1
|
Li W, Yang M, Luo Y, Liu W, Wang Z, Ning Z. Effects of dietary rosemary ultrafine powder supplementation on aged hen health and productivity: a randomized controlled trial. Poult Sci 2024; 103:104133. [PMID: 39180778 PMCID: PMC11385426 DOI: 10.1016/j.psj.2024.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Recently, poultry industry has been seeking antibiotic residue-free poultry products and safe nutritious feed additives. Whether rosemary ultrafine powder (RUP) affects productive performance by regulating the intestinal microbiome of aged layers remains unclear. Here, we investigated the effects of dietary RUP supplementation on the production performance, egg quality, antioxidant capacity, intestinal microbial structure, and metabolome of aged hens. The results indicate that RUP had no significant effect on production performance but significantly enhanced Thick albumen height, Haugh unit, yolk color (P < 0.05), daily feed intake, and qualified egg rate. Serum content of non-esterified fatty acids, catalase, and glutathione peroxidase increased significantly (P < 0.05). Furthermore, the liver total protein content was significantly increased (P < 0.05). 16S rRNA sequence analysis revealed that RUP significantly impacted both α- and β-diversity of the caecum microbiota. Linear discriminant analysis of effect size and random forest identified Bacteroides, Muribaculum, Butyricimonas, Odoribacter, and Prevotella as biomarkers in groups A and B. In comparing groups A and C, Barnesiella, Turicibacter, and Acholeplasma were critical bacteria, while comparing groups A and D highlighted Barnesiella and Candidatus Saccharimonas as differential bacteria. FAPROTAX analysis of the caecum microbiota revealed that the functional genes associated with harmful substance biodegradation were significantly increased in the RUP-fed group. Based on Spearman correlation analysis, alterations in microbial genera were associated with divergent metabolites. In summary, dietary RUP can improve egg quality and antioxidant capacity and regulate the intestinal microbiome and metabolome in aged breeders. Therefore, RUP can potentially be used as a feed additive to extend breeder service life at an appropriate level of 1.0 g/kg.
Collapse
Affiliation(s)
- Wen Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meixue Yang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- Zhuozhou Mufeng Poultry Company Limited, Zhuozhou 072750, China
| | - Zhong Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Moniem HA, Yusuf MS, Fathy A, Chen GH. The study of the strength and significance of four biological parameters on the body weight of goose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56641-56653. [PMID: 36920605 PMCID: PMC10015144 DOI: 10.1007/s11356-023-26109-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Alternative products such as those from high-value protien animals have increased the demand for the production of high-quality chicken meat in past few years. This study examines the impact of two distinct feeding types on goose body-weight, as well as the genetic variation of growth hormone (GH) and pituitary-specific transcription factor (Pit-1) genes in ten goose populations using single nucleotide polymorphism (SNP) markers and PCR-RFLP analysis. Both genes were seen as very important for productivity, especially in light of the COVID-19 and its effect on poultry industry at the time. The findings suggest that employing genetic indicators in these two genes in conjunction with a high-fat diet may be a feasible strategy for goose selection programme aiming to increase marketing body weight, as the high-fat diet outperformed the balanced diet. The study investigates the effect of gender, 2 types of diets, breeds and the genetic variation of the two genes, four SNPs were reported to be found: two at the GH gene exons C123T and C158T, and two at the Pit-1 gene exons G161A and T282G. Certain genotypes were found to have a substantial effect on the marketing body-weight of goose, which varied depending on the tested breeds. However, in terms of gender, males report higher and better performance levels than females. Diet, breeds and genotype interaction, and breeds, gender and genotype interaction were found to have a minor effect on goose body weight. However, diet, breeds, gender, SNP locus, diet and breeds interaction, and breeds and gender interaction were found to have a significant effect on goose body weight, as indicated by the effect size results.
