1
|
Duan Q, Li R, Wang M, Cui Z, Zhu X, Chen F, Han F, Ma J. Exploring the anti-NSCLC mechanism of phillyrin targeting inhibition of the HSP90-AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03481-1. [PMID: 39356318 DOI: 10.1007/s00210-024-03481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
Phillyrin (PHN), derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a kind of Chinese herbal medicine with the effect of clearing heat, and has been used in China for thousands of years in treating various tumors. However, the mechanism of its main components on non-small cell lung cancer (NSCLC) remains unclear. PHN is a distinct component extracted from Forsythia suspensa with promising anti-cancer activity against various tumor types. This study sought to elucidate the promising effects of PHN on NSCLC. Based on network pharmacology results, we identified potential PHN targets and pathways for NSCLC treatment. CCK-8 assay, wound healing assay, apoptosis assay, western blot, and in vivo experiments verified the inhibitory effect of PHN on NSCLC. Network pharmacology identified 160 potential PHN targets, 955 NSCLC-related targets, and 54 common targets, along with 132 pathways and 2 core genes. Biological experiments demonstrated that PHN significantly inhibited the growth and migration of A549 and LLC cells while promoting their apoptosis. Western blot analysis revealed down-regulation of AKT, HSP90AA1, and CDC37 expression, suggesting that PHN inhibits A549 and LLC cell proliferation by down-regulating the HSP90-AKT pathway. In vivo experiments confirmed that PHN significantly inhibited NSCLC growth with low toxicity. This study, using network pharmacology and biological experiments, verified the effectiveness of PHN against NSCLC through the HSP90-AKT pathway. These findings provide a foundation for further research and analysis.
Collapse
Affiliation(s)
- Qiong Duan
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Ruochen Li
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Mingxiao Wang
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Zhenting Cui
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Xia Zhu
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Fanghong Chen
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Feng Han
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| | - Jianxin Ma
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| |
Collapse
|
2
|
Li JJ, Chen ZH, Liu CJ, Kang YS, Tu XP, Liang H, Shi W, Zhang FX. The phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity of Forsythiae Fructus: An updated systematic review. PHYTOCHEMISTRY 2024; 222:114096. [PMID: 38641141 DOI: 10.1016/j.phytochem.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.
Collapse
Affiliation(s)
- Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yu-Shuo Kang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Xin-Pu Tu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Bjørklund G, Lysiuk R, Semenova Y, Lenchyk L, Dub N, Doşa MD, Hangan T. Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines. Curr Med Chem 2024; 31:393-409. [PMID: 36698239 DOI: 10.2174/0929867330666230125121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023]
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University , Astana, Kazakhstan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
4
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Chen G, Mao Y, Wang J, Zhou J, Diao L, Wang S, Zhao W, Zhu X, Yu X, Zhao F, Liu X, Liu M. Phillyrin ameliorated collagen-induced arthritis through inhibition of NF-κB and MAPKs pathways in fibroblast-like synoviocytes. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
6
|
Zhang J, Gai J, Ma H, Tang J, Yang C, Zu G. Understanding the molecular mechanism of Ginkgo Folium-Forsythiae Fructus for cerebral atherosclerosis treatment using network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e32823. [PMID: 36800633 PMCID: PMC9936039 DOI: 10.1097/md.0000000000032823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Cerebral atherosclerosis (CA) is a chronic disease caused by multiple infarcts and atrophy causing nerve degenerative syndrome. Ginkgo Folium (GF) and Forsythiae Fructus (FF) have shown positive effects on vascular protection, but their relationship with CA is unclear. This study aimed to identify the potential CA targets and mechanisms of action of GF-FF, using network pharmacology. OBJECTIVE This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of GF-FF on CA. METHODS Using the traditional Chinese medicine systems pharmacology database and analysis platform, components were screened and corresponding targets were predicted using boundary values and Swiss Target Prediction. Using Cytoscape 3.8.0, a network was established between GF-FF components and CA targets. We extracted disease genes and constructed a network of targets based on the protein-protein interaction networks functional enrichment analysis database. Using Metascape, the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes of the enriched targets were determined. AutoDock Vina was used to perform molecular docking. RESULTS Twenty-three active ingredients of GF-FF were confirmed to treat CA, covering 109 targets, of which 48 were CA-related. Luteolin, bicuculline, sesamin, kaempferol, quercetin, and ginkgolide B were the vital active compounds, and EGFR, CYP2E1, CREB1, CYP19A1, PTGS2, PPARG, PPARA, ESR1, MMP9, MAPK14, MAPK8, and PLG were the major targets. The molecular docking showed that these compounds and targets exhibited good intercalation. These 48 protein targets produced effects on CA by modulating pathways such as "apoptosis-multiple species," "IL-17 signaling pathway," and "relaxin signaling pathway." CONCLUSIONS As predicted by network pharmacology, GF-FF exerts anti-tumor effects through multiple components and targets for treatment of CA, providing new clinical ideas for CA treatment.
