1
|
Aivelo T, Alburkat H, Suomalainen N, Kukowski R, Heikkinen P, Oksanen A, Huitu O, Kivistö R, Sironen T. Potentially zoonotic pathogens and parasites in opportunistically sourced urban brown rats ( Rattus norvegicus) in and around Helsinki, Finland, 2018 to 2023. Euro Surveill 2024; 29:2400031. [PMID: 39364602 PMCID: PMC11451135 DOI: 10.2807/1560-7917.es.2024.29.40.2400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 10/05/2024] Open
Abstract
BackgroundBrown rats (Rattus norvegicus) are synanthropic rodents with worldwide distribution, which are known to harbour many zoonotic pathogens and parasites. No systematic zoonotic surveys targeting multiple pathogens and parasites have previously been conducted in urban rats in Finland.AimIn Helsinki, Finland, we explored the presence and prevalence in brown rats of certain pathogens and parasites (including helminths, viruses and bacteria) across potentially zoonotic taxa.MethodsWe opportunistically received rat carcasses from pest management operators and citizens from 2018 to 2023. We searched for heart- or lungworms, performed rat diaphragm digestion to check for Trichinella and morphologically identified intestinal helminths. We assessed virus exposure by immunofluorescence assay or PCR, and detected bacteria by PCR (Leptospira) or culture (Campylobacter).ResultsAmong the rats investigated for helminths, no heart- or lungworms or Trichinella species were detected and the most common finding was the cestode Hymenolepis nana (in 9.7% of individuals sampled, 28/288). For some of the surveyed virus taxa, several rats were seropositive (orthopoxviruses, 5.2%, 11/211; arenaviruses, 2.8%, 6/211; hantaviruses 5.2%, 11/211) or tested positive by PCR (rat hepatitis E virus, 1.8%, 4/216). Campylobacter jejuni (6.6%, 17/259) and Leptospira interrogans (1.2%, 2/163) bacteria were also present in the rat population examined.ConclusionsPrevalences of potentially zoonotic pathogens and parasites in brown rats in Helsinki appeared low. This may explain low or non-existent diagnosis levels of rat-borne pathogen and parasite infections reported in people there. Nevertheless, further assessment of under-diagnosis, which cannot be excluded, would enhance understanding the risks of zoonoses.
Collapse
Affiliation(s)
- Tuomas Aivelo
- Organismal and Evolutionary Biology research program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Science Communication & Society, Institute of Biology, University of Leiden, Leiden, The Netherlands
| | - Hussein Alburkat
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Suomalainen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rebekka Kukowski
- Organismal and Evolutionary Biology research program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petra Heikkinen
- Finnish Food Authority, Animal Health Diagnostic Unit (FINPAR), Oulu, Finland
| | - Antti Oksanen
- Finnish Food Authority, Animal Health Diagnostic Unit (FINPAR), Oulu, Finland
| | - Otso Huitu
- Natural Resources Institute Finland, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Wei Y, Cai Y, Han X, Han Z, Zhang Y, Xu Y, Li Q. Genetic diversity and molecular evolution of Seoul virus in Hebei province, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105503. [PMID: 37717798 DOI: 10.1016/j.meegid.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Seoul virus (SEOV) is a major pathogen which causes hemorrhagic fever with renal syndrome (HFRS), and is present all over the world. However, there are currently few long-term systematic studies of SEOV's phylogenetic and evolutionary mechanisms in epidemic areas. Thus, in this study, we used RT-PCR combined with NGS to obtain the genomes of six SEOV viruses from 1993, as well as 56 Hebei province-specific tissue samples from 1999 to 2022. Phylogenetic analysis showed that the SEOV samples could be divided into seven groups and showed geographic clustering. The geographic region may be the main factor affecting the genetic diversity of SEOV. We also found that SEOV was subject to strong overall purifying selection and positive selection at certain sites during evolution. Recombination events and high nucleotide substitution rates were also shown to accelerate SEOV's evolution. Evolutionary feature of the L segment is more representative of complete genome. Our detailed analysis provides a deeper understanding of the genetic diversity and evolutionary drivers of SEOV within its primary epidemic areas. It will be important to further monitor epidemiological trends and drivers of variation to help increase our understanding of the pathogenicity of SEOV infections.
Collapse
Affiliation(s)
- Yamei Wei
- Hebei Medical University, Shijiazhuang, Hebei Province, China; Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Yanan Cai
- Hebei Medical University, Shijiazhuang, Hebei Province, China; Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Xu Han
- Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Zhanying Han
- Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Yanbo Zhang
- Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Yonggang Xu
- Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Qi Li
- Hebei Medical University, Shijiazhuang, Hebei Province, China; Institute for Viral Disease Control and Prevention, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
3
|
Pet Rats as the Likely Reservoir for Human Seoul Orthohantavirus Infection. Viruses 2023; 15:v15020467. [PMID: 36851681 PMCID: PMC9962845 DOI: 10.3390/v15020467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Seoul orthohantavirus (SEOV) is a rat-associated zoonotic pathogen with an almost worldwide distribution. In 2019, the first autochthonous human case of SEOV-induced hemorrhagic fever with renal syndrome was reported in Germany, and a pet rat was identified as the source of the zoonotic infection. To further investigate the SEOV reservoir, additional rats from the patient and another owner, all of which were purchased from the same vendor, were tested. SEOV RNA and anti-SEOV antibodies were found in both of the patient's rats and in two of the three rats belonging to the other owner. The complete coding sequences of the small (S), medium (M), and large (L) segments obtained from one rat per owner exhibited a high sequence similarity to SEOV strains of breeder rat or human origin from the Netherlands, France, the USA, and Great Britain. Serological screening of 490 rats from breeding facilities and 563 wild rats from Germany (2007-2020) as well as 594 wild rats from the Netherlands (2013-2021) revealed 1 and 6 seropositive individuals, respectively. However, SEOV RNA was not detected in any of these animals. Increased surveillance of pet, breeder, and wild rats is needed to identify the origin of the SEOV strain in Europe and to develop measures to prevent transmission to the human population.
