1
|
Benítez-Villaseñor A, Jost M, Granados Mendoza C, Wanke S, Meza-Lázaro RN, Peñafiel Cevallos M, Freire E, Magallón S. Exploring Structural Plastome Evolution in Asterales: Insights from Off-Target Hybrid Enrichment Data on the Small Single-Copy Region. J Mol Evol 2024:10.1007/s00239-024-10224-6. [PMID: 39724205 DOI: 10.1007/s00239-024-10224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented. This study investigates the possibility of recovering plastid loci from off-target reads obtained through hybrid enrichment techniques. Our sampling includes 63 species from the eleven currently recognized families in Asterales derived from previously published studies. We assembled and annotated complete and partial plastomes using custom pipelines and estimate phylogenomic relationships. We retrieved plastid information from 60 of the 63 sampled species including a complete plastome from Tithonia tubaeformis (Asteraceae), circular partial (with gaps) plastomes from seven species, and non-circular partial plastomes from other 52 species. We focused on the small single-copy region because it could be recovered for over 29 species. Within the small single-copy region, we assessed intron losses and presence of putative pseudogenes. Comparative genomics revealed a relocated fragment of ~ 6500 bp in two Campanulaceae lineages (i. e. subfamily Lobelioideae and Pseudonemacladus oppositifolium), involving the genes rbcL, atpB, atpE, trnM-CAU, and trnV-UAC. Obtained phylogenetic hypotheses were congruent across the applied methods and consistent with previously published results. Our study demonstrates the feasibility of recovering plastid information, both complete and partial, from off-target hybrid enrichment data and provides insights on the structural plastome changes that have occurred throughout the evolution of the order Asterales.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510, Ciudad de Mexico, México.
| | - Matthias Jost
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
- Senckenberg Forschungsinstitut Und Naturmuseum, Botanik Und Molekulare Evolutionsforschung, 60325, Frankfurt, Germany
| | - Rubi N Meza-Lázaro
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
2
|
Meudt HM, Pearson S, Ning W, Prebble JM, Tate JA. Forget-me-not phylogenomics: Improving the resolution and taxonomy of a rapid island and mountain radiation in Aotearoa New Zealand (Myosotis; Boraginaceae). Mol Phylogenet Evol 2024:108250. [PMID: 39581357 DOI: 10.1016/j.ympev.2024.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Island and mountain systems represent natural laboratories for studies of species radiations, but they often present several challenges for phylogenetic inference and species delimitation. The southern hemisphere forget-me-nots (Myosotis, Boraginaceae) comprise a geologically recent radiation centred in New Zealand, a mountainous archipelago, with about 50 species that are morphologically and ecologically divergent but lack genetic variation sufficient to resolve phylogenetic relationships and species boundaries using standard DNA Sanger sequencing markers, AFLPs, or microsatellites. Many of these Myosotis species are geographically restricted in alpine areas, uncommon or threatened, have polyploid and dysploid genomes, and are of high taxonomic and conservation priority. Here we present phylogenomic analyses using target-capture of Angiosperms353 baits, and genome skimming of whole plastomes and nrDNA, to improve resolution of the radiation, explore biogeographic and morphological patterns within it, and address specific taxonomic questions for each species. Our comprehensive sampling includes over 300 individuals representing nearly all species from Aotearoa New Zealand and Australia, which is ∼ 2-3 × more taxon sampling and ∼ 80-120 × more molecular data than previously published for Myosotis. Exploration of different data filtering, curation and analyses (coalescent vs. concatenation) improved the resolution of the Angiosperms353 tree, which despite short backbone branches with low support values, showed taxonomic and geographic patterns, including multiple switches between ebracteate and bracteate inflorescences and multiple expansions within New Zealand from Te Waipounamu South Island to Te Ika-a-Māui North Island, Rakiura Stewart Island, subantarctic islands, and Australia. Some of these patterns were also seen in the genome skimming datasets, and comparison of the three datasets was useful for improving our understanding of the taxonomy and resolution of this radiation. Although this phylogenomic study does not fully overcome all of the challenges regarding species delimitation of this rapid island and mountain species radiation, it nevertheless makes an important contribution to an integrative taxonomic revision of the southern hemisphere species of Myosotis.
Collapse
Affiliation(s)
- Heidi M Meudt
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Cable St, Wellington 6140, New Zealand.
| | - Sofie Pearson
- Museum of New Zealand Te Papa Tongarewa, PO Box 467, Cable St, Wellington 6140, New Zealand; School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Weixuan Ning
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Jessica M Prebble
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln 7640, New Zealand.
| | - Jennifer A Tate
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
3
|
Sikora J, Celiński K. Exploring Taxonomic and Genetic Relationships in the Pinus mugo Complex Using Genome Skimming Data. Int J Mol Sci 2024; 25:10178. [PMID: 39337663 PMCID: PMC11432513 DOI: 10.3390/ijms251810178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Genome skimming is a novel approach that enables obtaining large-scale genomic information based on high-copy DNA fractions from shallow whole-genome sequencing. The simplicity of this method, low analysis costs, and large amounts of generated data have made it widely used in plant research, including species identification, especially in the case of protected or endangered taxa. This task is particularly difficult in the case of closely related taxa. The Pinus mugo complex includes several dozen closely related taxa occurring in the most important mountain ranges in Europe. The taxonomic rank, origin, or distribution of many of these taxa have been debated for years. In this study, we used genome skimming and multilocus DNA barcoding approaches to obtain different sequence data sets and also to determine their genetic diversity and suitability for distinguishing closely related taxa in the Pinus mugo complex. We generated seven different data sets, which were then analyzed using three discrimination methods, i.e., tree based, distance based, and assembling species by automatic partitioning. Genetic diversity among populations and taxa was also investigated using haplotype network analysis and principal coordinate analysis. The proposed data set based on divergence hotspots is even twenty-times more variable than the other analyzed sets and improves the phylogenetic resolution of the Pinus mugo complex. In light of the obtained results, Pinus × rhaetica does not belong to the Pinus mugo complex and should not be identified with either Pinus uliginosa or Pinus rotundata. It seems to represent a fixed hybrid or introgressant between Pinus sylvestris and Pinus mugo. In turn, Pinus mugo and Pinus uncinata apparently played an important role in the origins of Pinus uliginosa and Pinus rotundata.
