safety Authority, Evira, Mustialankatu 3, FI-00790, Helsinki, Finland.
| |
Collapse
|
32
|
Protein kinase C mediates enterohemorrhagic Escherichia coli O157:H7-induced attaching and effacing lesions. Infect Immun 2014; 82:1648-56. [PMID: 24491575 DOI: 10.1128/iai.00534-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 causes outbreaks of diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome. E. coli O157:H7 intimately attaches to epithelial cells, effaces microvilli, and recruits F-actin into pedestals to form attaching and effacing lesions. Lipid rafts serve as signal transduction platforms that mediate microbe-host interactions. The aims of this study were to determine if protein kinase C (PKC) is recruited to lipid rafts in response to E. coli O157:H7 infection and what role it plays in attaching and effacing lesion formation. HEp-2 and intestine 407 tissue culture epithelial cells were challenged with E. coli O157:H7, and cell protein extracts were then separated by buoyant density ultracentrifugation to isolate lipid rafts. Immunoblotting for PKC was performed, and localization in lipid rafts was confirmed with an anti-caveolin-1 antibody. Isoform-specific PKC small interfering RNA (siRNA) was used to determine the role of PKC in E. coli O157:H7-induced attaching and effacing lesions. In contrast to uninfected cells, PKC was recruited to lipid rafts in response to E. coli O157:H7. Metabolically active bacteria and cells with intact lipid rafts were necessary for the recruitment of PKC. PKC recruitment was independent of the intimin gene, type III secretion system, and the production of Shiga toxins. Inhibition studies, using myristoylated PKCζ pseudosubstrate, revealed that atypical PKC isoforms were activated in response to the pathogen. Pretreating cells with isoform-specific PKC siRNA showed that PKCζ plays a role in E. coli O157:H7-induced attaching and effacing lesions. We concluded that lipid rafts mediate atypical PKC signal transduction responses to E. coli O157:H7. These findings contribute further to the understanding of the complex array of microbe-eukaryotic cell interactions that occur in response to infection.
Collapse
|
33
|
Lukinmaa-Åberg S, Horsma J, Pasanen T, Mero S, Aulu L, Vaara M, Siitonen A, Antikainen J. Applicability of DiversiLab repetitive sequence-based PCR method in epidemiological typing of enterohemorrhagic Escherichia coli (EHEC). Foodborne Pathog Dis 2013; 10:632-8. [PMID: 23692078 DOI: 10.1089/fpd.2012.1411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes diarrhea, often with severe complications. Rapid and discriminatory typing of EHEC using advanced molecular methods is needed for determination of the genetic relatedness of clones responsible for foodborne outbreaks and for finding out the transmission sources of the outbreaks. This study evaluated the potential of DiversiLab, a semiautomated repetitive sequence-based polymerase chain reaction method for the genotyping of EHEC strains. A set of 52 EHEC strains belonging to 15 O:H serotypes was clustered into 10 DiversiLab groups. All of the O157 strains and one O55 strain were classified into the same group based on a 90% similarity threshold. The other serotypes were classified to their own DiversiLab group, with the exception of one R:H(-) strain that was grouped with O5:H(-) strains. In addition, O26 and O111 strains were grouped together but ultimately subdivided according to their O-serotypes based on a 95% similarity threshold. The O104 strain, which was associated with a major outbreak of hemolytic uremic syndrome in Germany in May 2011, was also classified independently. The DiversiLab performed well in identifying isolates, but the discriminatory power of the repetitive sequence-based polymerase chain reaction method was lower than that of pulsed-field gel electrophoresis. Analysis of 15 enteropathogenic E. coli (EPEC) strains revealed that some EPEC strains clustered together with EHEC strains. Therefore, the DiversiLab system cannot be used to discriminate between these pathogroups. In conclusion, DiversiLab is a rapid and easy system for the primary exclusion of unrelated EHEC strains based on their serotypes, but more discriminatory methods, such as pulsed-field gel electrophoresis, are needed for accurate typing of the EHEC strains.