Collapse
|
4
|
Camp JV, Desvars-Larrive A, Nowotny N, Walzer C. Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses 2022; 14:v14071516. [PMID: 35891496 PMCID: PMC9316102 DOI: 10.3390/v14071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Urban environments represent unique ecosystems where dense human populations may come into contact with wildlife species, some of which are established or potential reservoirs for zoonotic pathogens that cause human diseases. Finding practical ways to monitor the presence and/or abundance of zoonotic pathogens is important to estimate the risk of spillover to humans in cities. As brown rats (Rattus norvegicus) are ubiquitous in urban habitats, and are hosts of several zoonotic viruses, we conducted longitudinal sampling of brown rats in Vienna, Austria, a large population center in Central Europe. We investigated rat tissues for the presence of several zoonotic viruses, including flaviviruses, hantaviruses, coronaviruses, poxviruses, hepatitis E virus, encephalomyocarditis virus, and influenza A virus. Although we found no evidence of active infections (all were negative for viral nucleic acids) among 96 rats captured between 2016 and 2018, our study supports the findings of others, suggesting that monitoring urban rats may be an efficient way to estimate the activity of zoonotic viruses in urban environments.
Collapse
Affiliation(s)
- Jeremy V. Camp
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Amélie Desvars-Larrive
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- VetFarm, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY 10460, USA
| |
Collapse
|
5
|
Vilibic-Cavlek T, Barbic L, Stevanovic V, Savic V, Mrzljak A, Bogdanic M, Tabain I. Comparison of indirect immunofluorescence and western blot method in the diagnosis of hantavirus infections. World J Methodol 2021; 11:294-301. [PMID: 34888182 PMCID: PMC8613714 DOI: 10.5662/wjm.v11.i6.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Serologic cross-reactivity between hantaviruses often complicates the interpretation of the results.
AIM To analyze the diagnostic value of indirect immunofluorescence assay (IFA) and western blot (WB) in the diagnosis of hantavirus infections.
METHODS One hundred eighty-eight serum samples from Puumala (PUUV) and Dobrava (DOBV) orthohantavirus infected patients were analyzed. Serology was performed using commercial tests (Euroimmun, Lübeck, Germany).
RESULTS Using IFA, 49.5% of acute-phase samples showed a monotypic response to PUUV, while 50.5% cross-reacted with other hantaviruses. The overall cross-reactivity was higher for immunoglobulin G (IgG) (50.0%) than for immunoglobulin M (IgM) (25.5%). PUUV IgM/IgG antibodies showed low/moderate reactivity with orthohantaviruses Hantaan (12.3%/31.5%), Seoul (7.5%/17.8%), DOBV (5.4%/ 28.1%), and Saaremaa (4.8%/15.7%). Both DOBV IgM and IgG antibodies were broadly reactive with Hantaan (76.2%/95.2%), Saaremaa (80.9%/83.3%), and Seoul (78.6%/85.7%) and moderate with PUUV (28.5%/38.1%). Using a WB, serotyping was successful in most cross-reactive samples (89.5%).
CONCLUSION The presented results indicate that WB is more specific than IFA in the diagnosis of hantavirus infections, confirming serotype in most IFA cross-reactive samples.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Savic
- Poultry Centre, Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Gastroenterology and Hepatology, University Hospital Zagreb, Zagreb 10000, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Serological Evidence of Multiple Zoonotic Viral Infections among Wild Rodents in Barbados. Pathogens 2021; 10:pathogens10060663. [PMID: 34071689 PMCID: PMC8229225 DOI: 10.3390/pathogens10060663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Rodents are reservoirs for several zoonotic pathogens that can cause human infectious diseases, including orthohantaviruses, mammarenaviruses and orthopoxviruses. Evidence exists for these viruses circulating among rodents and causing human infections in the Americas, but much less evidence exists for their presence in wild rodents in the Caribbean. Methods: Here, we conducted serological and molecular investigations of wild rodents in Barbados to determine the prevalence of orthohantavirus, mammarenavirus and orthopoxvirus infections, and the possible role of these rodent species as reservoirs of zoonotic pathogens. Using immunofluorescent assays (IFA), rodent sera were screened for the presence of antibodies to orthohantavirus, mammarenavirus (Lymphocytic choriomeningitis virus—LCMV) and orthopoxvirus (Cowpox virus—CPXV) infections. RT-PCR was then conducted on orthohantavirus and mammarenavirus-seropositive rodent sera and tissues, to detect the presence of viral RNA. Results: We identified antibodies against orthohantavirus, mammarenavirus, and orthopoxvirus among wild mice and rats (3.8%, 2.5% and 7.5% seropositivity rates respectively) in Barbados. No orthohantavirus or mammarenavirus viral RNA was detected from seropositive rodent sera or tissues using RT–PCR. Conclusions: Key findings of this study are the first serological evidence of orthohantavirus infections in Mus musculus and the first serological evidence of mammarenavirus and orthopoxvirus infections in Rattus norvegicus and M. musculus in the English-speaking Caribbean. Rodents may present a potential zoonotic and biosecurity risk for transmission of three human pathogens, namely orthohantaviruses, mammarenaviruses and orthopoxviruses in Barbados.