Collapse
Affiliation(s)
- Joanna Sikora
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Konrad Celiński
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
4
|
De Smedt S, Bogaerts A, De Meeter N, Dillen M, Engledow H, Van Wambeke P, Leliaert F, Groom Q. Ten lessons learned from the mass digitisation of a herbarium collection. PHYTOKEYS 2024; 244:23-37. [PMID: 38988594 PMCID: PMC11233984 DOI: 10.3897/phytokeys.244.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024]
Abstract
Worldwide, herbaria maintain collections of reference specimens representing global plant diversity. These collections are a valuable resource for fundamental botanical research and applied scientific research across various disciplines, and play a significant role in addressing major societal challenges such as biodiversity conservation. The digitisation of herbarium specimens and their online dissemination is one of the most important recent developments in the curation of these collections. Digitisation significantly enhances access to the collections for the research community and facilitates large-scale analysis of biodiversity data. Digitisation also provides a means for preserving the physical specimens, as it reduces the need for handling and transportation. Rapid technological developments have greatly accelerated the rate of databasing and digital imaging of collections. Meise Botanic Garden recently completed a six-year project to mass digitise its herbarium collections of about 3 million specimens mounted on sheets and through this process we have learned valuable lessons. We have captured our experience in 10 recommendations for other collection-holding institutions to take inspiration from as they start planning their own digitisation efforts. We also present case studies where we delve deeper into certain topics as examples.
Collapse
Affiliation(s)
- Sofie De Smedt
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Ann Bogaerts
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Niko De Meeter
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Mathias Dillen
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Henry Engledow
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Paul Van Wambeke
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Frederik Leliaert
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| | - Quentin Groom
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium
| |
Collapse
|
5
|
Quattrini AM, McCartin LJ, Easton EE, Horowitz J, Wirshing HH, Bowers H, Mitchell K, González‐García MDP, Sei M, McFadden CS, Herrera S. Skimming genomes for systematics and DNA barcodes of corals. Ecol Evol 2024; 14:e11254. [PMID: 38746545 PMCID: PMC11091489 DOI: 10.1002/ece3.11254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 01/06/2025] Open
Abstract
Numerous genomic methods developed over the past two decades have enabled the discovery and extraction of orthologous loci to help resolve phylogenetic relationships across various taxa and scales. Genome skimming (or low-coverage genome sequencing) is a promising method to not only extract high-copy loci but also 100s to 1000s of phylogenetically informative nuclear loci (e.g., ultraconserved elements [UCEs] and exons) from contemporary and museum samples. The subphylum Anthozoa, including important ecosystem engineers (e.g., stony corals, black corals, anemones, and octocorals) in the marine environment, is in critical need of phylogenetic resolution and thus might benefit from a genome-skimming approach. We conducted genome skimming on 242 anthozoan corals collected from 1886 to 2022. Using existing target-capture baitsets, we bioinformatically obtained UCEs and exons from the genome-skimming data and incorporated them with data from previously published target-capture studies. The mean number of UCE and exon loci extracted from the genome skimming data was 1837 ± 662 SD for octocorals and 1379 ± 476 SD loci for hexacorals. Phylogenetic relationships were well resolved within each class. A mean of 1422 ± 720 loci was obtained from the historical specimens, with 1253 loci recovered from the oldest specimen collected in 1886. We also obtained partial to whole mitogenomes and nuclear rRNA genes from >95% of samples. Bioinformatically pulling UCEs, exons, mitochondrial genomes, and nuclear rRNA genes from genome skimming data is a viable and low-cost option for phylogenetic studies. This approach can be used to review and support taxonomic revisions and reconstruct evolutionary histories, including historical museum and type specimens.
Collapse
Affiliation(s)
- Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Luke J. McCartin
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erin E. Easton
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyPort IsabelTexasUSA
| | - Jeremy Horowitz
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Herman H. Wirshing
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Hailey Bowers
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | | | - María del P. González‐García
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Department of Marine SciencesUniversity of Puerto RicoMayagüezPuerto Rico
| | - Makiri Sei
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | | | - Santiago Herrera
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
6
|
Inglis PW, Cavalcanti TB, Facco MG, Bakker FT, Graham SA. A comprehensive genus-level phylogeny and biogeographical history of the Lythraceae based on whole plastome sequences. ANNALS OF BOTANY 2023; 132:293-318. [PMID: 37439499 PMCID: PMC10583215 DOI: 10.1093/aob/mcad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND AIMS The Lythraceae are a mainly subtropical to tropical family of the order Myrtales with 28 currently accepted genera and approximately 600 species. There is currently no well-supported phylogenetic and biogeographical hypothesis of the Lythraceae incorporating all currently accepted genera, which we sought to provide. METHODS Plastomes of representative species of 18 distinct Lythraceae genera were sequenced and annotated. Together with existing sequences, plastomes of all 28 currently accepted genera in the Lythraceae were brought together for the first time. The plastomes were aligned and a Bayesian phylogenetic hypothesis was produced. We then conducted a time-calibrated Bayesian analysis and a biogeographical analysis. KEY RESULTS Plastome-based Bayesian and maximum-likelihood phylogenetic trees are generally congruent with recent nuclear phylogenomic data and resolve two deeply branching major clades in the Lythraceae. One major clade concentrates shrubby and arboreal South American and African genera that inhabit seasonally dry environments, with larger, often winged seeds, adapted to dispersal by the wind. The second major clade concentrates North American, Asian, African and several near-cosmopolitan herbaceous, shrubby and arboreal genera, often inhabiting humid or aquatic environments, with smaller seeds possessing structures that facilitate dispersal by water. CONCLUSIONS We hypothesize that the Lythraceae dispersed early in the Late Cretaceous from South American to North American continents, with subsequent expansion in the Late Cretaceous of a North American lineage through Laurasia to Africa via a boreotropical route. Two later expansions of South American clades to Africa in the Palaeocene and Eocene, respectively, are also hypothesized. Transoceanic dispersal in the family is possibly facilitated by adaptations to aquatic environments that are common to many extant genera of the Lythraceae, where long-distance dispersal and vicariance may be invoked to explain several remarkable disjunct distributions in Lythraceae clades.
