1
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
2
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
3
|
Xia YY, Yang X, Zhang W, Fu Y, Cai Z, Cao P, Zhu JB. A Facile Approach to Construct Novel Polyesters as Soft Midblock for Thermoplastic Elastomers. Chemistry 2024; 30:e202401727. [PMID: 38979891 DOI: 10.1002/chem.202401727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438±204 %), tensile strength (23.5±1.7 MPa), and outstanding elastic recovery (>88 %).
Collapse
Affiliation(s)
- Yun-Yun Xia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| | - Wei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Fu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| |
Collapse
|
4
|
Petousis M, Michailidis N, Korlos A, Papadakis V, David C, Sagris D, Mountakis N, Argyros A, Valsamos J, Vidakis N. Biomedical Composites of Polycaprolactone/Hydroxyapatite for Bioplotting: Comprehensive Interpretation of the Reinforcement Course. Polymers (Basel) 2024; 16:2400. [PMID: 39274033 PMCID: PMC11396925 DOI: 10.3390/polym16172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Robust materials in medical applications are sought after and researched, especially for 3D printing in bone tissue engineering. Poly[ε-caprolactone] (PCL) is a commonly used polymer for scaffolding and other medical uses. Its strength is a drawback compared to other polymers. Herein, PCL was mixed with hydroxyapatite (HAp). Composites were developed at various concentrations (0.0-8.0 wt. %, 2.0 step), aiming to enhance the strength of PCL with a biocompatible additive in bioplotting. Initially, pellets were derived from the shredding of filaments extruded after mixing PCL and HAp at predetermined quantities for each composite. Specimens were then manufactured by bioplotting 3D printing. The samples were tested for their thermal and rheological properties and were also mechanically, morphologically, and chemically examined. The mechanical properties included tensile and flexural investigations, while morphological and chemical examinations were carried out employing scanning electron microscopy and energy dispersive spectroscopy, respectively. The structure of the manufactured specimens was analyzed using micro-computed tomography with regard to both their dimensional deviations and voids. PCL/HAp 6.0 wt. % was the composite that showed the most enhanced mechanical (14.6% strength improvement) and structural properties, proving the efficiency of HAp as a reinforcement filler in medical applications.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B', 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Apostolos Korlos
- Department of Industrial Engineering and Management, International Hellenic University, 14th km Thessaloniki-N. Moudania, Thermi, 57001 Thessaloniki, Greece
| | - Vassilis Papadakis
- Department of Industrial Design and Production Engineering, University of West Attica, 12243 Athens, Greece
- Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| | - Constantine David
- Department of Mechanical Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece
| | - Dimitrios Sagris
- Department of Mechanical Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Centre, Building B', 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - John Valsamos
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
5
|
Powojska A, Mystkowski A, Gundabattini E, Mystkowska J. Spin-Coating Fabrication Method of PDMS/NdFeB Composites Using Chitosan/PCL Coating. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1973. [PMID: 38730780 PMCID: PMC11084651 DOI: 10.3390/ma17091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This paper verified the possibility of applying chitosan and/or ferulic acid or polycaprolactone (PCL)-based coatings to polydimethylsiloxane/neodymium-iron-boron (PDMS/NdFeB) composites using the spin-coating method. The surface modification of magnetic composites by biofunctional layers allows for the preparation of materials for biomedical applications. Biofunctional layered magnetic composites were obtained in three steps. The spin-coating method with various parameters (time and spin speed) was used to apply different substances to the surface of the composites. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to analyze the thickness and surface topography. The contact angle of the obtained surfaces was tested. Increasing spin speed and increasing process time for the same speed resulted in decreasing the composite's thickness. The linear and surface roughness for the prepared coatings were approximately 0.2 μm and 0.01 μm, respectively, which are desirable values in the context of biocompatibility. The contact angle test results showed that both the addition of chitosan and PCL to PDMS have reduced the contact angle θ from 105° for non-coated composite to θ~59-88° depending on the coating. The performed modifications gave promising results mainly due to making the surface hydrophilic, which is a desirable feature of projected biomaterials.