Collapse
|
7
|
Wild Rats, Laboratory Rats, Pet Rats: Global Seoul Hantavirus Disease Revisited. Viruses 2019; 11:v11070652. [PMID: 31319534 PMCID: PMC6669632 DOI: 10.3390/v11070652] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Recent reports from Europe and the USA described Seoul orthohantavirus infection in pet rats and their breeders/owners, suggesting the potential emergence of a “new” public health problem. Wild and laboratory rat-induced Seoul infections have, however, been described since the early eighties, due to the omnipresence of the rodent reservoir, the brown rat Rattus norvegicus. Recent studies showed no fundamental differences between the pathogenicity and phylogeny of pet rat-induced Seoul orthohantaviruses and their formerly described wild or laboratory rat counterparts. The paucity of diagnosed Seoul virus-induced disease in the West is in striking contrast to the thousands of cases recorded since the 1980s in the Far East, particularly in China. This review of four continents (Asia, Europe, America, and Africa) puts this “emerging infection” into a historical perspective, concluding there is an urgent need for greater medical awareness of Seoul virus-induced human pathology in many parts of the world. Given the mostly milder and atypical clinical presentation, sometimes even with preserved normal kidney function, the importance of simple but repeated urine examination is stressed, since initial but transient proteinuria and microhematuria are rarely lacking.
Collapse
|
8
|
Ling J, Verner-Carlsson J, Eriksson P, Plyusnina A, Löhmus M, Järhult JD, van de Goot F, Plyusnin A, Lundkvist Å, Sironen T. Genetic analyses of Seoul hantavirus genome recovered from rats (Rattus norvegicus) in the Netherlands unveils diverse routes of spread into Europe. J Med Virol 2019; 91:724-730. [PMID: 30609070 DOI: 10.1002/jmv.25390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/29/2018] [Indexed: 11/11/2022]
Abstract
Seoul virus (SEOV) is the etiologic agent of hemorrhagic fever with renal syndrome. It is carried by brown rats (Rattus norvegicus), a commensal rodent that closely cohabitates with humans in urban environments. SEOV has a worldwide distribution, and in Europe, it has been found in rats in UK, France, Sweden, and Belgium, and human cases of SEOV infection have been reported in Germany, UK, France, and Belgium. In the search of hantaviruses in brown rats from the Netherlands, we found both serological and genetic evidence for the presence of SEOV in the local wild rat population. To further decipher the relationship with other SEOV variants globally, the complete genome of SEOV in the Netherlands was recovered. SEOV sequences obtained from three positive rats (captured at close trapping locations at the same time) were found highly similar. Phylogenetic analyses demonstrated that two lineages of SEOV circulate in Europe. Strains from the Netherlands and UK, together with the Baxter strain from US, constitute one of these two, while the second includes strains from Europe and Asia. Our results support a hypothesis of diverse routes of SEOV spread into Europe. These findings, combined with other indications on the expansion of the spatial European range of SEOV, suggest an increased risk of this virus for the public health, highlighting the need for increased surveillance.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Jenny Verner-Carlsson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Per Eriksson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Angelina Plyusnina
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Mare Löhmus
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,The National Veterinary Institute, Uppsala, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Alexander Plyusnin
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden.,Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, University of Uppsala, Uppsala, Sweden
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Maas M, De Vries A, Reusken C, Buijs J, Goris M, Hartskeerl R, Ahmed A, Van Tulden P, Swart A, Pijnacker R, Koene M, Lundkvist Å, Heyman P, Rockx B, Van Der Giessen J. Prevalence of Leptospira spp. and Seoul hantavirus in brown rats ( Rattus norvegicus) in four regions in the Netherlands, 2011-2015. Infect Ecol Epidemiol 2018; 8:1490135. [PMID: 29963297 PMCID: PMC6022222 DOI: 10.1080/20008686.2018.1490135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Brown rats (Rattus norvegicus) may carry pathogens that can be a risk for public health. Brown rats in the Netherlands were tested for the zoonotic pathogens Leptospira spp. and Seoul hantavirus (SEOV), in order to obtain insight in their prevalence. METHODS AND RESULTS Cross-sectional studies were performed at four locations from 2011 to 2015. The rats were tested for Leptospira spp. using real-time PCR and/or culture resulting in a prevalence ranging between 33-57%. Testing for SEOV was done through an adapted human Seoul hantavirus ELISA and real-time RT-PCR. Although at several locations the ELISA indicated presence of SEOV antibodies, none could be confirmed by focus reduction neutralization testing. CONCLUSION The results indicate a widespread presence of Leptospira spp. in brown rats in the Netherlands, including areas with a low leptospirosis incidence in humans. No evidence for circulation of SEOV was found in this study.