Collapse
Affiliation(s)
- Susanna Lukinmaa-Åberg
- Bacteriology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare THL, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Smith AR, Ellison AL, Robinson AL, Drake M, McDowell SA, Mitchell JK, Gerard PD, Heckler RA, McKillip JL. Enumeration of sublethally injured Escherichia coli O157:H7 ATCC 43895 and Escherichia coli strain B-41560 using selective agar overlays versus commercial methods. J Food Prot 2013; 76:674-9. [PMID: 23575132 DOI: 10.4315/0362-028x.jfp-12-363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quality control procedures during food processing may involve direct inoculation of food samples onto appropriate selective media for subsequent enumeration. However, sublethally injured bacteria often fail to grow, enabling them to evade detection and intervention measures and ultimately threaten the health of consumers. This study compares traditional selective and nonselective agar-based overlays versus two commercial systems (Petrifilm and Easygel) for recovery of injured E. coli B-41560 and O157:H7 strains. Bacteria were propagated in tryptic soy broth (TSB), ground beef slurry, and infant milk formula to a density of 10(6) to 10(8) CFU/ml and then were stressed for 6 min either in lactic acid (pH 4.5) or heat shocked for 3 min at 60°C. Samples were pour plated in basal layers of either tryptic soy agar (TSA), sorbitol MacConkey agar (SMAC), or violet red bile agar (VRB) and were resuscitated for 4 h prior to addition of agar overlays. Other stressed bacteria were plated directly onto Petrifilm and Easygel. Results indicate that selective and nonselective agar overlays recovered significantly higher numbers (greater than 1 log) of acid- and heat-injured E. coli O157:H7 from TSB, ground beef, and infant milk formula compared with direct plating onto selective media, Petrifilm, or Easygel, while no significant differences among these media combinations were observed for stressed E. coli B-41560. Nonstressed bacteria from TSB and ground beef were also recovered at densities significantly higher in nonselective TSA-TSA and in VRB-VRB and SMAC-SMAC compared with Petrifilm and Easygel. These data underscore the need to implement food safety measures that address sublethally injured pathogens such as E. coli O157:H7 in order to avoid underestimation of true densities for target pathogens.
Collapse
Affiliation(s)
- Amanda R Smith
- Department of Biology, Ball State University, Muncie, Indiana 47306, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Genome sequence of the hemolytic-uremic syndrome-causing strain Escherichia coli NCCP15647. J Bacteriol 2012; 194:3747-8. [PMID: 22740672 DOI: 10.1128/jb.00651-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes a disease involving diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). Here we present the draft genome sequence of NCCP15647, an EHEC isolate from an HUS patient. Its genome exhibits features of EHEC, such as genes for verotoxins, a type III secretion system, and prophages.
Collapse
|
36
|
Impact of hydroxyl- and superoxide anion-based oxidative stress on logarithmic and stationary phase Escherichia coli O157:H7 stress and virulence gene expression. Food Microbiol 2012; 29:141-7. [DOI: 10.1016/j.fm.2011.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 11/20/2022]
|
37
|
Jassim SAA, Abdulamir AS, Abu Bakar F. Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms. World J Microbiol Biotechnol 2012; 28:47-60. [PMID: 22806779 DOI: 10.1007/s11274-011-0791-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 05/12/2011] [Indexed: 11/27/2022]
Abstract
To explore new approaches of phage-based bio-process of specifically pathogenic Escherichia coli bacteria in food products within a short period. One hundred and forty highly lytic designed coliphages were used. Escherichia coli naturally contaminated and Enterohemorrhagic Escherichia coli experimentally inoculated samples of lettuce, cabbage, meat, and egg were used. In addition, experimentally produced biofilms of E. coli were tested. A phage concentration of 10(3) PFU/ml was used for food products immersion, and for spraying of food products, 10(5) PFU/ml of a phage cocktail was used by applying a 20-s optimal dipping time in a phage cocktail. Food samples were cut into pieces and were either sprayed with or held in a bag immersed in lambda buffer containing a cocktail of 140 phages. Phage bio-processing was successful in eliminating completely E. coli in all processed samples after 48 h storage at 4°C. Partial elimination of E. coli was observed in earlier storage periods (7 and 18 h) at 24° and 37°C. Moreover, E. coli biofilms were reduced >3 log cycles upon using the current phage bio-processing. The use of a phage cocktail of 140 highly lytic designed phages proved highly effective in suppressing E. coli contaminating food products. Proper decontamination/prevention methods of pathogenic E. coli achieved in this study can replace the current chemically less effective decontamination methods.