Collapse
Affiliation(s)
- Anna Powojska
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Arkadiusz Mystkowski
- Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland;
| | - Edison Gundabattini
- Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India;
| | - Joanna Mystkowska
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| |
Collapse
|
6
|
Meelua W, Linnolahti M, Jitonnom J. Mechanism of cationic ring-opening polymerisation of ε-caprolactone using metallocene/borate catalytic systems: a DFT and NCI study on chain initiation, propagation and termination. RSC Adv 2024; 14:11715-11727. [PMID: 38605894 PMCID: PMC11008195 DOI: 10.1039/d4ra01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
We present a comprehensive DFT investigation on the cationic ring-opening polymerisation (CROP) of ε-caprolactone (CL) using zirconocene/borate catalyst systems. All possible pathways of the interaction between cationic species [Cp2ZrMe+] and counteranions, [A-] = [MeB(C6F5)3]- and [B(C6F5)4]-, were examined during chain initiation, propagation, and termination steps. The calculations reveal an active chain-end mechanism with O-alkyl bond cleavage of the polymerisation. The catalytic performance of the two counteranions is found to be identical, and they influence the initial process through stabilisation of the cationic species via non-covalent interactions (NCI), with the [MeB(C6F5)3]- anion stabilising the catalyst-monomer complex more effectively than the [B(C6F5)4]- anion by 24.3 kJ mol-1. The first two propagations are likely the rate-determining step, with calculated free-energy barriers of 61.4-71.2 and 73.9-80.6 kJ mol-1 with and without the anions (A-), respectively. The presence of the counteranion significantly affects the third propagation rate, lowering the barriers up to 20 kJ mol-1. Comparison of the first termination and the third propagation shows that they are not competitive, with the termination being less facile. We also studied the initiation and propagation steps for the hafnocene catalyst and found that the Hf catalyst slightly favours the CL CROP in comparison to the Zr catalyst. Analysis of solvent and dispersion interaction demonstrates that both factors play an important role in the process. NCI analysis reveals weak (van der Waals) interactions at the contacts between the cationic species and the counteranions during the reaction course. Overall, our results offer insights into the structures and interactions involved in the polymerisation.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao Phayao 56000 Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao Phayao 56000 Thailand
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland Joensuu Campus Yliopistokatu 7 FI-80100 Joensuu Finland
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao Phayao 56000 Thailand
| |
Collapse
|
7
|
Meelua W, Wanjai T, Jitonnom J. Computational evaluation of zirconocene catalysts for ε-caprolactone cationic ring-opening polymerization. Sci Rep 2024; 14:3952. [PMID: 38368433 PMCID: PMC10874422 DOI: 10.1038/s41598-024-54157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
This quantum chemical study presents the ligand effect and a structure-property relationship in the cationic ring-opening polymerization (CROP) of ε-caprolactone using zirconocene catalysts. We first examined the effects of catalyst structure on the initiation and chain propagation steps of the CROP process. A total of 54 catalyst structures were investigated to understand the influence of the ligand structure on the stability of the catalyst-monomer complex and polymerization activity. The properties of the catalysts were analyzed in terms of ancillary ligands, ligand substituents, and bridging units. Calculations showed that the polymerization follows a proposed cationic mechanism, with ring opening occurring via alkyl-bond cleavage. A correlation between complex stability and activation energy was also observed, with ligand substituents dominating in both steps. While the ancillary ligands directly affect the HOMO energy level, the bridges are mainly responsible for the catalyst geometries, resulting in reduced complex stability and higher activation energy for the propagation step. This study contributes to a better understanding of the structural characteristics of zirconocene catalysts, which offers guidance for improving CROP activities in lactone polymerization.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Tanchanok Wanjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand.