Collapse
Affiliation(s)
- Miriam Maas
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ankje De Vries
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Viroscience, Erasmus Medical Center, WHO Collaborating Centre for arbovirus and hemorrhagic fever virus reference and research, Rotterdam, the Netherlands
| | - Jan Buijs
- Public health service (GGD) Amsterdam, Amsterdam, the Netherlands
| | - Marga Goris
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis (NRL), Amsterdam, the Netherlands
| | - Rudy Hartskeerl
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis (NRL), Amsterdam, the Netherlands
| | - Ahmed Ahmed
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis (NRL), Amsterdam, the Netherlands
| | | | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Paul Heyman
- Research Laboratory for Vector-Borne Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Barry Rockx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Viroscience, Erasmus Medical Center, WHO Collaborating Centre for arbovirus and hemorrhagic fever virus reference and research, Rotterdam, the Netherlands
| | - Joke Van Der Giessen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
10
|
Milholland MT, Castro-Arellano I, Suzán G, Garcia-Peña GE, Lee TE, Rohde RE, Alonso Aguirre A, Mills JN. Global Diversity and Distribution of Hantaviruses and Their Hosts. ECOHEALTH 2018; 15:163-208. [PMID: 29713899 DOI: 10.1007/s10393-017-1305-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Collapse
Affiliation(s)
- Matthew T Milholland
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Iván Castro-Arellano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5, France
| | - Thomas E Lee
- Department of Biology, Abilene Christian University, ACU Box 27868, Abilene, TX, 79699, USA
| | - Rodney E Rohde
- College of Health Professions, Clinical Laboratory Science Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
11
|
Abstract
As part of further investigations into three linked haemorrhagic fever with renal syndrome (HFRS) cases in Wales and England, 21 rats from a breeding colony in Cherwell, and three rats from a household in Cheltenham were screened for hantavirus. Hantavirus RNA was detected in either the lungs and/or kidney of 17/21 (81%) of the Cherwell rats tested, higher than previously detected by blood testing alone (7/21, 33%), and in the kidneys of all three Cheltenham rats. The partial L gene sequences obtained from 10 of the Cherwell rats and the three Cheltenham rats were identical to each other and the previously reported UK Cherwell strain. Seoul hantavirus (SEOV) RNA was detected in the heart, kidney, lung, salivary gland and spleen (but not in the liver) of an individual rat from the Cherwell colony suspected of being the source of SEOV. Serum from 20/20 of the Cherwell rats and two associated HFRS cases had high levels of SEOV-specific antibodies (by virus neutralisation). The high prevalence of SEOV in both sites and the moderately severe disease in the pet rat owners suggest that SEOV in pet rats poses a greater public health risk than previously considered.
Collapse
|
12
|
Rönnberg B, Vapalahti O, Goeijenbier M, Reusken C, Gustafsson Å, Blomberg J, Lundkvist Å. Serogrouping and seroepidemiology of North European hantaviruses using a novel broadly targeted synthetic nucleoprotein antigen array. Infect Ecol Epidemiol 2017; 7:1350086. [PMID: 28815001 PMCID: PMC5549826 DOI: 10.1080/20008686.2017.1350086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/24/2017] [Indexed: 02/02/2023] Open
Abstract
Introduction: Hantaviruses are globally distributed zoonotic pathogens. Great diversity and high antigenic cross-reactivity makes diagnosis by traditional methods cumbersome. Materials and methods: ‘Megapeptides’, 119–120-mers from the amino terminus of the nucleoprotein of 16 hantaviruses, representing the four major branches of the hantavirus phylogenetic tree, were utilized in a novel IgG-based hantavirus suspension multiplex immunoassay (HSMIA) for detection of past hantavirus infections in 155 North European human samples. We compared HSMIA with established EIAs and focus reduction neutralization test (FRNT). Results and discussion: The Puumala hantavirus (PUUV) component in the HSMIA gave concordant results with a PUUV IgG EIA in 142 sera from Northern Sweden (of which 31 were EIA positive, 7 borderline and 104 EIA negative, sensitivity 30/31 = 97%, specificity 104/ 104 = 100%, 134/135 = 99% concordance), with another immunoassay in 40 PUUV IgG positive sera from Finland (36/40 = 90% sensitivity), and was concordant in 8 of 11 cases with PUUV and DOBV neutralization titers, respectively. Two major IgG reactivity patterns were found: (i) a PUUV-specific pattern covering phylogroup IV and its serogroups B and C; and (ii) a Dobrava virus (DOBV)-specific pattern, covering the serogroup A portion of phylogroup III. In addition, we found several minor patterns with reactivity to only one or two megapeptides indicating additional hantaviruses infecting humans in the Swedish and Finnish populations. Conclusion: The broadly reactive and rational HSMIA yielded results highly correlated with the established PUUV EIAs and the NT results. It is a sensitive and specific assay, which will be suited for efficient serosurveillance of hantaviruses in humans. Its use in animals should be further investigated.