Collapse
Affiliation(s)
- S A A Jassim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia.
| | | | | |
Collapse
|
38
|
Bonkoungou IJO, Lienemann T, Martikainen O, Dembelé R, Sanou I, Traoré AS, Siitonen A, Barro N, Haukka K. Diarrhoeagenic Escherichia coli detected by 16-plex PCR in children with and without diarrhoea in Burkina Faso. Clin Microbiol Infect 2011; 18:901-6. [PMID: 21985619 DOI: 10.1111/j.1469-0691.2011.03675.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of diarrhoeagenic Escherichia coli (DEC) in Africa is poorly understood, and is unknown in Burkina Faso. This study investigated the occurrence of five major DEC pathogroups in primary cultures of stool samples from 658 Burkinabe children under 5 years old using 16-plex PCR for virulence-associated genes. At least one DEC pathogroup was detected in 45% of 471 children with diarrhoea and in 29% of 187 children without diarrhoea (p <0.001). More than one DEC pathogroup was detected in 11% of children with and 1% of children without diarrhoea (p <0.001). Enteroaggregative E. coli was the most common pathogroup in both children with diarrhoea (26%) and children without diarrhoea (21%). Enteropathogenic E. coli and enterotoxigenic E. coli were detected significantly more often in children with diarrhoea (16% and 13%) than in children without diarrhoea (5% and 4%; p <0.001 for both pathogroups). Shiga toxin-producing E. coli and enteroinvasive E. coli were detected only in children with diarrhoea (2% and 1%, respectively). Diarrhoeagenic E. coli, especially enteropathogenic and enterotoxigenic, may be important, unrecognized causes of childhood diarrhoea in Burkina Faso.
Collapse
Affiliation(s)
- I J O Bonkoungou
- Bacteriology Unit, National Institute for Health and Welfare, THL, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guchhait G, Misra AK. Convergent synthesis of the tetrasaccharide repeating unit corresponding to the O-antigen of the verotoxin-producing Escherichia coli O176. Glycoconj J 2011; 28:519-24. [PMID: 21928148 DOI: 10.1007/s10719-011-9351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 11/29/2022]
Abstract
A convergent synthesis of the tetrasaccharide repeating unit of the O-antigen of the verotoxin producing E. coli O176 has been achieved in excellent yield adopting a [2+2] block glycosylation strategy. The β-D-mannosidic moiety of the tetrasaccharide was prepared from β-D-glucoside and α-D-galactosamine moiety was derived from D-galactal. The tetrasaccharide was synthesized as its 2-trimethylsilylethyl glycoside in excellent yield. All intermediate steps are high yielding.