| |
Collapse
|
8
|
Majid MA, Ullah H, Alshehri AM, Tabassum R, Aleem A, Khan AUR, Batool Z, Nazir A, Bibi I. Development of novel polymer haemoglobin based particles as an antioxidant, antibacterial and an oxygen carrier agents. Sci Rep 2024; 14:3031. [PMID: 38321082 PMCID: PMC10847508 DOI: 10.1038/s41598-024-53548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
This innovative work aims to develop highly biocompatible and degradable nanoparticles by encapsulating haemoglobin (Hb) within poly-ε-caprolactone for novel biomedical applications. We used a modified double emulsion solvent evaporation method to fabricate the particles. A Scanning electron microscope (SEM) characterized them for surface morphology. Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-visible spectroscopies (UV-visible) elucidated preserved chemical and biological structure of encapsulated haemoglobin. The airproof equilibrium apparatus obtained the oxygen-carrying capacity and P50 values. The DPPH assay assessed free radical scavenging potential. The antibacterial properties were observed using four different bacterial strains by disk diffusion method. The MTT assay investigates the cytotoxic effects on mouse fibroblast cultured cell lines (L-929). The MTT assay showed that nanoparticles have no toxicity over large concentrations. The well-preserved structure of Hb within particles, no toxicity, high oxygen affinity, P50 value, and IC50 values open the area of new research, which may be used as artificial oxygen carriers, antioxidant, and antibacterial agents, potential therapeutic agents as well as drug carrier particles to treat the cancerous cells. The novelty of this work is the antioxidant and antibacterial properties of developed nanoparticles are not been reported yet. Results showed that the prepared particles have strong antioxidant and antibacterial potential.
Collapse
Affiliation(s)
- Muhammad Abdul Majid
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafeez Ullah
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Ali Mohammad Alshehri
- Department of Physics, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rukhsana Tabassum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Aleem
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asad Ur Rehman Khan
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahida Batool
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aalia Nazir
- Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
9
|
de Carvalho Moreira LMC, de Sousa Silva ABA, de Araújo Medeiros K, Oshiro Júnior JA, da Silva DTC, de Lima Damasceno BPG. Effectiveness In Vivo and In Vitro of Polymeric Nanoparticles as a Drug Release System in the Treatment of Leishmaniasis. Curr Med Chem 2024; 31:286-307. [PMID: 36683370 DOI: 10.2174/0929867330666230120163543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 01/24/2023]
Abstract
Leishmaniasis is a neglected disease caused by the parasite of the genus Leishmania. Current treatment regimens are obsolete and cause several side effects, promoting poor patient compliance, in addition to the vast majority already having the potential for resistance. Therefore, polymeric nanoparticles emerge as one of the viable alternatives to overcome existing limitations, through passive or active vectorization. This review aims to summarize the latest studies of polymeric nanoparticles as an alternative treatment for leishmaniasis. In the first section, the main pharmacokinetic and pharmacodynamic challenges of current drugs are reported. The second section details how nanoparticles with and without functionalization are efficient in the treatment of leishmaniasis, discussing the characteristics of the polymer in the formulation. In this way, polymeric nanoparticles can improve the physicochemical properties of leishmanicidal drugs, improving solubility and stability, as well as improve the release of these drugs, directly or indirectly reaching monocytes/macrophages. 64.28% drugs were focused on the treatment of visceral leishmaniasis, and 28.57% on cutaneous leishmaniasis. The most chosen polymers in the literature are chitosan (35.71%) and PLGA (35.71%), the others represented 14.30% drugs, with all able to manage the drug release and increase the in vitro and/or in vivo efficacy of the original molecule. However, there are several barriers for these nanoformulations to cross laboratory research and is necessary more in-depth studies about the metabolites and degradation pathways of the polymers used in the formulations and plasma proteomics studies.
Collapse
Affiliation(s)
- Lívia Maria Coelho de Carvalho Moreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | | | - Kaline de Araújo Medeiros
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | - João Augusto Oshiro Júnior
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | - Dayanne Tomaz Casimiro da Silva
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
- Laboratório de Desenvolvimento e Caracterização de Produtos Farmacêuticos, Universidade Estadual da Paraíba, Campina Grande, PB, Brasil
| |
Collapse
|
10
|
Dodangeh A, Hoveizi E, Tabatabaei SRF. Simultaneous Administration of Berberine and Transplantation of Endometrial Stem Cell-Derived Insulin Precursor Cells on a Nanofibrous Scaffold to Treat Diabetes Mellitus in Mice. Mol Neurobiol 2023; 60:7032-7043. [PMID: 37526896 DOI: 10.1007/s12035-023-03540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Today, significant success has been achieved in treating diabetes with cell therapy derived from various sources of stem and progenitors. The replacement of beta cells is one of the new diabetes treatment methods. To this end, the production of pancreatic beta precursors in cell culture has created an important research field for diabetes treatment. Endometrial stem cells were isolated using an enzymatic method, and after their identity was confirmed using a flow cytometry and differentiation potential assay, the isolated cells were cultured on an electrospun PCL/CS scaffold. Endometrial cells were differentiated into insulin-producing cells (IPCs), and gene expression was analyzed using the qRT-PCR and immunofluorescence to confirm the creation of IPCs. Then, IPCs on the scaffold along with berberine were applied to 5 groups of diabetic mice, and after 6 weeks, insulin, blood glucose, and weight of the animals were measured. The findings revealed that pancreatic markers were significantly expressed in IPCs compared to control cells. In addition, when compared to the control group and scaffolds, the receiving group of IPCs on scaffolds had a significant improvement (p ≤ 0.0015), and this improvement increased with the addition of berberine (decrease in blood sugar (133 mg/dL), and an increase in weight (5/39 g) and insulin (2.29 MIU/L). Thus, tissue engineering is a promising new strategy for treating diabetes and can be used in the future for cell therapy and suitable drugs for diabetic patients.