Collapse
Affiliation(s)
- Bengt Rönnberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Olli Vapalahti
- Department of Veterinary Biosciences and Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Chantal Reusken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Åke Gustafsson
- Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
13
|
A seroprevalence study to determine the frequency of hantavirus infection in people exposed to wild and pet fancy rats in England. Epidemiol Infect 2017; 145:2458-2465. [DOI: 10.1017/s0950268817001480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SummaryRecent cases of acute kidney injury due to Seoul hantavirus infection from exposure to wild or pet fancy rats suggest this infection is increasing in prevalence in the UK. We conducted a seroprevalence study in England to estimate cumulative exposure in at-risk groups with contact with domesticated and wild rats to assess risk and inform public health advice. From October 2013 to June 2014, 844 individual blood samples were collected. Hantavirus seroprevalence amongst the pet fancy rat owner group was 34.1% (95% CI 23·9–45·7%) compared with 3·3% (95% CI 1·6–6·0) in a baseline control group, 2·4% in those with occupational exposure to pet fancy rats (95% CI 0·6–5·9) and 1·7% with occupational exposure to wild rats (95% CI 0·2–5·9). Variation in seroprevalence across groups with different exposure suggests that occupational exposure to pet and wild rats carries a very low risk, if any. However incidence of hantavirus infection among pet fancy rat owners/breeders, whether asymptomatic, undiagnosed mild viral illness or more severe disease may be very common and public health advice needs to be targeted to this at-risk group.
Collapse
|
14
|
Liu DY, Liu J, Liu BY, Liu YY, Xiong HR, Hou W, Yang ZQ. Phylogenetic analysis based on mitochondrial DNA sequences of wild rats, and the relationship with Seoul virus infection in Hubei, China. Virol Sin 2017; 32:235-244. [PMID: 28669005 PMCID: PMC6598924 DOI: 10.1007/s12250-016-3940-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Seoul virus (SEOV), which is predominantly carried by Rattus norvegicus, is one of the major causes of hemorrhagic fever with renal syndrome (HFRS) in China. Hubei province, located in the central south of China, has experienced some of the most severe epidemics of HFRS. To investigate the mitochondrial DNA (mtDNA)-based phylogenetics of wild rats in Hubei, and the relationship with SEOV infection, 664 wild rats were captured from five trapping sites in Hubei from 2000-2009 and 2014-2015. Using reverse-transcription (RT)-PCR, 41 (6.17%) rats were found to be positive for SEOV infection. The SEOV-positive percentage in Yichang was significantly lower than that in other areas. The mtDNA D-loop and cytochrome b (cyt-b) genes of 103 rats were sequenced. Among these animals, 37 were SEOV-positive. The reconstruction of the phylogenetic relationship (based on the complete D-loop and cyt-b sequences) allowed the rats to be categorized into two lineages, R. norvegicus and Rattus nitidus, with the former including the majority of the rats. For both the D-loop and cyt-b genes, 18 haplotypes were identified. The geographic distributions of the different haplotypes were significantly different. There were no significant differences in the SEOVpositive percentages between different haplotypes. There were three sub-lineages for the D-loop, and two for cyt-b. The SEOV-positive percentages for each of the sub-lineages did not significantly differ. This indicates that the SEOV-positive percentage is not related to the mtDNA D-loop or cyt-b haplotype or the sub-lineage of rats from Hubei.
Collapse
Affiliation(s)
- Dong-Ying Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Bing-Yu Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
16
|
Himsworth CG, Bai Y, Kosoy MY, Wood H, DiBernardo A, Lindsay R, Bidulka J, Tang P, Jardine C, Patrick D. An investigation of Bartonella spp., Rickettsia typhi, and Seoul hantavirus in rats (Rattus spp.) from an inner-city neighborhood of Vancouver, Canada: is pathogen presence a reflection of global and local rat population structure? Vector Borne Zoonotic Dis 2015; 15:21-6. [PMID: 25629777 DOI: 10.1089/vbz.2014.1657] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are reservoirs for variety of zoonotic pathogens. Many of these pathogens, including Rickettsia typhi, Bartonella spp., and Seoul hantavirus (SEOV), are thought to be endemic in rat populations worldwide; however, past field research has found these organisms to be absent in certain rat populations. Rats (Rattus spp.) from an inner city neighborhood of Vancouver, Canada, were tested for exposure to and/or infection with SEOV and R. typhi (using serology and PCR), as well as Bartonella spp. (using culture and sequencing). Approximately 25% of 404 rats tested were infected with Bartonella tribocorum, which demonstrated significant geographic clustering within the study area. Infection was associated with both season and sexual maturity. Seroreactivity against R. typhi and SEOV was observed in 0.36% and 1.45% of 553 rats tested, respectively, although PCR screening results for these pathogens were negative, suggesting that they are not endemic in the study population. Overall, these results suggest that the geographic distribution of rat-associated zoonoses, including R. typhi, SEOV, and Bartonella spp., is less ubiquitous than previously appreciated, and is likely dependent on patterns of dispersion and establishment of the rat reservoir host. Further study on global and local Rattus spp. population structures may help to elucidate the ecology of zoonotic organisms in these species.