Collapse
Affiliation(s)
- Goutam Guchhait
- Molecular Medicine Division, Bose Institute, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | | |
Collapse
|
40
|
Yi Y, Gao F, Mao X, Xiao M, Luo P, Qi J, Guo G, Jing H, Cui Y, Zou Q. Crystallization and preliminary X-ray studies of native and mutant intimin from enterohaemorrhagic Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:41-3. [PMID: 21206020 DOI: 10.1107/s1744309110036432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/11/2010] [Indexed: 11/11/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a primarily food-borne bacterial pathogen that is capable of causing life-threatening human infections and poses a serious challenge to public health worldwide. The bacterial outer-membrane protein intimin plays a key role in the initiation process of EHEC infection. In this study, intimin from EHEC O157:H7 (Int188) and its N916Y mutant (IntN916Y) were purified and crystals of both were obtained using the hanging-drop vapour-diffusion method at 291 K. Data were collected from Int188 and IntN916Y crystals to 2.8 and 2.6 Å resolution, respectively. The crystal of Int188 belonged to the orthorhombic space group C2, with unit-cell parameters a=235.16, b=44.81, c=129.12 Å, α=γ=90, β=97.53°. The crystal of IntN916Y belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=43.78, b=92.49, c=100.05 Å, α=β=γ=90°.
Collapse
Affiliation(s)
- Yong Yi
- Department of Clinical Microbiology and Clinical Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Crystal structure of EHEC intimin: insights into the complementarity between EPEC and EHEC. PLoS One 2010; 5:e15285. [PMID: 21179574 PMCID: PMC3002965 DOI: 10.1371/journal.pone.0015285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/03/2010] [Indexed: 11/19/2022] Open
Abstract
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Å resolution, together with a mutant (IntN916Y) at 2.6 Å. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7.
Collapse
|
42
|
Barlow RS, Mellor GE. Prevalence of EnterohemorrhagicEscherichia coliSerotypes in Australian Beef Cattle. Foodborne Pathog Dis 2010; 7:1239-45. [DOI: 10.1089/fpd.2010.0574] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
43
|
Cupples AM, Xagoraraki I, Rose JB. New Molecular Methods for Detection of Waterborne Pathogens. Environ Microbiol 2010. [DOI: 10.1002/9780470495117.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
44
|
Abstract
Gastrointestinal (GI) infections are a major cause of morbidity and mortality worldwide. Although infectious organisms are often recovered by microbiological methods, surgical pathologists play an invaluable role in diagnosis. The lower GI tract, including the appendix, large bowel, and anus, harbors a wide variety of pathogens. Some infections are part of disseminated disease, whereas others produce clinicopathologic scenarios that are specific to the lower GI tract. This review focuses on selected infectious disorders of the lower GI tract that may be encountered by the general surgical pathologist, including viral, bacterial, fungal, and parasitic organisms, and including infections caused by food- and water-borne pathogens. Diagnostic gross and histologic features are discussed, as well as useful clinical features and ancillary diagnostic techniques. Pertinent differential diagnoses are also emphasized, including other inflammatory conditions of the gut (such as ischemia or idiopathic inflammatory bowel disease) that can be mimicked by lower GI infections.
Collapse
Affiliation(s)
- Laura W Lamps
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Shorey 4S/09, Little Rock, AR 72205, USA.
| |
Collapse
|
45
|
Klapproth JMA. The role of lymphostatin/EHEC factor for adherence-1 in the pathogenesis of gram negative infection. Toxins (Basel) 2010; 2:954-62. [PMID: 22069619 PMCID: PMC3153230 DOI: 10.3390/toxins2050954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 02/02/2023] Open
Abstract
Lymphostatin/EHEC factor for adherence-1 is a novel large toxin represented in various Gram negative bacteria, highly associated with the development of infectious diarrhea and hemolytic uremic syndrome. In vitro and in vivo experiments identified lymphostatin/EFA-1 as a toxin with a central role in the pathogenesis of Gram negative bacteria, responsible for bacterial adhesion, intestinal colonization, immunosuppression, and disruption of gut epithelial barrier function.
