1
|
Elkhaiat IA, El-Kassas S, Abdo SE, El-Naggar K, Shalaby HK, Nofal RY, Farag MR, Azzam MM, Lestingi A. Leverage of lysozyme dietary supplementation on gut health, hematological, antioxidant, and immune parameters in different plumage-colors Japanese quails. Poult Sci 2024; 104:104474. [PMID: 39571202 PMCID: PMC11617721 DOI: 10.1016/j.psj.2024.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/08/2024] Open
Abstract
The current study was conducted on two different feather-colored Japanese quail varieties (brown and white) to examine the impact of lysozyme (LZ) dietary supplementation on growth performance, hematological profile, serum lysozyme, phagocytic and antioxidant activities, along with the gut status and the relative expression of some antioxidant- and immune-related genes. Two forms of LZ; extracted from egg white (natural LZ (NLZ)), and the commercial LZ (CLZ) were included in this experiment. For each quail variety, 240 birds were randomly allocated into four groups with four replicates per group. The first group (control) ate the basal diet (BD) only. The other groups ate the BD supplemented with commercial lysozyme (CLZ, at 100 mg/kg diet), NLZ at 100 (NLZ1) and 200 (NLZ2) mg/kg diet. Different LZ treatments differentially modulated the quail's growth performance with significant increases in the final body weight of white-feathered quails fed the NLZ1 compared to other treatments. The NLZ2 and CLZ noticeably increased the total antioxidant activity (TA) in the white- and brown-feathered quails, respectively. Also, all LZ groups displayed distinct increases in the serum lysozyme and phagocytic activities. For gut status, both varieties exhibited increases in intestinal villi length and goblet cell count with significant reductions in the total lactobacillus, total coliform, and total bacterial counts. These effects were linked with marked modulations of SOD, CAT, GPX, andIL-1βgene expression levels in both quail varieties. Therefore, the LZ could differentially impact quail growth, immune and antioxidant status as well as gut health.
Collapse
Affiliation(s)
- Ibrahim A Elkhaiat
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Haitham K Shalaby
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| | - Reyad Y Nofal
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km 3, 70010, Valenzano, BA, Italy
| |
Collapse
|
2
|
Shehata AM, Seddek NH, Khamis T, Elnesr SS, Nouri HR, Albasri HM, Paswan VK. In-ovo injection of Bacillus subtilis, raffinose, and their combinations enhances hatchability, gut health, nutrient transport- and intestinal function-related genes, and early development of broiler chicks. Poult Sci 2024; 103:104134. [PMID: 39154607 PMCID: PMC11471093 DOI: 10.1016/j.psj.2024.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
An experiment was conducted to assess the response of chicks to in-ovo injection of Bacillus subtilis (probiotic), raffinose (prebiotic), and their combinations. The study used 1,500 embryonated eggs allotted to 10 groups/ 6 replicates (150 eggs/group). The experimental treatments were: 1) un-injected control (NC); 2) sham (sterile distilled water) (PC); 3) probiotic 4 × 105CFU/egg (LBS); 4) probiotic 4 × 106CFU/egg (HBS); 5) prebiotic 2 mg/egg (LR); (6 prebiotic 3 mg/egg (HR); 7) probiotic 4 × 105CFU + prebiotic 2 mg/egg (LBS+LR); 8) probiotic 4 × 105CFU + prebiotic 3 mg/egg (LBS+HR); 9) probiotic 4 × 106CFU + prebiotic 2 mg/egg (HBS+LR); and 10) probiotic 4 × 106CFU + prebiotic 3 mg/egg (HBS+HR). Results showed that in-ovo inclusion of Bacillus subtilis, prebiotic, and their combinations improved hatchability, yolk-free chick weight, and chick weight compared to the control group. Moreover, the in-ovo treatment reduced residual yolk weight on the day of hatch compared to the control group. Different levels of in-ovo B. subtilis alone or combined with raffinose significantly (P ≤ 0.001) reduced total bacterial count and total yeast and mold count compared to the negative control group. Total coliform and E. coli decreased significantly (P ≤ 0.001) in groups treated with probiotics, prebiotics, and synbiotics with different doses during incubation compared to those in the control. Clostridium spp. was not detected in the groups injected with B. subtilis alone or combined with raffinose. In-ovo probiotics and synbiotics (LBS+LR & LBS+HR) significantly (P ≤ 0.001) increased ileal villus length compared to other groups. In-ovo treatment increased mRNA expression of JAM-2 compared to the control group. The fold change significantly increased in group LBS+HR for genes MUC-2, OCLN, VEGF, SGLT-1, and EAAT-3 compared to the negative control. In conclusion, in-ovo injection of a low dose of B. subtilis plus a high or low dose of raffinose can positively affect hatching traits, cecal microbial populations, intestinal histomorphometry, nutrient transport- and intestinal function-related genes, and chick quality of newly hatched broiler chicks.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
| | - Nermien Helmy Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hela Rached Nouri