Collapse
Affiliation(s)
- Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), Caixa Postal 02372 – Brasília, DF – CEP 70770-917, Brazil
| | - Taciana B Cavalcanti
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), Caixa Postal 02372 – Brasília, DF – CEP 70770-917, Brazil
| | - Marlon G Facco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Postbus 647, NL-6700 AP, Wageningen, The Netherlands
| | - Shirley A Graham
- Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Weaver WN, Smith SA. FieldPrism: A system for creating snapshot vouchers from field images using photogrammetric markers and QR codes. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11545. [PMID: 37915427 PMCID: PMC10617303 DOI: 10.1002/aps3.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 11/03/2023]
Abstract
Premise Field images are important sources of information for research in the natural sciences. However, images that lack photogrammetric scale bars, including most iNaturalist observations, cannot yield accurate trait measurements. We introduce FieldPrism, a novel system of photogrammetric markers, QR codes, and software to automate the curation of snapshot vouchers. Methods and Results Our photogrammetric background templates (FieldSheets) increase the utility of field images by providing machine-readable scale bars and photogrammetric reference points to automatically correct image distortion and calculate a pixel-to-metric conversion ratio. Users can generate a QR code flipbook derived from a specimen identifier naming hierarchy, enabling machine-readable specimen identification for automatic file renaming. We also developed FieldStation, a Raspberry Pi-based mobile imaging apparatus that records images, GPS location, and metadata redundantly on up to four USB storage devices and can be monitored and controlled from any Wi-Fi connected device. Conclusions FieldPrism is a flexible software tool designed to standardize and improve the utility of images captured in the field. When paired with the optional FieldStation, researchers can create a self-contained mobile imaging apparatus for quantitative trait data collection.
Collapse
Affiliation(s)
- William N. Weaver
- Department of Ecology and Evolutionary BiologyUniversity of Michigan1105 N. University Ave.Ann Arbor48109MichiganUSA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Michigan1105 N. University Ave.Ann Arbor48109MichiganUSA
| |
Collapse
|
8
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
9
|
Barreto de Jesus P, de Mattos Lyra G, Zhang H, Toyota Fujii M, Nauer F, Marcos de Castro Nunes J, Davis CC, Cabral Oliveira M. Phylogenomics and taxon-rich phylogenies of new and historical specimens shed light on the systematics of Hypnea (Cystocloniaceae, Rhodophyta). Mol Phylogenet Evol 2023; 183:107752. [PMID: 36893930 DOI: 10.1016/j.ympev.2023.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Cystocloniacae is a highly diverse family of Rhodophyta, including species of ecological and economic importance, whose phylogeny remains largely unresolved. Species delimitation is unclear, particularly in the most speciose genus, Hypnea, and cryptic diversity has been revealed by recent molecular assessments, especially in the tropics. Here, we carried out the first phylogenomic investigation of Cystocloniaceae, focused on the genus Hypnea, inferred from chloroplast and mitochondrial genomes including taxa sampled from new and historical collections. In this work, molecular synapomorphies (gene losses, InDels and gene inversions) were identified to better characterize clades in our congruent organellar phylogenies. We also present taxon-rich phylogenies based on plastid and mitochondrial markers. Molecular and morphological comparisons of historic collections with contemporary specimens revealed the need for taxonomic updates in Hypnea, the synonymization of H. marchantae to a later heterotypic synonym of H. cervicornis and the description of three new species: H. davisiana sp. nov., H. djamilae sp. nov. and H. evaristoae sp. nov.
Collapse
Affiliation(s)
- Priscila Barreto de Jesus
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (CCNH - UFABC), Rua Arcturus 03, São Bernardo do Campo, São Paulo, 09606-070, Brazil; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, São Paulo, 05508-090, Brazil.
| | - Goia de Mattos Lyra
- Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador, Bahia, 40170-115, Brasil; Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA; Laboratório de Algas Marinhas, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador Bahia 40170-115, Brasil
| | - Hongrui Zhang
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA
| | - Mutue Toyota Fujii
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, Av. Miguel Estefano 3687, 04301-902, São Paulo, Brazil
| | - Fabio Nauer
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, Av. Miguel Estefano 3687, 04301-902, São Paulo, Brazil; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, São Paulo, 05508-090, Brazil
| | - José Marcos de Castro Nunes
- Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador, Bahia, 40170-115, Brasil; Laboratório de Algas Marinhas, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador Bahia 40170-115, Brasil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA
| | - Mariana Cabral Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
10
|
Giorgashvili E, Reichel K, Caswara C, Kerimov V, Borsch T, Gruenstaeudl M. Software Choice and Sequencing Coverage Can Impact Plastid Genome Assembly-A Case Study in the Narrow Endemic Calligonum bakuense. FRONTIERS IN PLANT SCIENCE 2022; 13:779830. [PMID: 35874012 PMCID: PMC9296850 DOI: 10.3389/fpls.2022.779830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Most plastid genome sequences are assembled from short-read whole-genome sequencing data, yet the impact that sequencing coverage and the choice of assembly software can have on the accuracy of the resulting assemblies is poorly understood. In this study, we test the impact of both factors on plastid genome assembly in the threatened and rare endemic shrub Calligonum bakuense. We aim to characterize the differences across plastid genome assemblies generated by different assembly software tools and levels of sequencing coverage and to determine if these differences are large enough to affect the phylogenetic position inferred for C. bakuense compared to congeners. Four assembly software tools (FastPlast, GetOrganelle, IOGA, and NOVOPlasty) and seven levels of sequencing coverage across the plastid genome (original sequencing depth, 2,000x, 1,000x, 500x, 250x, 100x, and 50x) are compared in our analyses. The resulting assemblies are evaluated with regard to reproducibility, contig number, gene complement, inverted repeat length, and computation time; the impact of sequence differences on phylogenetic reconstruction is assessed. Our results show that software choice can have a considerable impact on the accuracy and reproducibility of plastid genome assembly and that GetOrganelle produces the most consistent assemblies for C. bakuense. Moreover, we demonstrate that a sequencing coverage between 500x and 100x can reduce both the sequence variability across assembly contigs and computation time. When comparing the most reliable plastid genome assemblies of C. bakuense, a sequence difference in only three nucleotide positions is detected, which is less than the difference potentially introduced through software choice.