Collapse
Affiliation(s)
- Jinfei Zhang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialin Gai
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hengqin Ma
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiqin Tang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuntao Yang
- Hospital Management Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoxiu Zu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Zhang Y, Xie W, Liu J, Zhang Z, Jin Y. Effects of Vindoline on rat cytochrome P450 isoforms activities in vitro. Biomed Chromatogr 2022; 36:e5409. [PMID: 35562325 DOI: 10.1002/bmc.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022]
Abstract
A specific ultra-high performance liquid chromatography/quadrupole time-of-flightmass spectrometry (UHPLC-Q-TOF-MS/MS) method has been described for the simultaneous determination of the metabolites of tacrine, bupropion, diclofenac, dextromethorphan and midazolam, which are the five probe drugs of the five cytochrome P450 (CYP450) isoforms CYP1A2, CYP2B, CYP2C11, CYP2D1 and CYP3A4. The inhibition degree is determined by calculating IC50. The chromatographic separation was performed on a C18 column with a mobile phase consisted of 0.1% formic acid and acetonitrile. The mass spectrometric analysis was conducted in a positive electrospray ionization mode. IC50 values of CYP1A2, CYP2B, CYP2C11, CYP2D1 and CYP3A were 113.4 μmol·L-1 , 83.78 μmol·L-1 , 22.50 μmol·L-1 , 9.081 μmol·L-1 and 52.76 μmol·L-1 , respectively. The in vitro results demonstrated that vindoline could inhibit CYP2D1 activity in rats, and weak inhibitory effect on CYP2C11 and CYP3A, but had no obvious effects on CYP1A2 and CYP2B.
Collapse
Affiliation(s)
- Yuqian Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Weiwei Xie
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Jian Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Zhiqing Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Yiran Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
8
|
The neuroprotective effect of phillyrin in intracerebral hemorrhagic mice is produced by activation of the Nrf2 signaling pathway. Eur J Pharmacol 2021; 909:174439. [PMID: 34425100 DOI: 10.1016/j.ejphar.2021.174439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Phillyrin, a natural plant extract, has significant antioxidant and anti-apoptotic effects. However, its effect on intracerebral hemorrhage (ICH) remains unclear. In this study, we investigated a potential role for phillyrin in the regulation of the oxidative stress and apoptosis induced by ICH. A model of ICH was induced by collagenase IV (0.2 U in 1 μl sterile normal saline) in male C57BL/6J (B6) mice and different doses of phillyrin (5, 15, or 30 mg/kg) were intraperitoneally (i.p.) injected at 30 min, 6 h, and 22 h after modeling. We found that phillyrin significantly reduced neural function and lesion volume, improved injury of white and grey matter around the lesion, decreased apoptosis and oxidative stress, increased the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1), NADPH quinone oxidoreductase 1 (NQO1) and Superoxide Dismutase-1(SOD-1) in vitro and in vivo, and protected neurons from the stimulation of hemin by promoting Nrf2 nuclear translocation. Treatment with ML385 (Nrf2 inhibitor) completely reversed the protective effects of phillyrin in vivo after ICH injury. Based on our findings, we conclude that phillyrin treatment alleviates ICH injury-induced apoptosis and oxidative stress via activation of the Nrf2 signaling pathway, highlighting a potential role for phillyrin as an ICH therapeutic.