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Fikri F, Purnomo A, Chhetri S, Purnama MTE, Çalışkan H. Effects of black soldier fly ( Hermetia illucens) larvae meal on production performance, egg quality, and physiological properties in laying hens: A meta-analysis. Vet World 2024; 17:1904-1913. [PMID: 39328432 PMCID: PMC11422650 DOI: 10.14202/vetworld.2024.1904-1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim The primary components of fat and protein in chicken diets are fishmeal and soybean; however, due to limited supply and high costs, several efforts have been made to utilize alternative feedstuffs. The potential of black soldier fly larvae (BSFL) as a substitute for fat and protein has been extensively studied, but the findings are not consistent. This study used a meta-analysis approach to investigate the integrated efficacy of BSFL supplementation on laying hen production performance, egg quality, and physiological properties. Materials and Methods The articles were retrieved from PubMed, Scopus, ScienceDirect, Cochrane Library, and ProQuest. The retrieved references were examined for potential inclusion. The relevant findings of the included studies were then extracted. Fixed-effects, standard mean difference, 95% confidence intervals, and heterogeneity models were analyzed using the Review Manager website version (Cochrane Collaboration, UK). Results A total of 24 papers from 17 different nations across five continents have been selected for meta-analysis out of the 3621 articles that were reviewed. The current meta-analysis demonstrated that providing BSFL meals significantly favored feed efficiency, haugh units, albumen quality, eggshell quality, serum glucose, and lipid levels. In addition, significant trends in alanine transaminase, alkaline phosphatase, magnesium, phosphorus, chlorine, and iron levels were observed in blood urea nitrogen, uric acid, creatinine, lactate dehydrogenase, creatine kinase, glutathione peroxidase, and malondialdehyde. On the other hand, it was revealed that there was no favorable effect on weight gain, laying, yolk quality, and hematological profile. Conclusion The meta-analysis confirmed that BSFL meals can be utilized to optimize feed efficiency, haugh units, albumen, eggshell quality, liver, renal, and cellular physiology of laying hens, although they did not significantly increase body weight gain, laying production, and hematological profiles.
Collapse
Affiliation(s)
- Faisal Fikri
- Division of Veterinary Medicine, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Agus Purnomo
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, Bhutan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Medicine, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
- Department of Biology, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye
| | - Hakan Çalışkan
- Department of Biology, Faculty of Science, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye
| |
Collapse
|
4
|
Lan R, Wu F, Wang Y, Lin Z, Wang H, Zhang J, Zhao Z. Chitosan oligosaccharide improves intestinal function by promoting intestinal development, alleviating intestinal inflammatory response, and enhancing antioxidant capacity in broilers aged d 1 to 14. Poult Sci 2024; 103:103381. [PMID: 38157786 PMCID: PMC10790092 DOI: 10.1016/j.psj.2023.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
This study was conducted to investigate the effects of chitosan oligosaccharide (COS) supplementation on intestinal development and functions, inflammatory response, antioxidant capacity and the related signaling pathways in broilers aged d 1 to 14. A total of 240 one-day old male Arbor Acres broilers (40.47 ± 0.30 g) were randomly allotted to 4 groups, and each group consisted of 6 replicate pens with 10 broilers per replicate. Broilers fed a basal diet supplementation with COS at 0 (CON group), 200 (COS200 group), 400 (COS400 group), and 800 mg/kg (COS800 group) for 14 d, respectively. Broilers in the COS supplementation groups had no significant effects on growth performance. Compared to the CON group, dietary COS supplementation increased (P < 0.05) the relative weight of duodenum, jejunal lipase activity, duodenal and ileal villus surface area, and lower (P < 0.05) ileal amylase and alkaline phosphatase activity, and crypt depth. The expression level of duodenal glucose transporter 1 (GLUT1), Na+-glucose cotransporter 1 (SGLT1), peptide transporter 1 (PepT1), occludin, zonula occludens-1 (ZO-1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and interleukin-10 (IL-10), jejunal SGLT1, PepT1, occludin, tumor necrosis factor-α (TNF-α), and ileal SGLT1, PepT1, and fatty acid binding protein 1 (FABP1) was upregulated by COS. However, the expression level of duodenal FABP1 and TNF-α, jejunal GLUT1, ZO-1, TLR4, MyD88, nuclear factor kappa-B p65 (NF-κB p65), and IL-1β, and ileal GLUT1, NF-κB p65, and IL-1β was downregulated by COS. Furthermore, dietary COS supplementation increased duodenal catalase (CAT), glutathione peroxidase (GSH-Px), and total superoxide dismutase (T-SOD) activity, jejunal CAT and T-SOD activity, upregulated the expression level of duodenal nuclear factor-erythroid 2-related factor 2 (Nrf2), CAT, glutathione peroxidase 1 (GPX1), and copper and zinc superoxide dismutase (Cu/Zn SOD), jejunal CAT, and ileal Nrf2, CAT, and GPX1. These results suggested that COS could promote intestinal development and functions in broilers aged d 1 to 14, which might be mediated by alleviating intestinal inflammatory response and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Fan Wu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Yuchen Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Ziwei Lin
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Haoxuan Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Jia Zhang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Zhihui Zhao
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China.