Collapse
Affiliation(s)
- Eka Giorgashvili
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Katja Reichel
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Calvinna Caswara
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Vuqar Kerimov
- Institute of Botany, Azerbaijan National Academy of Sciences (ANAS), Baku, Azerbaijan
| | - Thomas Borsch
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Michael Gruenstaeudl
- Systematische Botanik und Pflanzengeographie, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Lagomarsino LP, Frankel L, Uribe-Convers S, Antonelli A, Muchhala N. Increased resolution in the face of conflict: phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. ANNALS OF BOTANY 2022; 129:723-736. [PMID: 35363863 PMCID: PMC9113290 DOI: 10.1093/aob/mcac046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The centropogonid clade (Lobelioideae: Campanulaceae) is an Andean-centred rapid radiation characterized by repeated convergent evolution of morphological traits, including fruit type and pollination syndromes. While previous studies have resolved relationships of lineages with fleshy fruits into subclades, relationships among capsular species remain unresolved. This lack of resolution has impeded reclassification of non-monophyletic genera, whose current taxonomy relies heavily on traits that have undergone convergent evolution. METHODS Targeted sequence capture using a probe-set recently developed for the centropogonid clade was used to obtain phylogenomic data from DNA extracted from both silica-dried and herbarium leaf tissue. These data were used to infer relationships among species using concatenated and partitioned species tree methods, and to quantify gene tree discordance. KEY RESULTS While silica-dried leaf tissue resulted in longer assembled sequence data, the inclusion of herbarium samples improved taxonomic representation. Relationships among baccate lineages are similar to those inferred in previous studies, although they differ for lineages within and among capsular clades. We improve the phylogenetic resolution of Siphocampylus, which forms ten groups of closely related species which we informally name. Two subclades of Siphocampylus and two individual species are rogue taxa whose placement differs widely across analyses. Gene tree discordance (including cytonuclear discordance) is rampant. CONCLUSIONS This first phylogenomic study of the centropogonid clade considerably improves our understanding of relationships in this rapid radiation. Differences across analyses and the possibility of additional lineage discoveries still hamper a solid and stable reclassification. Rapid morphological innovation corresponds with a high degree of phylogenomic complexity, including cytonuclear discordance, nuclear gene tree conflict and well-supported differences between analyses based on different nuclear loci. Together, these results point to a potential role of hemiplasy underlying repeated convergent evolution. This hallmark of rapid radiations is probably present in many other species-rich Andean plant radiations.
Collapse
Affiliation(s)
- Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Lauren Frankel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
- Department of Plant Science, University of Oxford, Oxford, UK
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| |
Collapse
|
12
|
Marinček P, Wagner ND, Tomasello S. Ancient DNA extraction methods for herbarium specimens: When is it worth the effort? APPLICATIONS IN PLANT SCIENCES 2022; 10:e11477. [PMID: 35774991 PMCID: PMC9215277 DOI: 10.1002/aps3.11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
Premise Herbaria harbor a tremendous number of plant specimens that are rarely used for molecular systematic studies, largely due to the difficulty in extracting sufficient amounts of high-quality DNA from the preserved plant material. Methods We compared the standard Qiagen DNeasy Plant Mini Kit and a specific protocol for extracting ancient DNA (aDNA) (the N-phenacylthiazolium bromide and dithiothreitol [PTB-DTT] extraction method) from two different plant genera (Xanthium and Salix). The included herbarium materials covered about two centuries of plant collections. To analyze the success of DNA extraction using each method, a subset of samples was subjected to a standard library preparation as well as target-enrichment approaches. Results The PTB-DTT method produced a higher DNA yield of better quality than the Qiagen kit; however, extracts from the Qiagen kit over a certain DNA yield and quality threshold produced comparable sequencing results. The sequencing resulted in high proportions of endogenous reads. We were able to successfully sequence 200-year-old samples. Discussion This method comparison revealed that, for younger specimens, DNA extraction using a standard kit might be sufficient. For old and precious herbarium specimens, aDNA extraction methods are better suited to meet the requirements for next-generation sequencing.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| | - Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| |
Collapse
|
13
|
Li F, Xie X, Huang R, Tian E, Li C, Chao Z. Chloroplast genome sequencing based on genome skimming for identification of Eriobotryae Folium. BMC Biotechnol 2021; 21:69. [PMID: 34895202 PMCID: PMC8666020 DOI: 10.1186/s12896-021-00728-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Whole chloroplast genome (cpDNA) sequence is becoming widely used in the phylogenetic studies of plant and species identification, but in most cases the cpDNA were acquired from silica gel dried fresh leaves. So far few reports have been available to describe cpDNA acquisition from crude drugs derived from plant materials, the DNA of which usually was seriously damaged during their processing. In this study, we retrieved cpDNA from the commonly used crude drug Eriobotryae Folium (Pipaye in Chinese, which is the dried leaves of Eriobotrya japonica, PPY) using genome skimming technique. Results We successfully recovered cpDNA sequences and rDNA sequences from the crude drug PPY, and bioinformatics analysis showed a high overall consistency between the cpDNA obtained from the crude drugs and fresh samples. In the ML tree, each species formed distinct monophyletic clades based on cpDNA sequence data, while the phylogenetic relationships between Eriobotrya species were poorly resolved based on ITS and ITS2. Conclusion Our results demonstrate that both cpDNA and ITS/ITS2 are effective for identifying PPY and its counterfeits derived from distantly related species (i.e. Dillenia turbinata and Magnolia grandiflora), but cpDNA is more effective for distinguishing the counterfeits derived from the close relatives of Eriobotrya japonica, suggesting the potential of genome skimming for retrieving cpDNA from crude drugs used in Traditional Chinese Medicine for their identification. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00728-0.
Collapse
Affiliation(s)
- Fang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xuena Xie
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rong Huang
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Enwei Tian
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chan Li
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Chao
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Manzanilla V, Teixidor-Toneu I, Martin GJ, Hollingsworth PM, de Boer HJ, Kool A. Using target capture to address conservation challenges: Population-level tracking of a globally-traded herbal medicine. Mol Ecol Resour 2021; 22:212-224. [PMID: 34270854 DOI: 10.1111/1755-0998.13472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
The promotion of responsible and sustainable trade in biological resources is widely proposed as one solution to mitigate current high levels of global biodiversity loss. Various molecular identification methods have been proposed as appropriate tools for monitoring global supply chains of commercialized animals and plants. Here, we demonstrate the efficacy of target capture genomic barcoding in identifying and establishing the geographic origin of samples traded as Anacyclus pyrethrum, a medicinal plant assessed as globally vulnerable in the IUCN Red List of Threatened Species. Samples collected from national and international supply chains were identified through target capture sequencing of 443 low-copy nuclear makers and compared to results derived from genome skimming of plastome and DNA barcoding of standard plastid regions and ITS. Both target capture and genome skimming provided approximately 3.4 million reads per sample, but target capture largely outperformed standard plant barcodes and entire plastid genome sequences. We were able to discern the geographical origin of Anacyclus samples collected in Moroccan, Indian and Sri Lankan markets, differentiating between plant materials originally harvested from diverse populations in Algeria and Morocco. Dropping costs of analysing samples enables the potential of target capture to routinely identify commercialized plant species and determine their geographic origin. It promises to play an important role in monitoring and regulation of plant species in trade, supporting biodiversity conservation efforts, and in ensuring that plant products are unadulterated, contributing to consumer protection.