Collapse
|
46
|
Kum WWS, Lo BC, Deng W, Ziltener HJ, Finlay BB. Impaired innate immune response and enhanced pathology during Citrobacter rodentium infection in mice lacking functional P-selectin. Cell Microbiol 2010; 12:1250-71. [PMID: 20345490 DOI: 10.1111/j.1462-5822.2010.01466.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The selectin family of adhesion molecules mediates recruitment of immune cells to sites of inflammation which is critical for host resistance against infection. To characterize the role of selectins in host defence against Citrobacter rodentium infection, wild-type (WT) mice and mice lacking P-selectin glycoprotein ligand-1 (PSGL-1), P-, E- and L-selectin were infected using a Citrobacter-induced colitis model. Infected mice lacking PSGL-1 or P-selectin showed a more pronounced morbidity associated with higher bacterial load, elevated IL-12 p70, TNF-alpha, IFN-gamma, MCP-1 and IL-6 production, more severe inflammation and surprisingly higher leucocyte infiltration in the guts than WT control. Recruitment of neutrophils and macrophages and caecal inflammation were drastically reduced in infected P-selectin knockout mice receiving blocking monoclonal antibodies to ICAM-1 or LFA-1, indicating that these adhesion molecules may compensate for the loss of selectins in leucocyte recruitment. Furthermore, the adaptive immune response in mice lacking PSGL-1 or P-selectin remained functional since these infected mice were capable of eradicating the bacteria and being protected upon re-challenge with C. rodentium. These data demonstrate a definitive phenotypic impairment of innate response in mice lacking PSGL-1 or P-selectin, and suggest that these adhesion molecules are important in host innate immune response against Citrobacter infection.
Collapse
Affiliation(s)
- Winnie W S Kum
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
47
|
Shen-Tu G, Schauer DB, Jones NL, Sherman PM. Detergent-resistant microdomains mediate activation of host cell signaling in response to attaching-effacing bacteria. J Transl Med 2010; 90:266-81. [PMID: 19997063 DOI: 10.1038/labinvest.2009.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes outbreaks of bloody diarrhea and the hemolytic-uremic syndrome. EHEC intimately adheres to epithelial cells, effaces microvilli and induces attaching-effacing (AE) lesions. Detergent-resistant microdomains (lipid rafts) serve as membrane platforms for the recruitment of signaling complexes to mediate host responses to infection. The aim of this study was to define the role of lipid rafts in activating signal transduction pathways in response to AE bacterial pathogens. Epithelial cell monolayers were infected with EHEC (MOI 100:1, 3 h, 37 degrees C) and lipid rafts isolated by buoyant density ultracentrifugation. Phosphoinositide 3-kinase (PI3K) localization to lipid rafts was confirmed using PI3K and anti-caveolin-1 antibodies. Mice with cholesterol storage disease Niemann-Pick, type C were used as in vivo models to confirm the role of lipid rafts in mediating signaling response to AE organisms. In contrast to uninfected cells, PI3K was recruited to lipid rafts in response to EHEC infection. Metabolically active bacteria and cells with intact cholesterol-rich microdomains were necessary for the recruitment of second messengers to lipid rafts. Recruitment of PI3K to lipid rafts was independent of the intimin (eaeA) gene, type III secretion system, and production of Shiga-like toxins. Colonization of NPC(-/-) colonic mucosa by Citrobacter rodentium and AE lesion formation were both delayed, compared with wild-type mice infected with the murine-specific AE bacterial pathogen. C. rodentium-infected NPC(-/-) mice had reduced colonic epithelial hyperplasia (64+/-8.251 vs 112+/-2.958 microm; P<0.05) and decreased secretion of IFN-gamma (17.6+/-17.6 vs 71+/-26.3 pg/ml, P<0.001). Lipid rafts mediate host cell signal transduction responses to AE bacterial infections both in vitro and in vivo. These findings advance the current understanding of microbial-eukaryotic cell interactions in response to enteric pathogens that hijack signaling responses mediated through lipid rafts.