Collapse
|
9
|
A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 2021; 169:105690. [PMID: 34029711 DOI: 10.1016/j.phrs.2021.105690] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Forsythiae Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a widely used Chinese medicinal herb in clinic for its extensive pharmacological activities. Forsythiaside A is the main active index component isolated from Forsythiae Fructus and possesses prominent bioactivities. Modern pharmacological studies have confirmed that Forsythiaside A exhibits significant activities in treating various diseases, including inflammation, virus infection, neurodegeneration, oxidative stress, liver injury, and bacterial infection. In this review, the pharmacological activities of Forsythiaside A have been comprehensively reviewed and summarized. According to the data, Forsythiaside A shows remarkable anti-inflammation, antivirus, neuroprotection, antioxidant, hepatoprotection, and antibacterial activities through regulating multiple signaling transduction pathways such as NF-κB, MAPK, JAK/STAT, Nrf2, RLRs, TRAF, TLR7, and ER stress. In addition, the toxicity and pharmacokinetic properties of Forsythiaside A are also discussed in this review, thus providing a solid foundation and evidence for further studies to explore novel effective drugs from Chinese medicine monomers.
Collapse
|
10
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
11
|
Zhang D, Qi B, Li D, Feng J, Huang X, Ma X, Huang L, Wang X, Liu X. Phillyrin Relieves Lipopolysaccharide-Induced AKI by Protecting Against Glycocalyx Damage and Inhibiting Inflammatory Responses. Inflammation 2021; 43:540-551. [PMID: 31832909 PMCID: PMC7095384 DOI: 10.1007/s10753-019-01136-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Damage to the integrity of heparin sulfate (HS) in the endothelial glycocalyx is an important factor of glomerular filtration barrier dysfunction, which is the basic pathological feature of acute kidney injury (AKI). AKI is a common clinical critical illness with few drugs options offering effective treatment. Phillyrin (Phil), the main pharmacological component of Forsythia suspensa, possesses a wide range of pharmacological activities. However, the effects of Phil on lipopolysaccharide (LPS)-induced AKI have yet to be reported. The aim of the present study is to analyze the effects of Phil on HS damage and inflammatory signaling pathways in LPS-induced AKI. Results revealed that Phil reduces pathological changes and improves renal function in LPS-induced AKI. Further analysis indicated that Phil effectively protects against glycocalyx HS degradation in LPS-stimulated EA.hy926 cells in vitro and LPS-induced AKI mice in vivo. The protective effect of Phil on HS damage may be associated with the isolate's ability to suppress the production of reactive oxygen species, and decrease expression levels of cathepsin L and heparanase in vitro and in vivo. In addition, ELISA and Western blot results revealed that Phil inhibits the activation of the NF-κB and MAPK signaling pathways and decreases the levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-induced ARDS mice. In general, protection against endothelial glycocalyx HS damage and inhibition of inflammatory responses by Phil may be used as treatment targets for LPS-induced AKI.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Boyang Qi
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Dongxiao Li
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Jiali Feng
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiao Huang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiaohong Ma
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| | - Xiaozhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
12
|
Yang P, He F, Tan M, Zhong F, Liao X, Li Y, Deng H, Mo X. Marked decrease of tacrolimus blood concentration caused by compound Chinese herbal granules in a patient with refractory nephrotic syndrome. J Clin Pharm Ther 2020; 46:215-218. [PMID: 32930420 DOI: 10.1111/jcpt.13256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE The blood concentration of tacrolimus can be affected by co-administrated drugs. The objective is to draw more attention to herb-drug interactions in China, where herbal medicines are commonly used. CASE DESCRIPTION The blood concentration of tacrolimus in a girl with refractory nephrotic syndrome decreased nearly a half despite no change in dose. Nebulizer therapy, cyclophosphamide and a compound Chinese herbal medicine were the only additional treatments than usual. WHAT IS NEW AND CONCLUSION The most possible cause of the decrease in tacrolimus concentration was the administration of Radix Astragali among compound Chinese herbal medicine granules.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan He