Collapse
Affiliation(s)
| | | | | | | | - Hugo J de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Anneleen Kool
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Schneider JV, Paule J, Jungcurt T, Cardoso D, Amorim AM, Berberich T, Zizka G. Resolving Recalcitrant Clades in the Pantropical Ochnaceae: Insights From Comparative Phylogenomics of Plastome and Nuclear Genomic Data Derived From Targeted Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:638650. [PMID: 33613613 PMCID: PMC7890083 DOI: 10.3389/fpls.2021.638650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 05/13/2023]
Abstract
Plastid DNA sequence data have been traditionally widely used in plant phylogenetics because of the high copy number of plastids, their uniparental inheritance, and the blend of coding and non-coding regions with divergent substitution rates that allow the reconstruction of phylogenetic relationships at different taxonomic ranks. In the present study, we evaluate the utility of the plastome for the reconstruction of phylogenetic relationships in the pantropical plant family Ochnaceae (Malpighiales). We used the off-target sequence read fraction of a targeted sequencing study (targeting nuclear loci only) to recover more than 100 kb of the plastid genome from the majority of the more than 200 species of Ochnaceae and all but two genera using de novo and reference-based assembly strategies. Most of the recalcitrant nodes in the family's backbone were resolved by our plastome-based phylogenetic inference, corroborating the most recent classification system of Ochnaceae and findings from a phylogenomic study based on nuclear loci. Nonetheless, the phylogenetic relationships within the major clades of tribe Ochnineae, which comprise about two thirds of the family's species diversity, received mostly low support. Generally, the phylogenetic resolution was lowest at the infrageneric level. Overall there was little phylogenetic conflict compared to a recent analysis of nuclear loci. Effects of taxon sampling were invoked as the most likely reason for some of the few well-supported discords. Our study demonstrates the utility of the off-target fraction of a target enrichment study for assembling near-complete plastid genomes for a large proportion of samples.
Collapse
Affiliation(s)
- Julio V. Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Entomology III, Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Tanja Jungcurt
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - André Márcio Amorim
- Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
- Herbário André Maurício Vieira de Carvalho, CEPEC, CEPLAC, Itabuna, Brazil
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Lab-Center, Frankfurt am Main, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Georg Zizka, ;
| |
Collapse
|
16
|
Herbarium Specimens: A Treasure for DNA Extraction, an Update. Methods Mol Biol 2020; 2222:69-88. [PMID: 33301088 DOI: 10.1007/978-1-0716-0997-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
With the expansion of molecular techniques, the historical collections have become widely used. The last boom started with using next- and second-generation sequencing in which massive parallel sequencing replaced targeted sequencing and third-generation technology involves single molecule technology. Studying plant DNA using these modern molecular techniques plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for taxonomic long-standing issues, specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. The result of these applications is often fragmented DNA. The reason new sequencing approaches have been so successful is that the template DNA needs to be fragmented for proper library building, and herbarium DNA is exactly that. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods, microsatellites, AFLP or next-generation sequencing).
Collapse
|
17
|
Bakker FT, Bieker VC, Martin MD. Editorial: Herbarium Collection-Based Plant Evolutionary Genetics and Genomics. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.603948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Strijk JS, Binh HT, Ngoc NV, Pereira JT, Slik JWF, Sukri RS, Suyama Y, Tagane S, Wieringa JJ, Yahara T, Hinsinger DD. Museomics for reconstructing historical floristic exchanges: Divergence of stone oaks across Wallacea. PLoS One 2020; 15:e0232936. [PMID: 32442164 PMCID: PMC7244142 DOI: 10.1371/journal.pone.0232936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
Natural history collections and tropical tree diversity are both treasure troves of biological and evolutionary information, but their accessibility for scientific study is impeded by a number of properties. DNA in historical specimens is generally highly fragmented, complicating the recovery of high-grade genetic material. Furthermore, our understanding of hyperdiverse, wide-spread tree assemblages is obstructed by extensive species ranges, fragmented knowledge of tropical tree diversity and phenology, and a widespread lack of species-level diagnostic characters, prohibiting the collecting of readily identifiable specimens which can be used to build, revise or strengthen taxonomic frameworks. This, in turn, delays the application of downstream conservation action. A sizable component of botanical collections are sterile-thus eluding identification and are slowing down progress in systematic treatments of tropical biodiversity. With rapid advances in genomics and bioinformatic approaches to biodiversity research, museomics is emerging as a new field breathing life into natural collections that have been built up over centuries. Using MIGseq (multiplexed ISSR genotyping by sequencing), we generated 10,000s of short loci, for both freshly collected materials and museum specimens (aged >100 years) of Lithocarpus-a widespread tropical tree genus endemic to the Asian tropics. Loci recovery from historical and recently collected samples was not affected by sample age and preservation history of the study material, underscoring the reliability and flexibility of the MIGseq approach. Phylogenomic inference and biogeographic reconstruction across insular Asia, highlights repeated migration and diversification patterns between continental regions and islands. Results indicate that co-occurring insular species at the extremity of the distribution range are not monophyletic, raising the possibility of multiple independent dispersals along the outer edge of Wallacea. This suggests that dispersal of large seeded tree genera throughout Malesia and across Wallacea may have been less affected by large geographic distances and the presence of marine barriers than generally assumed. We demonstrate the utility of MIGseq in museomic studies using non-model taxa, presenting the first range-wide genomic assessment of Lithocarpus and tropical Fagaceae as a proof-of-concept. Our study shows the potential for developing innovative genomic approaches to improve the capture of novel evolutionary signals using valuable natural history collections of hyperdiverse taxa.