Collapse
Affiliation(s)
- Chelsea G Himsworth
- 1 School of Population and Public Health, University of British Columbia , Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hantavirus reservoirs: current status with an emphasis on data from Brazil. Viruses 2014; 6:1929-73. [PMID: 24784571 PMCID: PMC4036540 DOI: 10.3390/v6051929] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Since the recognition of hantavirus as the agent responsible for haemorrhagic fever in Eurasia in the 1970s and, 20 years later, the descovery of hantavirus pulmonary syndrome in the Americas, the genus Hantavirus has been continually described throughout the World in a variety of wild animals. The diversity of wild animals infected with hantaviruses has only recently come into focus as a result of expanded wildlife studies. The known reservoirs are more than 80, belonging to 51 species of rodents, 7 bats (order Chiroptera) and 20 shrews and moles (order Soricomorpha). More than 80genetically related viruses have been classified within Hantavirus genus; 25 recognized as human pathogens responsible for a large spectrum of diseases in the Old and New World. In Brazil, where the diversity of mammals and especially rodents is considered one of the largest in the world, 9 hantavirus genotypes have been identified in 12 rodent species belonging to the genus Akodon, Calomys, Holochilus, Oligoryzomys, Oxymycterus, Necromys and Rattus. Considering the increasing number of animals that have been implicated as reservoirs of different hantaviruses, the understanding of this diversity is important for evaluating the risk of distinct hantavirus species as human pathogens.
Collapse
|
18
|
Dupinay T, Pounder KC, Ayral F, Laaberki MH, Marston DA, Lacôte S, Rey C, Barbet F, Voller K, Nazaret N, Artois M, Marianneau P, Lachuer J, Fooks AR, Pépin M, Legras-Lachuer C, McElhinney LM. Detection and genetic characterization of Seoul virus from commensal brown rats in France. Virol J 2014; 11:32. [PMID: 24555484 PMCID: PMC3944734 DOI: 10.1186/1743-422x-11-32] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022] Open
Abstract
Background Hantaviruses are single-stranded RNA viruses, which are transmitted to humans primarily via inhalation of aerosolised virus in contaminated rodent urine and faeces. Whilst infected reservoir hosts are asymptomatic, human infections can lead to two clinical manifestations, haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with varying degrees of clinical severity. The incidence of rodent and human cases of Seoul virus (SEOV) in Europe has been considered to be low, and speculated to be driven by the sporadic introduction of infected brown rats (Rattus norvegicus) via ports. Methods Between October 2010 and March 2012, 128 brown rats were caught at sites across the Lyon region in France. Results SEOV RNA was detected in the lungs of 14% (95% CI 8.01 – 20.11) of brown rats tested using a nested pan-hantavirus RT-PCR (polymerase gene). Phylogenetic analysis supports the inclusion of the Lyon SEOV within Lineage 7 with SEOV strains originating from SE Asia and the previously reported French & Belgian SEOV strains. Sequence data obtained from the recent human SEOV case (Replonges) was most similar to that obtained from one brown rat trapped in a public park in Lyon city centre. We obtained significantly improved recovery of virus genome sequence directly from SEOV infected lung material using a simple viral enrichment approach and NGS technology. Conclusions The detection of SEOV in two wild caught brown rats in the UK and the multiple detection of SEOV infected brown rats in the Lyon region of France, suggests that SEOV is circulating in European brown rats. Under-reporting and difficulties in identifying the hantaviruses associated with HFRS may mask the public health impact of SEOV in Europe.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michel Pépin
- Université de Lyon, VetAgro Sup, USC 1233/Equipe « Pathogènes émergents et rongeurs sauvages (PERS), F-69280 Marcy-L'Etoile, France.
| | | | | |
Collapse
|
19
|
Rapid, whole blood diagnostic test for detecting anti-hantavirus antibody in rats. J Virol Methods 2013; 193:42-9. [DOI: 10.1016/j.jviromet.2013.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022]
|
20
|
Lundkvist A, Verner-Carlsson J, Plyusnina A, Forslund L, Feinstein R, Plyusnin A. Pet rat harbouring Seoul hantavirus in Sweden, June 2013. Euro Surveill 2013. [DOI: 10.2807/1560-7917.es2013.18.7.20521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
21
|
Lundkvist Å, Verner-Carlsson J, Plyusnina A, Forslund L, Feinstein R, Plyusnin A. Pet rat harbouring Seoul hantavirus in Sweden, June 2013. Euro Surveill 2013. [DOI: 10.2807/1560-7917.es2013.18.27.20521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the first detection of Seoul hantavirus (SEOV) in a pet rat in Sweden. SEOV-specific antibodies were detected in the pet rat blood by focus reduction neutralising test (FRNT), and SEOV RNA in lung tissue was confirmed by reverse transcription-nested polymerase chain reaction (RT-PCR) followed by sequencing. The discovery follows the recent reports of SEOV infected pet rats, as well as associated human cases of severe haemorrhagic fever with renal syndrome (HFRS), in England and Wales.