| |
Collapse
|
5
|
Kreling V, Falcone FH, Herrmann F, Kemper L, Amiteye D, Cord-Landwehr S, Kehrenberg C, Moerschbacher BM, Hensel A. High molecular/low acetylated chitosans reduce adhesion of Campylobacter jejuni to host cells by blocking JlpA. Appl Microbiol Biotechnol 2024; 108:171. [PMID: 38265503 PMCID: PMC10810038 DOI: 10.1007/s00253-024-13000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
Infections caused by Campylobacter spp. are a major cause of severe enteritis worldwide. Multifactorial prevention strategies are necessary to reduce the prevalence of Campylobacter. In particular, antiadhesive strategies with specific inhibitors of early host-pathogen interaction are promising approaches to reduce the bacterial load. An in vitro flow cytometric adhesion assay was established to study the influence of carbohydrates on the adhesion of C. jejuni to Caco-2 cells. Chitosans with a high degree of polymerization and low degree of acetylation were identified as potent antiadhesive compounds, exerting significant reduction of C. jejuni adhesion to Caco-2 cells at non-toxic concentrations. Antiadhesive and also anti-invasive effects were verified by confocal laser scanning microscopy. For target identification, C. jejuni adhesins FlpA and JlpA were expressed in Escherichia coli ArcticExpress, and the influence of chitosan on binding to fibronectin and HSP90α, respectively, was investigated. While no effects on FlpA binding were found, a strong inhibition of JlpA-HSP90α binding was observed. To simulate real-life conditions, chicken meat was inoculated with C. jejuni, treated with antiadhesive chitosan, and the bacterial load was quantified. A strong reduction of C. jejuni load was observed. Atomic force microscopy revealed morphological changes of C. jejuni after 2 h of chitosan treatment, indicating disturbance of the cell wall and sacculi formation by electrostatic interaction of positively charged chitosan with the negatively charged cell surface. In conclusion, our data indicate promising antiadhesive and anti-invasive potential of high molecular weight, strongly de-acetylated chitosans for reducing C. jejuni load in livestock and food production. KEY POINTS: • Antiadhesive effects of chitosan with high DP/low DA against C. jejuni to host cells • Specific targeting of JlpA/Hsp90α interaction by chitosan • Meat treatment with chitosan reduces C. jejuni load.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, Justus Liebig University Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Fabian Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Daniel Amiteye
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Stefan Cord-Landwehr
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Straße 92, 35392, Giessen, Germany
| | - Bruno M Moerschbacher
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
6
|
Mohan K, Rajan DK, Ganesan AR, Divya D, Johansen J, Zhang S. Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. Int J Biol Macromol 2023; 251:126285. [PMID: 37582433 DOI: 10.1016/j.ijbiomac.2023.126285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
7
|
Lan R, Luo H, Wu F, Wang Y, Zhao Z. Chitosan Oligosaccharides Alleviate Heat-Stress-Induced Lipid Metabolism Disorders by Suppressing the Oxidative Stress and Inflammatory Response in the Liver of Broilers. Antioxidants (Basel) 2023; 12:1497. [PMID: 37627493 PMCID: PMC10451627 DOI: 10.3390/antiox12081497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress has been reported to induce hepatic oxidative stress and alter lipid metabolism and fat deposition in broilers. Chitosan oligosaccharides (COSs), a natural oligosaccharide, has anti-oxidant, anti-inflammatory, and lipid-lowering effects. This study is conducted to evaluate dietary COS supplementation on hepatic anti-oxidant capacity, inflammatory response, and lipid metabolism in heat-stressed broilers. The results indicate that heat-stress-induced poor (p < 0.05) growth performance and higher (p < 0.05) abdominal adiposity are alleviated by COS supplementation. Heat stress increases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it decreases (p < 0.05) serum SOD and CAT activity, liver GSH-Px and SOD activity, and the expression of hepatic Nrf2, GPX1, IL-10, MTTP, PPARα, and CPT1. Nevertheless, COS supplementation decreases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it increases (p < 0.05) serum SOD and CAT activity, liver GSH-Px activity, and the expression of hepatic Nrf2, CAT, IL-10, LPL, MTTP, PPARα, and CPT1. In conclusion, COS could alleviate heat-stress-induced lipid metabolism disorders by enhancing hepatic anti-oxidant and anti-inflammatory capacity.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (H.L.); (F.W.); (Y.W.)