Collapse
Affiliation(s)
- Joeri S. Strijk
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
| | | | | | - Joan T. Pereira
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - J. W. Ferry Slik
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Rahayu S. Sukri
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Yoshihisa Suyama
- Kawatabi Field Science Centre, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shuichiro Tagane
- The Kagoshima University Museum, Kagoshima University, Kagoshima, Japan
| | | | - Tetsukazu Yahara
- Center for Asian Conservation Ecology, Kyushu University, Fukuoka, Japan
| | - Damien D. Hinsinger
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| |
Collapse
|
19
|
Scheunert A, Dorfner M, Lingl T, Oberprieler C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS One 2020; 15:e0226234. [PMID: 32208422 PMCID: PMC7092973 DOI: 10.1371/journal.pone.0226234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
The chloroplast genome harbors plenty of valuable information for phylogenetic research. Illumina short-read data is generally used for de novo assembly of whole plastomes. PacBio or Oxford Nanopore long reads are additionally employed in hybrid approaches to enable assembly across the highly similar inverted repeats of a chloroplast genome. Unlike for PacBio, plastome assemblies based solely on Nanopore reads are rarely found, due to their high error rate and non-random error profile. However, the actual quality decline connected to their use has rarely been quantified. Furthermore, no study has employed reference-based assembly using Nanopore reads, which is common with Illumina data. Using Leucanthemum Mill. as an example, we compared the sequence quality of seven chloroplast genome assemblies of the same species, using combinations of two sequencing platforms and three analysis pipelines. In addition, we assessed the factors which might influence Nanopore assembly quality during sequence generation and bioinformatic processing. The consensus sequence derived from de novo assembly of Nanopore data had a sequence identity of 99.59% compared to Illumina short-read de novo assembly. Most of the errors detected were indels (81.5%), and a large majority of them is part of homopolymer regions. The quality of reference-based assembly is heavily dependent upon the choice of a close-enough reference. When using a reference with 0.83% sequence divergence from the studied species, mapping of Nanopore reads results in a consensus comparable to that from Nanopore de novo assembly, and of only slightly inferior quality compared to a reference-based assembly with Illumina data. For optimal de novo assembly of Nanopore data, appropriate filtering of contaminants and chimeric sequences, as well as employing moderate read coverage, is essential. Based on these results, we conclude that Nanopore long reads are a suitable alternative to Illumina short reads in plastome phylogenomics. Few errors remain in the finalized assembly, which can be easily masked in phylogenetic analyses without loss in analytical accuracy. The easily applicable and cost-effective technology might warrant more attention by researchers dealing with plant chloroplast genomes.
Collapse
Affiliation(s)
- Agnes Scheunert
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Marco Dorfner
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Thomas Lingl
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Cobb NS, Gall LF, Zaspel JM, Dowdy NJ, McCabe LM, Kawahara AY. Assessment of North American arthropod collections: prospects and challenges for addressing biodiversity research. PeerJ 2019; 7:e8086. [PMID: 31788358 PMCID: PMC6882419 DOI: 10.7717/peerj.8086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a "vast hidden treasure trove" of biodiversity -95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation's decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research.
Collapse
Affiliation(s)
- Neil S. Cobb
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Lawrence F. Gall
- Entomology Division, Yale Peabody Museum of Natural History, New Haven, CT, United States of America
| | - Jennifer M. Zaspel
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States of America
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Nicolas J. Dowdy
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States of America
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States of America
| | - Lindsie M. McCabe
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Akito Y. Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
21
|
|
22
|
Dodsworth S, Pokorny L, Johnson MG, Kim JT, Maurin O, Wickett NJ, Forest F, Baker WJ. Hyb-Seq for Flowering Plant Systematics. TRENDS IN PLANT SCIENCE 2019; 24:887-891. [PMID: 31477409 DOI: 10.1016/j.tplants.2019.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 05/21/2023]
Abstract
High-throughput DNA sequencing (HTS) presents great opportunities for plant systematics, yet genomic complexity needs to be reduced for HTS to be effectively applied. We highlight Hyb-Seq as a promising approach, especially in light of the recent development of probes enriching 353 low-copy nuclear genes from any flowering plant taxon.
Collapse
Affiliation(s)
- Steven Dodsworth
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK; School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK.
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK; Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; Chicago Botanic Garden, Glencoe, IL 60022, USA
| | - Jan T Kim
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK
| | - Norman J Wickett
- Chicago Botanic Garden, Glencoe, IL 60022, USA; Program in Plant Biology and Conservation, Northwestern University, Evanston, IL 60208, USA
| | - Felix Forest
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK
| | | |
Collapse
|
23
|
Brewer GE, Clarkson JJ, Maurin O, Zuntini AR, Barber V, Bellot S, Biggs N, Cowan RS, Davies NMJ, Dodsworth S, Edwards SL, Eiserhardt WL, Epitawalage N, Frisby S, Grall A, Kersey PJ, Pokorny L, Leitch IJ, Forest F, Baker WJ. Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:1102. [PMID: 31620145 PMCID: PMC6759688 DOI: 10.3389/fpls.2019.01102] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/12/2019] [Indexed: 05/03/2023]
Abstract
The world's herbaria collectively house millions of diverse plant specimens, including endangered or extinct species and type specimens. Unlocking genetic data from the typically highly degraded DNA obtained from herbarium specimens was difficult until the arrival of high-throughput sequencing approaches, which can be applied to low quantities of severely fragmented DNA. Target enrichment involves using short molecular probes that hybridise and capture genomic regions of interest for high-throughput sequencing. In this study on herbariomics, we used this targeted sequencing approach and the Angiosperms353 universal probe set to recover up to 351 nuclear genes from 435 herbarium specimens that are up to 204 years old and span the breadth of angiosperm diversity. We show that on average 207 genes were successfully retrieved from herbarium specimens, although the mean number of genes retrieved and target enrichment efficiency is significantly higher for silica gel-dried specimens. Forty-seven target nuclear genes were recovered from a herbarium specimen of the critically endangered St Helena boxwood, Mellissia begoniifolia, collected in 1815. Herbarium specimens yield significantly less high-molecular-weight DNA than silica gel-dried specimens, and genomic DNA quality declines with sample age, which is negatively correlated with target enrichment efficiency. Climate, taxon-specific traits, and collection strategies additionally impact target sequence recovery. We also detected taxonomic bias in targeted sequencing outcomes for the 10 most numerous angiosperm families that were investigated in depth. We recommend that (1) for species distributed in wet tropical climates, silica gel-dried specimens should be used preferentially; (2) for species distributed in seasonally dry tropical climates, herbarium and silica gel-dried specimens yield similar results, and either collection can be used; (3) taxon-specific traits should be explored and established for effective optimisation of taxon-specific studies using herbarium specimens; (4) all herbarium sheets should, in future, be annotated with details of the preservation method used; (5) long-term storage of herbarium specimens should be in stable, low-humidity, and low-temperature environments; and (6) targeted sequencing with universal probes, such as Angiosperms353, should be investigated closely as a new approach for DNA barcoding that will ensure better exploitation of herbarium specimens than traditional Sanger sequencing approaches.