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mei Tan
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fazhan Zhong
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Liao
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Li
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui Deng
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Mo
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Comprehensive Screening and Identification of Phillyrin Metabolites in Rats Based on UHPLC-Q-Exactive Mass Spectrometry Combined with Multi-Channel Data Mining. Int J Anal Chem 2020; 2020:8274193. [PMID: 32670374 PMCID: PMC7333037 DOI: 10.1155/2020/8274193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Phillyrin, a well-known bisepoxylignan, has been shown to have many critical pharmacological activities. In this study, a novel strategy for the extensive acquisition and use of data was established based on UHPLC-Q-Exactive mass spectrometry to analyze and identify the in vivo metabolites of phillyrin and to elucidate the in vivo metabolic pathways of phillyrin. Among them, the generation of data sets was mainly due to multichannel data mining methods, such as high extracted ion chromatogram (HEIC), diagnostic product ion (DPI), and neutral loss filtering (NLF). A total of 60 metabolites (including the prototype compound) were identified in positive and negative ion modes based on intuitive and useful data such as the standard's cleavage rule, accurate molecular mass, and chromatographic retention time. The results showed that a series of biological reactions of phillyrin in vivo mainly included methylation, hydroxylation, hydrogenation, sulfonation, glucuronidation, demethylation, and dehydrogenation and their composite reactions. In summary, this study not only comprehensively explained the in vivo metabolism of phillyrin, but also proposed an effective strategy to quickly analyze and identify the metabolites of natural pharmaceutical ingredients in nature.
Collapse
|
14
|
Evaluation of Zhenwu Decoction Effects on CYP450 Enzymes in Rats Using a Cocktail Method by UPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4816209. [PMID: 32461991 PMCID: PMC7240782 DOI: 10.1155/2020/4816209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
This thesis is aimed at shedding light on the effects of the Zhenwu decoction (ZWD) on the activities and mRNA expressions of seven CYP450 isoenzymes. In the first step, we determined the main chemical compounds of ZWD by high-performance liquid chromatography (HPLC). Next, 48 male (SD) rats were randomly divided into the normal saline (NS) group and the ZWD low- (2.1875 g/kg), medium- (4.375 g/kg), and high- (8.75 g/kg) dose groups (12 per group). All rats were gavaged once daily for 28 consecutive days. A mixed solution of seven probe drugs was injected into 24 rats through the caudal vein after the last intragastric administration. Lastly, a validated cocktail method and real-time quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were used to detect pharmacokinetic parameters and mRNA expressions, respectively. Compared with the NS group, ZWD at medium- and high-dose groups could significantly induce CYP2C6 (P < 0.05) activity, while the mRNA expression (P < 0.05) increased only in the high-dose group. Additionally, CYP2C11 activity was induced and consistent with mRNA expression (P < 0.05). Moreover, ZWD could induce the activity of CYP3A1 (P < 0.05), but the mRNA expression showed no significant differences except in high-dose groups. Additionally, ZWD has no effects on CYP1A2, CYP2B1, CYP2C7, and CYP2D2. In conclusion, the significant inductive effects of ZWD on three CYP450 isoenzymes indicated that when ZWD was coadministrated with drugs mediated by these enzymes, not only should the potential herb-drug interactions (HDIs) be observed, but the dosage adjustment and tissue drug concentration should also be considered. Furthermore, the approach described in this article can be applied to study the importance of gender, age, and disease factors to HDI prediction.