Collapse
Affiliation(s)
- Hebatallah Abdel Moniem
- Faculty of Veterinary Medicine, Animal Wealth Development Department, Suez Canal University, Ismailia, 41522, Egypt.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Mohamed Sayed Yusuf
- Faculty of Veterinary Medicine, Nutrition and Clinical Nutrition Department, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed Fathy
- Department of Animal Wealth Development, Biostatistics Division, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Guo-Hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
3
|
Alagawany M, Bilal RM, Elnesr SS, Elwan HAM, Farag MR, Dhama K, Naiel MAE. Yeast in layer diets: its effect on production, health, egg composition and economics. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2164235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Rana Muhammad Bilal
- College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, Miniya, Egypt
| | - Mayada R. Farag
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mohammed A. E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, El-Shall NA, Saad AM, Salem HM, El-Tahan AM, Khafaga AF, Taha AE, AbuQamar SF, El-Tarabily KA. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult Sci 2022; 101:101590. [PMID: 34953377 PMCID: PMC8715378 DOI: 10.1016/j.psj.2021.101590] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In line with the substantial increase in the broiler industry worldwide, Clostridium perfringens-induced necrotic enteritis (NE) became a continuous challenge leading to high economic losses, especially after banning antimicrobial growth promoters in feeds by many countries. The disease is distributed worldwide in either clinical or subclinical form, causing a reduction in body weight or body weight gain and the feed conversion ratio, impairing the European Broiler Index or European Production Efficiency Factor. There are several predisposing factors in the development of NE. Clinical signs varied from inapparent signs in case of subclinical infection (clostridiosis) to obvious enteric signs (morbidity), followed by an increase in mortality level (clostridiosis or clinical infection). Clinical and laboratory diagnoses are based on case history, clinical signs, gross and histopathological lesions, pathogenic agent identification, serological testing, and molecular identification. Drinking water treatment is the most common route for the administration of several antibiotics, such as penicillin, bacitracin, and lincomycin. Strict hygienic management practices in the farm, careful selection of feed ingredients for ration formulation, and use of alternative antibiotic feed additives are all important in maintaining broiler efficiency and help increase the profitability of broiler production. The current review highlights NE caused by C. perfringens and explains the advances in the understanding of C. perfringens virulence factors involved in the pathogenesis of NE with special emphasis on the use of available antibiotic alternatives such as herbal extracts and essential oils as well as vaccines for the control and prevention of NE in broiler chickens.
Collapse
|
5
|
Seidavi A, Tavakoli M, Asroosh F, Scanes CG, Abd El-Hack ME, Naiel MAE, Taha AE, Aleya L, El-Tarabily KA, Swelum AA. Antioxidant and antimicrobial activities of phytonutrients as antibiotic substitutes in poultry feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5006-5031. [PMID: 34811612 DOI: 10.1007/s11356-021-17401-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Globally, there is increasing demand for safe poultry food products free from antibiotic residues. There is thus a need to develop alternatives to antibiotics with safe nutritional feed derivatives that maximize performance, promote the intestinal immune status, enrich beneficial microbiota, promote health, and reduce the adverse effects of pathogenic infectious microorganisms. With the move away from including antibiotics in poultry diets, botanicals are among the most important alternatives to antibiotics. Some botanicals such as fennel, garlic, oregano, mint, and rosemary have been reported to increase the poultry's growth rate and/or feed to gain ratio. Botanicals' role is assumed to be mediated by improved immune responses and/or shifts in the microbial population in the intestine, with the elimination of pathogenic species. In addition, modulation of the gut microbiota resulted in various physiological and immunological responses and promoted beneficial bacterial strains that led to a healthy gut. There is thus a need to understand the relationship between poultry diets supplemented with botanicals and good health of the entire gastrointestinal tract if we intend to use these natural products to promote general health status and production. This current review provides an overview of current knowledge about certain botanicals that improve poultry productivity by modulating intestinal health and reducing the negative impacts of numerous pathogenic bacteria. This review also describes the efficacy, negative effects, and modes of action of some common herbal plants applied in poultry as alternatives to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Masoomeh Tavakoli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fariborz Asroosh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Colin G Scanes
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|