Collapse
Affiliation(s)
- Grace E. Brewer
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - James J. Clarkson
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Olivier Maurin
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Vanessa Barber
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Sidonie Bellot
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Nicola Biggs
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Robyn S. Cowan
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Nina M. J. Davies
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, Luton, BedfordshireUnited Kingdom
| | - Sara L. Edwards
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Wolf L. Eiserhardt
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Bioscience, Aarhus University, Ny Munkegade Aarhus C, Denmark
| | | | - Sue Frisby
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Aurélie Grall
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Paul J. Kersey
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Lisa Pokorny
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Ilia J. Leitch
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Félix Forest
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - William J. Baker
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
24
|
Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, Kantar MB, Soto Gomez M, Graham SW, Gravendeel B, Wilkin P, Leitch IJ. A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens. FRONTIERS IN PLANT SCIENCE 2019; 10:937. [PMID: 31396248 PMCID: PMC6667659 DOI: 10.3389/fpls.2019.00937] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Whole genome duplication (WGD) events are common in many plant lineages, but the ploidy status and possible occurrence of intraspecific ploidy variation are unknown for most species. Standard methods for ploidy determination are chromosome counting and flow cytometry approaches. While flow cytometry approaches typically use fresh tissue, an increasing number of studies have shown that recently dried specimens can be used to yield ploidy data. Recent studies have started to explore whether high-throughput sequencing (HTS) data can be used to assess ploidy levels by analyzing allelic frequencies from single copy nuclear genes. Here, we compare different approaches using a range of yam (Dioscorea) tissues of varying ages, drying methods and quality, including herbarium tissue. Our aims were to: (1) explore the limits of flow cytometry in estimating ploidy level from dried samples, including herbarium vouchers collected between 1831 and 2011, and (2) optimize a HTS-based method to estimate ploidy by considering allelic frequencies from nuclear genes obtained using a target-capture method. We show that, although flow cytometry can be used to estimate ploidy levels from herbarium specimens collected up to fifteen years ago, success rate is low (5.9%). We validated our HTS-based estimates of ploidy using 260 genes by benchmarking with dried samples of species of known ploidy (Dioscorea alata, D. communis, and D. sylvatica). Subsequently, we successfully applied the method to the 85 herbarium samples analyzed with flow cytometry, and successfully provided results for 91.7% of them, comprising species across the phylogenetic tree of Dioscorea. We also explored the limits of using this HTS-based approach for identifying high ploidy levels in herbarium material and the effects of heterozygosity and sequence coverage. Overall, we demonstrated that ploidy diversity within and between species may be ascertained from historical collections, allowing the determination of polyploidization events from samples collected up to two centuries ago. This approach has the potential to provide insights into the drivers and dynamics of ploidy level changes during plant evolution and crop domestication.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Laboratori de Botànica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Science and Technology Faculty, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | |
Collapse
|
25
|
Olivares G, Peña-Ahumada B, Peñailillo J, Payacán C, Moncada X, Saldarriaga-Córdoba M, Matisoo-Smith E, Chung KF, Seelenfreund D, Seelenfreund A. Human mediated translocation of Pacific paper mulberry [Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae)]: Genetic evidence of dispersal routes in Remote Oceania. PLoS One 2019; 14:e0217107. [PMID: 31216291 PMCID: PMC6583976 DOI: 10.1371/journal.pone.0217107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
Paper mulberry, Broussonetia papyrifera (L.) L’Hér. ex Vent. (Moraceae), a dioecious species, was transported by humans from Taiwan to the islands of Remote Oceania. Its introduction and cultivation in Remote Oceania was intentional due to its cultural importance as a fiber source for barkcloth textiles. The aim of this study was to explore the genetic diversity and structure of paper mulberry populations within Remote Oceania in order to infer dispersal patterns that may reflect past human interaction among island groups. We present the integrated analysis of 380 samples (313 contemporary and 67 herbarium specimens) collected in Near and Remote Oceania. Genetic characterization was based on a set of ten microsatellites developed for B. papyrifera and complemented with the analysis of the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker and the chloroplast ndhF–rpl32 intergenic spacer. Microsatellite data identify a total of 64 genotypes, despite this being a clonally propagated crop, and show three major dispersal hubs within Remote Oceania, centered on the islands of Fiji, Tonga, and Pitcairn. Of 64 genotypes identified, 55 correspond to genotypes associated to female-sexed plants that probably descend from plants introduced by the prehistoric Austronesian-speaking voyagers. The ratio of accessions to genotypes between herbarium and contemporary samples, suggests recent loss of genetic diversity. In addition to the chloroplast haplotypes described previously, we detected two new haplotypes within Remote Oceania both originating in Taiwan. This is the first study of a commensal species to show genetic structuring within Remote Oceania. In spite of the genetic bottleneck, the presence of only one sex, a timespan of less than 5000 years, and asexual propagation of this crop in Remote Oceania, we detect genetic diversity and regional structuring. These observations suggest specific migration routes between island groups within Remote Oceania.
Collapse
Affiliation(s)
- Gabriela Olivares
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Bárbara Peña-Ahumada
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Johany Peñailillo
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudia Payacán
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Moncada
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago, Chile
| | | | - Kuo-Fang Chung
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Daniela Seelenfreund
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail: (DS); (AS)
| | - Andrea Seelenfreund
- Escuela de Antropología, Facultad de Ciencias Sociales, Universidad Academia de Humanismo Cristiano, Santiago, Chile
- * E-mail: (DS); (AS)
| |
Collapse
|
26
|
Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenäs L, Bell NE, Shevock JR, Aguero B, Quandt D, Wickett NJ, Shaw AJ, Goffinet B. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat Commun 2019; 10:1485. [PMID: 30940807 PMCID: PMC6445109 DOI: 10.1038/s41467-019-09454-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.