Collapse
|
15
|
Liu X, Chen C, Zhang X. Drug-drug interaction of acetaminophen and roxithromycin with the cocktail of cytochrome P450 and hepatotoxicity in rats. Int J Med Sci 2020; 17:414-421. [PMID: 32132876 PMCID: PMC7053348 DOI: 10.7150/ijms.38527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022] Open
Abstract
Acetaminophen (APAP) and roxithromycin (ROX) are often used in combination in clinical practice. To evaluate their drug-drug interactions (DDIs) and the hepatotoxicity of co-administration, rats were randomly separated into four groups: Control, APAP (50 mg/kg), ROX (5.5 mg/kg) and APAP-ROX (50 mg/kg and 5.5 mg/kg, respectively). The pharmacokinetic parameters between APAP and ROX were assayed by HPLC, and a cocktail method was used to evaluate the activities of cytochrome (CYP) 450. The liver microsome CYP2E1 protein was detected using Western blot. The levels of plasma parameters, mRNA levels of inflammatory factors (TNF-α, INF-γ, VCAM-1, CXCL-1 and STAT-3) and antioxidant factors (Nrf-2, GSTA, GCLC-1, HO-1 and NQO1) were determined using real-time PCR, along with the observation on histopathological changes in the liver tissue. APAP and ROX co-treatment significantly increased CYP2E1 activity, decreased CYP2D6 activity and prolonged APAP and ROX clearance. Co-treatment increased mRNA expressions of TNF-α, NQO1 and MDA while decreasing GPX and SOD levels. Histopathological evidence showed the changes of liver tissues in terms of structure, size and tight arrangement. This study confirmed that a combination of APAP and ROX inhibited APAP metabolism and that the peak concentration of ROX was delayed. The resulting high level of CYP2E1 may induce oxidative stress and cause liver damage.
Collapse
Affiliation(s)
- Xiang Liu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, P.R. China
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, P.R. China.,Centre of Molecular and Environmental Biology University of Minho, Department of Biology, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
16
|
Wang J, Chen G, Zhang Q, Zhao F, Yu X, Ma X, Liu M. Phillyrin Attenuates Osteoclast Formation and Function and Prevents LPS-Induced Osteolysis in Mice. Front Pharmacol 2019; 10:1188. [PMID: 31680965 PMCID: PMC6811733 DOI: 10.3389/fphar.2019.01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
As the sole cell type responsible for bone resorption, osteoclasts play a pivotal role in a variety of lytic bone diseases. Suppression of osteoclast formation and activation has been proposed as an effective protective therapy for new bone. In this study, we reported for the first time that phillyrin (Phil), an active ingredient extracted from forsythia, significantly inhibited RANKL-induced osteoclastogenesis and bone resorption in vitro and protected against lipopolysaccharide-induced osteolysis in vivo. Further molecular investigations demonstrated that Phil effectively blocked RANKL-induced activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase, which suppressed the expression of c-Fos and nuclear factor of activated T-cells cytoplasmic 1. Taken together, these data suggested that Phil might be a potential antiosteoclastogenesis agent for treating osteoclast-related bone lytic diseases.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fuli Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuemei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
Ma T, Shi YL, Wang YL. Forsythiaside A protects against focal cerebral ischemic injury by mediating the activation of the Nrf2 and endoplasmic reticulum stress pathways. Mol Med Rep 2019; 20:1313-1320. [PMID: 31173213 DOI: 10.3892/mmr.2019.10312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/24/2018] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is a common type of stroke with a high mortality and morbidity rate. Preventing and controlling cerebral ischemic injury is particularly important. Forsythiaside A (FA) has been reported to have anti‑inflammatory and antioxidant activities. The aim of the present study was to explore the impact of FA on middle cerebral artery occlusion (MCAO)‑induced cerebral ischemic injury in rats. The results indicated that FA markedly increased the percent survival and decreased the neurological deficit score in rats with cerebral ischemic injury. Furthermore, cell apoptosis was significantly inhibited by FA administration, which was accompanied by decreased caspase‑3 and caspase‑9 expression. A marked increase in the expression levels of nuclear factor‑erythroid 2‑related factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 and glutathione‑s‑transferase was detected in FA‑treated rats. In addition, treatment with FA reduced malonaldehyde expression, and enhanced the expression of superoxide dismutase and glutathione. Furthermore, endoplasmic reticulum (ER) stress was vastly alleviated by FA treatment, as evidenced by the increased expression of B‑cell lymphoma 2, apoptosis regulator and the downregulated expression of phosphorylated (phospho)‑protein kinase RNA‑like ER kinase (PERK)/PERK, phospho‑inositol‑requiring enzyme 1 (IRE1α)/IRE1α and CCAAT‑enhancer‑binding proteins homologous protein. Taken together, the present study demonstrated that FA attenuated cerebral ischemic damage via mediation of the activation of Nrf2 and ER stress pathways. These data may provide ideas for novel treatment strategies of cerebral ischemic damage.