Collapse
Affiliation(s)
- Å Lundkvist
- BMC, IMBIM, Uppsala University, Uppsala, Sweden
- Karolinska Institutet, Stockholm, Sweden
- Swedish Institute for Communicable Diseases, Solna, Sweden
| | - J Verner-Carlsson
- Swedish Institute for Communicable Diseases, Solna, Sweden
- Karolinska Institutet, Stockholm, Sweden
| | | | - L Forslund
- The National Veterinary Institute, Uppsala, Sweden
| | - R Feinstein
- The National Veterinary Institute, Uppsala, Sweden
| | | |
Collapse
|
22
|
Reusken C, Heyman P. Factors driving hantavirus emergence in Europe. Curr Opin Virol 2013; 3:92-9. [DOI: 10.1016/j.coviro.2013.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/03/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
|
23
|
Heyman P, Thoma BR, Marié JL, Cochez C, Essbauer SS. In Search for Factors that Drive Hantavirus Epidemics. Front Physiol 2012; 3:237. [PMID: 22934002 PMCID: PMC3429022 DOI: 10.3389/fphys.2012.00237] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/11/2012] [Indexed: 12/23/2022] Open
Abstract
In Europe, hantaviruses (Bunyaviridae) are small mammal-associated zoonotic and emerging pathogens that can cause hemorrhagic fever with renal syndrome (HFRS). Puumala virus, the main etiological agent carried by the bank vole Myodes glareolus is responsible for a mild form of HFRS while Dobrava virus induces less frequent but more severe cases of HFRS. Since 2000 in Europe, more than 3000 cases of HFRS have been recorded, in average, each year, which is nearly double compared to the previous decade. In addition to this upside long-term trend, significant oscillations occur. Epidemic years appear, usually every 2-4 years, with an increased incidence, generally in localized hot spots. Moreover, the virus has been identified in new areas in the recent years. A great number of surveys have been carried out in order to assess the prevalence of the infection in the reservoir host and to identify links with different biotic and abiotic factors. The factors that drive the infections are related to the density and diversity of bank vole populations, prevalence of infection in the reservoir host, viral excretion in the environment, survival of the virus outside its host, and human behavior, which affect the main transmission virus route through inhalation of infected rodent excreta. At the scale of a rodent population, the prevalence of the infection increases with the age of the individuals but also other parameters, such as sex and genetic variability, interfere. The contamination of the environment may be correlated to the number of newly infected rodents, which heavily excrete the virus. The interactions between these different parameters add to the complexity of the situation and explain the absence of reliable tools to predict epidemics. In this review, the factors that drive the epidemics of hantaviruses in Middle Europe are discussed through a panorama of the epidemiological situation in Belgium, France, and Germany.
Collapse
Affiliation(s)
- Paul Heyman
- Epidemiology and Biostatistics, Research Laboratory for Vector-Borne Diseases, Queen Astrid Military Hospital Brussels, Belgium
| | | | | | | | | |
Collapse
|
24
|
Plyusnina A, Heyman P, Baert K, Stuyck J, Cochez C, Plyusnin A. Genetic characterization of seoul hantavirus originated from norway rats (Rattus norvegicus) captured in Belgium. J Med Virol 2012; 84:1298-303. [DOI: 10.1002/jmv.23321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Goeijenbier M, Wagenaar J, Goris M, Martina B, Henttonen H, Vaheri A, Reusken C, Hartskeerl R, Osterhaus A, Van Gorp E. Rodent-borne hemorrhagic fevers: under-recognized, widely spread and preventable – epidemiology, diagnostics and treatment. Crit Rev Microbiol 2012; 39:26-42. [DOI: 10.3109/1040841x.2012.686481] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Blasdell K, Cosson JF, Chaval Y, Herbreteau V, Douangboupha B, Jittapalapong S, Lundqvist A, Hugot JP, Morand S, Buchy P. Rodent-borne hantaviruses in Cambodia, Lao PDR, and Thailand. ECOHEALTH 2011; 8:432-443. [PMID: 22124701 DOI: 10.1007/s10393-011-0725-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
In order to evaluate the circulation of hantaviruses present in southeast Asia, a large scale survey of small mammal species was carried out at seven main sites in the region (Cambodia, Lao People's Democratic Republic, and Thailand). Small scale opportunistic trapping was also performed at an eighth site (Cambodia). Using a standard IFA test, IgG antibodies reacting to Hantaan virus antigens were detected at six sites. Antibody prevalence at each site varied from 0 to 5.6% with antibodies detected in several rodent species (Bandicota indica, B. savilei, Maxomys surifer, Mus caroli, M. cookii, Rattus exulans, R. nitidius, R. norvegicus, and R. tanezumi). When site seroprevalence was compared with site species richness, seropositive animals were found more frequently at sites with lower species richness. In order to confirm which hantavirus species were present, a subset of samples was also subjected to RT-PCR. Hantaviral RNA was detected at a single site from each country. Sequencing confirmed the presence of two hantavirus species, Thailand and Seoul viruses, including one sample (from Lao PDR) representing a highly divergent strain of Seoul virus. This is the first molecular evidence of hantavirus in Lao PDR and the first reported L segment sequence data for Thailand virus.