| |
Collapse
|
8
|
Abdel-Moneim AME, Shehata AM, Paswan VK. Editorial: Early life programming in poultry: Recent insights and interventional approaches. Front Vet Sci 2023; 9:1105653. [PMID: 36686180 PMCID: PMC9850156 DOI: 10.3389/fvets.2022.1105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Department of Biological Applications, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt,*Correspondence: Abdel-Moneim Eid Abdel-Moneim ✉
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Shehata AM, Paswan VK, Attia YA, Abougabal MS, Khamis T, Alqosaibi AI, Alnamshan MM, Elmazoudy R, Abaza MA, Salama EAA, El-Saadony MT, Saad AM, Abdel-Moneim AME. In ovo Inoculation of Bacillus subtilis and Raffinose Affects Growth Performance, Cecal Microbiota, Volatile Fatty Acid, Ileal Morphology and Gene Expression, and Sustainability of Broiler Chickens ( Gallus gallus). Front Nutr 2022; 9:903847. [PMID: 35711554 PMCID: PMC9194610 DOI: 10.3389/fnut.2022.903847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Banning antibiotic growth promoters has negatively impacted poultry production and sustainability, which led to exploring efficient alternatives such as probiotics, probiotics, and synbiotics. Effect of in ovo injection of Bacillus subtilis, raffinose, and their synbiotics on growth performance, cecal microbial population and volatile fatty acid concentration, ileal histomorphology, and ileal gene expression was investigated in broilers (Gallus gallus) raised for 21 days. On 300 h of incubation, a total of 1,500 embryonated eggs were equally allotted into 10 groups. The first was non-injected (NC) and the remaining in ovo injected with sterile distilled water (PC), B. subtilis 4 × 105 and 4 × 106 CFU (BS1 and BS2), Raffinose 2 and 3 mg (R1 and R2), B. subtilis 4 × 105 CFU + raffinose 2 mg (BS1R1), B. subtilis 4 × 105 CFU + raffinose 3 mg (BS1R2), B. subtilis 4 × 106 CFU + raffinose 2 mg (BS2R1), and B. subtilis 4 × 106 CFU + raffinose 3 mg (BS2R2). At hatch, 60 chicks from each group were randomly chosen, divided into groups of 6 replicates (10 birds/replicate), and fed with a corn–soybean-based diet. In ovo inoculation of B. subtilis and raffinose alone or combinations significantly improved body weight, feed intake, and feed conversion ratio of 21-day-old broilers compared to NC. Cecal concentrations of butyric, pentanoic, propionic, and isobutyric acids were significantly elevated in R1, R2, BS2R1, and BS2R2, whereas isovaleric and acetic acids were significantly increased in R1 and BS2R1 compared to NC. Cecal microbial population was significantly altered in treated groups. Ileal villus height was increased (p < 0.001) in BS1, R2, and BS2R2 compared to NC. The mRNA expression of mucin-2 was upregulated (p < 0.05) in synbiotic groups except for BS1R1. Vascular endothelial growth factor (VEGF) expression was increased (p < 0.05) in BS2, R1, BS1R1, and BS1R2 compared to NC. SGLT-1 expression was upregulated (p < 0.05) in all treated birds except those of R1 group compared to NC. The mRNA expressions of interleukin (IL)-2 and toll-like receptor (TLR)-4 were downregulated (p < 0.05) in BS2 and R1 for IL-2 and BS1R1 and BS2R2 for TLR-4. It was concluded that in ovo B. subtilis, raffinose, and synbiotics positively affected growth performance, cecal microbiota, gut health, immune responses, and thus the sustainability of production in 21-day-old broilers.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.,Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Youssef A Attia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.,Sustainable Agriculture Research Group, Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Sh Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany I Alqosaibi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashael M Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A Abaza
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Ehab A A Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|