Collapse
Affiliation(s)
- Tao Ma
- Department of Neurology, Xintai Municipal People's Hospital, Xintai, Shandong 271200, P.R. China
| | - Ya-Ling Shi
- Department of Neurology, The First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Yan-Ling Wang
- Department of Neurology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
18
|
Ji S, He DD, Su ZY, Du Y, Wang YJ, Gao SK, Guo MZ, Tang DQ. P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs: A strategy to explore compatibility mechanism of Sangju-Yin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152866. [PMID: 30831464 DOI: 10.1016/j.phymed.2019.152866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/11/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Herbal compatibility of compound formulas can enhance therapeutic effects or reduce side effects of the monarch drugs, but majority of compatibility mechanisms are still unknown. Sangju-Yin, a well-known Chinese compound formula, is currently used to treat common cold in clinical. PURPOSE In this study, we proposed a strategy to explore the compatibility mechanism of Sangju-Yin by investigating P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs. METHODS Under the guidance of traditional Chinese medicine theory, the constituent herbs of Sangju-Yin were divided into four groups, including monarch drugs, monarch drugs with addition of minister drugs, monarch drugs with addition of minister and adjuvant drugs, as well as the whole recipe, namely monarch drugs with addition of minister, adjuvant and conductant drugs. Their effects on rats in vivo P450 (CYP1A2, CYP2A3, CYP2C6, CYP2C11 and CYP3A1) activities after oral administration were evaluated using probe drug assay based on LC-MS/MS. Moreover, effects of the four groups of herbs on mRNA expression of P450 enzymes after oral administration, as well as in vitro P450 activities after co-incubation, were investigated to explore the underlying mechanisms. RESULTS Comparing with monarch drugs, addition of different constituent herbs significantly enhanced CYP1A2 and CYP2C6 activities, and inhibited CYP2A3 and CYP3A1 activities, indicating their possible influences on plasma concentrations of active constituents in the monarch drugs. Mechanism study suggested that these herbs affected P450 activities by transcriptional regulation and/or direct interaction with the enzymes. CONCLUSION This study clarified the compatibility mechanism of Sangju-Yin from the aspect of P450 enzymes-based metabolic interactions, which would benefit better understanding of the therapeutic basis of Sangju-Yin.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Dan-Dan He
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen-Yu Su
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Yan Du
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Yu-Jie Wang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Shi-Kai Gao
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng-Zhe Guo
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Dao-Quan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
19
|
Effect of Gambogenic Acid on Cytochrome P450 1A2, 2B1 and 2E1, and Constitutive Androstane Receptor in Rats. Eur J Drug Metab Pharmacokinet 2018; 43:655-664. [DOI: 10.1007/s13318-018-0477-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Wang Z, Xia Q, Liu X, Liu W, Huang W, Mei X, Luo J, Shan M, Lin R, Zou D, Ma Z. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:318-339. [PMID: 28887216 DOI: 10.1016/j.jep.2017.08.040] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructus (called Lianqiao in Chinese), the fruit of Forsythia suspensa (Thunb.) Vahl, is utilized as a common traditional medicine in China, Japan and Korea. It is traditionally used to treat pyrexia, inflammation, gonorrhea, carbuncle and erysipelas. Depending on the different harvest time, Forsythiae Fructus can be classified into two forms, namely Qingqiao and Laoqiao. The greenish fruits that start to ripen are collected as Qingqiao, while the yellow fruits that are fully ripe are collected as Laoqiao. Both are applied to medical use. This review aims to provide a systematic summary of F. suspensa (Forsythia suspensa (Thunb.) Vahl) and to reveal the correlation between the traditional uses and pharmacological activities so as to offer inspiration for future research. MATERIALS AND METHODS All corresponding information about F. suspensa was searched by Scifinder and obtained from scientific databases including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI). Local dissertations and books were searched as well. RESULTS According to classical Chinese herbal texts and Chinese Pharmacopoeia, Forsythiae Fructus dominantly displays heat-clearing and detoxifying effects in TCM prescriptions. In modern research, more than 230 compounds were separated and identified from F. suspensa. 