Collapse
Affiliation(s)
- Yang Liu
- Fairy Lake Botanical Garden & Chinese Academy of Sciences, Shenzhen, 518004, China
- BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319, Faro, Portugal
| | - Rafael Medina
- Department of Biology, Augustana College, Rock Island, IL, 61201, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | | - Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Stockholm, Box 50007, 10405, Sweden
| | - Neil E Bell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James R Shevock
- California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, 53115, Germany
| | | | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
27
|
Sablok G, Amiryousefi A, He X, Hyvönen J, Poczai P. Sequencing the Plastid Genome of Giant Ragweed ( Ambrosia trifida, Asteraceae) From a Herbarium Specimen. FRONTIERS IN PLANT SCIENCE 2019; 10:218. [PMID: 30873197 PMCID: PMC6403193 DOI: 10.3389/fpls.2019.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
We report the first plastome sequence of giant ragweed (Ambrosia trifida); with this new genome information, we assessed the phylogeny of Asteraceae and the transcriptional profiling against glyphosate resistance in giant ragweed. Assembly and genic features show a normal angiosperm quadripartite plastome structure with no signatures of deviation in gene directionality. Comparative analysis revealed large inversions across the plastome of giant ragweed and the previously sequenced members of the plant family. Asteraceae plastid genomes contain two inversions of 22.8 and 3.3 kb; the former is located between trnS-GCU and trnG-UCC genes, and the latter between trnE-UUC and trnT-GGU genes. The plastid genome sequences of A. trifida and the related species, Ambrosia artemisiifolia, are identical in gene content and arrangement, but they differ in length. The phylogeny is well-resolved and congruent with previous hypotheses about the phylogenetic relationship of Asteraceae. Transcriptomic analysis revealed divergence in the relative expressions at the exonic and intronic levels, providing hints toward the ecological adaptation of the genus. Giant ragweed shows various levels of glyphosate resistance, with introns displaying higher expression patterns at resistant time points after the assumed herbicide treatment.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xiaolan He
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Herbgenomics: A stepping stone for research into herbal medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 62:913-920. [DOI: 10.1007/s11427-018-9472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
|
29
|
Mosa KA, Gairola S, Jamdade R, El-Keblawy A, Al Shaer KI, Al Harthi EK, Shabana HA, Mahmoud T. The Promise of Molecular and Genomic Techniques for Biodiversity Research and DNA Barcoding of the Arabian Peninsula Flora. FRONTIERS IN PLANT SCIENCE 2019; 9:1929. [PMID: 30719028 PMCID: PMC6348273 DOI: 10.3389/fpls.2018.01929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The Arabian Peninsula is known to have a comprehensive and rich endowment of unique and genetically diverse plant genetic resources. Analysis and conservation of biological diversity is a crucial issue to the whole Arabian Peninsula. The rapid and accurate delimitation and identification of a species is crucial to genetic diversity analysis and the first critical step in the assessment of distribution, population abundance and threats related to a particular target species. During the last two decades, classical strategies of evaluating genetic variability, such as morphology and physiology, have been greatly complemented by phylogenetic, taxonomic, genetic diversity and breeding research molecular studies. At present, initiatives are taking place around the world to generate DNA barcode libraries for vascular plant flora and to make these data available in order to better understand, conserve and utilize biodiversity. The number of herbarium collection-based plant evolutionary genetics and genomics studies being conducted has been increasing worldwide. The herbaria provide a rich resource of already preserved and identified material, and these as well as freshly collected samples from the wild can be used for creating a reference DNA barcode library for the vascular plant flora of a region. This review discusses the main molecular and genomic techniques used in plant identification and biodiversity analysis. Hence, we highlight studies emphasizing various molecular techniques undertaken during the last 10 years to study the plant biodiversity of the Arabian Peninsula. Special emphasis on the role of DNA barcoding as a powerful tool for plant biodiversity analysis is provided, along with the crucial role of herbaria in creating a DNA barcode library.
Collapse
Affiliation(s)
- Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Sanjay Gairola
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, Sharjah, United Arab Emirates
| | - Rahul Jamdade
- Plant Biotechnology Laboratory, Sharjah Research Academy, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Eman Khalid Al Harthi
- Plant Biotechnology Laboratory, Sharjah Research Academy, Sharjah, United Arab Emirates
| | - Hatem A. Shabana
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, Sharjah, United Arab Emirates
| | - Tamer Mahmoud
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Dodsworth S, Guignard MS, Christenhusz MJM, Cowan RS, Knapp S, Maurin O, Struebig M, Leitch AR, Chase MW, Forest F. Potential of Herbariomics for Studying Repetitive DNA in Angiosperms. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
|
32
|
Di Donato A, Filippone E, Ercolano MR, Frusciante L. Genome Sequencing of Ancient Plant Remains: Findings, Uses and Potential Applications for the Study and Improvement of Modern Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:441. [PMID: 29719544 PMCID: PMC5914272 DOI: 10.3389/fpls.2018.00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
The advent of new sequencing technologies is revolutionizing the studies of ancient DNA (aDNA). In the last 30 years, DNA extracted from the ancient remains of several plant species has been explored in small-scale studies, contributing to understand the adaptation, and migration patterns of important crops. More recently, NGS technologies applied on aDNA have opened up new avenues of research, allowing investigation of the domestication process on the whole-genome scale. Genomic approaches based on genome-wide and targeted sequencing have been shown to provide important information on crop evolution and on the history of agriculture. Huge amounts of next-generation sequencing (NGS) data offer various solutions to overcome problems related to the origin of the material, such as degradation, fragmentation of polynucleotides, and external contamination. Recent advances made in several crop domestication studies have boosted interest in this research area. Remains of any nature are potential candidates for aDNA recovery and almost all the analyses that can be made on fresh DNA can also be performed on aDNA. The analysis performed on aDNA can shed light on many phylogenetic questions concerning evolution, domestication, and improvement of plant species. It is a powerful instrument to reconstruct patterns of crop adaptation and migration. Information gathered can also be used in many fields of modern agriculture such as classical breeding, genome editing, pest management, and product promotion. Whilst unlocking the hidden genome of ancient crops offers great potential, the onus is now on the research community to use such information to gain new insight into agriculture.
Collapse
|
33
|
Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers AN, Savka MA, Hudson AO. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick ( Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis. PeerJ 2017; 5:e4030. [PMID: 29158974 PMCID: PMC5691792 DOI: 10.7717/peerj.4030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology-School of Life and Environmental Sciences, Deakin University, Victoria, Australia.,Genomics Facility, Monash University, Selangor, Malaysia.,School of Science, Monash University, Selangor, Malaysia
| | - Bolaji N Thomas
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nicole T Cavanaugh
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Grace H Morales
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Ashley N Mayers
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
34
|
Green EJ, Speller CF. Novel Substrates as Sources of Ancient DNA: Prospects and Hurdles. Genes (Basel) 2017; 8:E180. [PMID: 28703741 PMCID: PMC5541313 DOI: 10.3390/genes8070180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Following the discovery in the late 1980s that hard tissues such as bones and teeth preserve genetic information, the field of ancient DNA analysis has typically concentrated upon these substrates. The onset of high-throughput sequencing, combined with optimized DNA recovery methods, has enabled the analysis of a myriad of ancient species and specimens worldwide, dating back to the Middle Pleistocene. Despite the growing sophistication of analytical techniques, the genetic analysis of substrates other than bone and dentine remain comparatively "novel". Here, we review analyses of other biological substrates which offer great potential for elucidating phylogenetic relationships, paleoenvironments, and microbial ecosystems including (1) archaeological artifacts and ecofacts; (2) calcified and/or mineralized biological deposits; and (3) biological and cultural archives. We conclude that there is a pressing need for more refined models of DNA preservation and bespoke tools for DNA extraction and analysis to authenticate and maximize the utility of the data obtained. With such tools in place the potential for neglected or underexploited substrates to provide a unique insight into phylogenetics, microbial evolution and evolutionary processes will be realized.
Collapse
Affiliation(s)
- Eleanor Joan Green
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - Camilla F Speller
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|