Collapse
Affiliation(s)
- Grace Shen-Tu
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
48
|
Shakhnovich EA, Davis BM, Waldor MK. Hfq negatively regulates type III secretion in EHEC and several other pathogens. Mol Microbiol 2009; 74:347-63. [PMID: 19703108 DOI: 10.1111/j.1365-2958.2009.06856.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hfq is a conserved RNA-binding protein that regulates diverse cellular processes through post-transcriptional control of gene expression, often by functioning as a chaperone for regulatory sRNAs. Here, we explored the role of Hfq in enterohaemorrhagic Escherichia coli (EHEC), a group of non-invasive intestinal pathogens. EHEC virulence is dependent on a Type III secretion system encoded in the LEE pathogenicity island. The abundance of transcripts for all 41 LEE genes and more than half of confirmed non-LEE-encoded T3 effectors were elevated in an EHEC hfq deletion mutant. Thus, Hfq promotes co-ordinated expression of the LEE-encoded T3S apparatus and both LEE- and non-LEE-encoded effectors. Increased transcript levels led to the formation of functional secretion complexes capable of secreting high quantities of effectors into the supernatant. The increase in LEE-derived transcripts and proteins was dependent on Ler, the LEE-encoded transcriptional activator, and the ler transcript appears to be a direct target of Hfq-mediated negative regulation. Finally, we found that Hfq contributes to the negative regulation of T3SSs in several other pathogens, suggesting that Hfq, potentially along with species-specific sRNAs, underlies a common means to prevent unfettered expression of T3SSs.
Collapse
Affiliation(s)
- Elizabeth A Shakhnovich
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect Immun 2009; 77:3713-21. [PMID: 19564389 DOI: 10.1128/iai.00198-09] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete. In 2006, in an outbreak of E. coli O157:H7 caused by consumption of contaminated spinach, there was a notably high frequency of HUS. We sequenced the genome of the strain responsible (TW14359) with the goal of identifying candidate genetic factors that contribute to an enhanced ability to cause HUS. The TW14359 genome contains 70 kb of DNA segments not present in either of the two reference O157:H7 genomes. We identified seven putative virulence determinants, including two putative type III secretion system effector proteins, candidate genes that could result in increased pathogenicity or, alternatively, adaptation to plants, and an intact anaerobic nitric oxide reductase gene, norV. We surveyed 100 O157:H7 isolates for the presence of these putative virulence determinants. A norV deletion was found in over one-half of the strains surveyed and correlated strikingly with the absence of stx(1). The other putative virulence factors were found in 8 to 35% of the O157:H7 isolates surveyed, and their presence also correlated with the presence of norV and the absence of stx(1), indicating that the presence of norV may serve as a marker of a greater propensity for HUS, similar to the correlation between the absence of stx(1) and a propensity for HUS.
Collapse
|
50
|
Holtz LR, Neill MA, Tarr PI. Acute bloody diarrhea: a medical emergency for patients of all ages. Gastroenterology 2009; 136:1887-98. [PMID: 19457417 DOI: 10.1053/j.gastro.2009.02.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/06/2009] [Accepted: 02/17/2009] [Indexed: 01/05/2023]
Abstract
Acute bloody diarrhea should be considered a medical emergency. Its causes are frequently serious or actionable or both and are usually identified. However, acute bloody diarrhea as a stand-alone clinical presentation has received little scholarly attention in the past several decades. Although the range of possible causes of acute bloody diarrhea is broad, infectious considerations are paramount and should always be prioritized in the evaluation of such patients. History, examination, and laboratory testing should be focused on minimizing time to diagnosis (and, by extension, to implementing appropriate therapy). Strategically chosen tests and imaging, avoidance of extraneous diagnostic pursuits, and provision of supportive care while awaiting diagnostic clarity are central to the adroit management of patients with acute bloody diarrhea. Diagnostic considerations differ somewhat between adults and children but have many elements in common, including the need for vigilance in detecting Escherichia coli O157:H7 infection. In this review, we discuss diagnostic approaches (emphasizing the importance of rapid, accurate, and thorough microbiologic investigation) and measures that can be taken to support patients while awaiting information that determines the cause of their disease. These topics are discussed in the context of the medical care that is available to children and adults with bloody diarrhea in most institutions in developed nations.
Collapse
Affiliation(s)
- Lori R Holtz
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|