211 Of them were isolated from fruits. Lignans and phenylethanoid glycosides are considered as the characteristic and active constituents of this herb, such as forsythiaside, phillyrin, rutin and phillygenin. They exhibited anti-inflammatory, antioxidant, antibacterial, anti-virus, anti-cancer and anti-allergy effects, etc. Currently, there is no report on the toxicity of Forsythiae Fructus, despite slight toxicity of forsythiaside reported in local publications. Compared to Laoqiao, Qingqiao contains higher levels of forsythiaside, forsythoside C, cornoside, rutin, phillyrin, gallic acid and chlorogenic acid and lower levels of rengyol, β-glucose and S-suspensaside methyl ether. CONCLUSION Heat-clearing actions of Forsythiae Fructus are based on the anti-inflammatory and antioxidant properties of lignans and phenylethanoid glycosides. Detoxifying effects attribute to the antibacterial, antiviral and anti-cancer activities of Forsythiae Fructus. And traditional Chinese medicine (TCM) characteristics of Forsythiae Fructus (bitter flavor, slightly cold nature and lung meridian) supported its strong anti-inflammatory effects. In addition, the remarkable anti-inflammatory and antioxidant capacities of Forsythiae Fructus contribute to its anti-cancer and neuroprotective activities. The higher proportion of lignans and phenylethanoid glycosides in Qingqiao than Laoqiao might explain the better antioxidant ability of Qingqiao and more frequent uses of Qingqiao in TCM prescriptions. For future research, more in vivo experiments and clinical studies are encouraged to further clarify the relation between traditional uses and modern applications. Regarding to Qingqiao and Laoqiao, they remain to be differentiated by all-round quality control methods, and the chemical compositions and clinical effects between them should be compared.
Collapse
Affiliation(s)
- Zhaoyi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qing Xia
- Biology Institute of Shandong Academy of Sciences, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Jinan 250014, China
| | - Xin Liu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenxue Liu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wanzhen Huang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xue Mei
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jun Luo
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Mingxu Shan
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Dixin Zou
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, China.
| | - Zhiqiang Ma
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
21
|
Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics. Molecules 2017; 22:molecules22091466. [PMID: 28869577 PMCID: PMC6151565 DOI: 10.3390/molecules22091466] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Forsythiae Fructus, as a traditional Chinese medicine, has been widely used both as a single herb and in compound prescriptions in Asia, mainly due to its heat-clearing and detoxifying effects. Modern pharmacology has proved Forsythiae Fructus possesses various therapeutic effects, both in vitro and in vivo, such as anti-inflammatory, antibacterial and antiviral activities. Up to now, three hundred and twenty-one compounds have been identified and sensitive analytical methods have been established for its quality control. Recently, the pharmacokinetics of Forsythiae Fructus and its bioactive compounds have been reported, providing valuable information for its clinical application. Therefore, this systematic review focused on the newest scientific reports on Forsythiae Fructus and extensively summarizes its phytochemistry, pharmacology, pharmacokinetics and standardization procedures, especially the difference between the two applied types—unripe Forsythiae Fructus and ripe Forsythiae Fructus—in the hope of providing a helpful reference and guide for its clinical applications and further studies.
Collapse
|
22
|
Sun Y, Liu Y, Zhang X, Wan C, Lyu T, Zhang L. Effects of m-nisoldipine on the activity and mRNA expression of four CYP isozymes in rats. Xenobiotica 2017; 48:676-683. [DOI: 10.1080/00498254.2017.1358831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yupeng Sun
- Department of Pharmaceutical Analysis and
| | - Yanyan Liu
- Department of Pharmaceutical Analysis and
| | - Xia Zhang
- Department of Pharmaceutical Analysis and
| | | | - Tao Lyu
- Pharmaceutical Experimental Center, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | | |
Collapse
|