Collapse
Affiliation(s)
- Kim Blasdell
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today. J Virol 2011; 86:972-81. [PMID: 22090114 DOI: 10.1128/jvi.00725-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the worldwide distribution, most of the known Seoul viruses (SEOV) are closely related to each other. In this study, the M and the S segment sequences of SEOV were recovered from 130 lung tissue samples (mostly of Norway rats) and from six patient serum samples by reverse transcription-PCR. Genetic analysis revealed that all sequences belong to SEOV and represent 136 novel strains. Phylogenetic analysis of all available M and S segment sequences of SEOV, including 136 novel Chinese strains, revealed four distinct groups. All non-Chinese SEOV strains and most of the Chinese variants fell into the phylogroup A, while the Chinese strains originating from mountainous areas clustered into three other distinct groups (B, C, and D). We estimated that phylogroup A viruses may have arisen only within the last several centuries. All non-Chinese variants appeared to be directly originated from China. Thus, phylogroup A viruses distributed worldwide may share a recent ancestor, whereas SEOV seems to be as diversified genetically as other hantaviruses. In addition, all available mitochondrial DNA (mtDNA) sequences of Norway rats, including our 44 newly recovered mtDNA sequences, were divided into two phylogenetic groups. The first group, which is associated with the group A SEOV variants, included most of rats from China and also all non-Chinese rats, while the second group consisted of a few rats originating only from mountain areas in China. We hypothesize that an ancestor of phylogroup A SEOV variants was first exported from China to Europe and then spread through the New World following the migration of Norway rats.
Collapse
|
28
|
Sanfeliu I, Nogueras MM, Gegúndez MI, Segura F, Lledó L, Font B, Saz JV. Seroepidemiological survey of hantavirus infection in healthy people in Vallès Occidental, Barcelona. Vector Borne Zoonotic Dis 2011; 11:697-700. [PMID: 21417923 DOI: 10.1089/vbz.2010.0165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Hantaviruses are the etiological agents of hemorrhagic fever with renal syndrome in Europe and Asia, and hantavirus pulmonary syndrome in America. Approximately 150,000 cases are reported annually worldwide. In Spain, some hantavirus infection cases have been described. Besides, rodents that have been described as hantavirus reservoirs are present. The aim of the present study was to determinate the seroprevalence of hantavirus in humans in the northeast of Spain. MATERIALS AND METHODS During a 5-month period, 217 serum samples were collected. The study population was stratified by age, gender, and residential area. Age, gender, residential area, contact with pets, contact with wild animals, contact with farm animals, and occupation were surveyed. Immunoglobulin G antibodies to Hantaan virus, Seoul virus, or Puumala virus were examined by immunofluorescence assay. Titles ≥1/32 against any of the hantavirus were considered positive. RESULTS Four (1.8%) positive samples were detected. Age ranged from 14 to 67 years. Two subjects were male. Three samples reacted to both Puumala virus and Hantaan virus. The other one reacted against all three hantavirus surveyed. Titles ranged from 32 to 1024. The highest titles were found against Seoul virus. CONCLUSIONS Our data show serological evidence about hantavirus infection among population of Catalonia, northeast of Spain. Seroprevalence rate was (around 2%) similar to other regions of Spain.
Collapse
Affiliation(s)
- Isabel Sanfeliu
- UDIAT Diagnostic Center, Corporació Sanitària Parc Taulí, Sabadell, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Olsson GE, Leirs H, Henttonen H. Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis 2010; 10:549-61. [PMID: 20795916 DOI: 10.1089/vbz.2009.0138] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Five hantaviruses are known to circulate among rodents in Europe, and at least two among insectivores. Four (Dobrava, Saaremaa, Seoul, and Puumala [PUUV] viruses) are clearly associated with hemorrhagic fever with renal syndrome (HFRS). PUUV, the most common etiological agent of HFRS in Europe, is carried by the bank vole (Myodes glareolus), one of the most widespread and abundant mammal species in Europe. This host-virus system is among hantaviruses also the most studied one in Europe. However, HFRS incidence varies throughout the continent. The spatial as well as temporal variation in the occurrence of HFRS is linked to geographic differences in the population dynamics of the reservoir rodents in different biomes of Europe. While rodent abundance may follow mast seeding events in many parts of temperate Europe, in northern (N) Europe multiannual cycles in population density exist as the result of the interaction between rodent populations and specialist predator populations in a delayed density-dependent manner. The spatial distribution of hantaviruses further depends on parameters such as forest patch size and connectivity of the most suitable rodent habitats, and the conditions for the survival of the virus outside the host, as well as historical distribution patterns (phylogeographies) of hosts and viruses. In multiannually fluctuating populations of rodents, with population increases of great amplitude, one should expect a simultaneous build-up of recently hantavirus-infected (shedding) rodents. The increasing number of infectious, virus-shedding rodents leads to a rapid transmission of hantavirus across the rodent population, and to humans. Our review discusses these aspects for PUUV, the only European hantavirus for which there is a reasonable, yet still far from complete, ecological continental-wide understanding. We discuss how this information could translate to other European hantavirus-host systems, and where the most important questions lie for further research.
Collapse
Affiliation(s)
- Gert E Olsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | | | | |
Collapse
|
30
|
Zhang YZ, Lin XD, Shi NF, Wang W, Liao XW, Guo WP, Fan FN, Huang XM, Li MH, Li MF, Chen Y, Chen XP, Wang SB, Fu ZF, Plyusnin A. Hantaviruses in small mammals and humans in the coastal region of Zhejiang Province, China. J Med Virol 2010; 82:987-95. [DOI: 10.1002/jmv.21737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Plyusnina A, Ferenczi E, Rácz GR, Nemirov K, Lundkvist Å, Vaheri A, Vapalahti O, Plyusnin A. Co-circulation of three pathogenic hantaviruses: Puumala, Dobrava, and Saaremaa in Hungary. J Med Virol 2009; 81:2045-52. [DOI: 10.1002/jmv.21635] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|