Collapse
Affiliation(s)
- Alireza Dodangeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | | |
Collapse
|
11
|
Goreninskii S, Volokhova A, Frolova A, Buldakov M, Cherdyntseva N, Choynzonov E, Sudarev E, Filimonov V, Tverdokhlebov S, Bolbasov E. Prolonged and Controllable Release of Doxorubicin Hydrochloride from the Composite Electrospun Poly(ε-Caprolactone)/Polyvinylpyrrolidone Scaffolds. J Pharm Sci 2023; 112:2752-2755. [PMID: 37673173 DOI: 10.1016/j.xphs.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Burst release, typical for the drug-loaded electrospun poly(ε-caprolactone) (PCL) scaffolds is unfavorable in case of cytostatics due to the toxic levels reached during the initial implantation period. In the present short communication, we report an unexpected ability of the composite scaffolds made of PCL and water-soluble polyvinylpyrrolidone (PVP) to provide long-term release of widely used anti-cancer drug doxorubicin hydrochloride (DOX-HCl). That effect was observed for electrospun DOX-HCl-loaded composite scaffolds based on PCL and PVP with various mass ratios (100/0, 95/5, 90/10, 75/25 and 50/50). After the morphology and water contact angle studies, it was concluded that PVP content has no effect on the average fiber diameter, while PVP content higher 10 wt. % changes the hydrophobic character of the scaffolds surface (water contact angle of 123.9 ± 3.5°) to superhydrophilic (water contact angle of 0°). Despite the dramatic change in water wettability, by high performance liquid chromatography (HPLC), it was revealed that the PVP content in the scaffolds reduces the DOX-HCl release rate under short (first hours) and long-term (during 1 month) exposure to phosphate buffer saline (PBS). These results are in good agreement with in vitro studies, in which the viability of HeLa cervical cancer cells was higher after 24 h of culture with scaffolds with high PVP content.
Collapse
Affiliation(s)
- Semen Goreninskii
- Onconanotheranostics laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow, Russian Federation; B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Apollinariya Volokhova
- B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation; Department of Translational Cellular and Molecular Biomedicine, Chemical Faculty, National Research Tomsk State University, Russian Federation
| | - Anastasia Frolova
- Biological Institute, Tomsk State University, Tomsk, Russian Federation; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Mikhail Buldakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nadezhda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Evgeny Sudarev
- N.M. Kizhner Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Victor Filimonov
- N.M. Kizhner Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Sergei Tverdokhlebov
- B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation.
| | - Evgeny Bolbasov
- B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation; V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russian Federation.
| |
Collapse
|
12
|
van Mechelen RJS, Wolters JEJ, Fredrich S, Bertens CJF, Gijbels MJJ, Schenning APHJ, Pinchuk L, Gorgels TGMF, Beckers HJM. A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery. Macromol Biosci 2023; 23:e2300075. [PMID: 37249127 DOI: 10.1002/mabi.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jarno E J Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Sebastian Fredrich
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Marion J J Gijbels
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Technical University of Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Leonard Pinchuk
- InnFocus Inc. a Santen company, 12415 S.W. 136 Avenue, Miami, FL, 33186, USA
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
13
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
14
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
15
|
Mares-Bou S, Serrano MA, Gómez-Tejedor JA. Core-Shell Polyvinyl Alcohol (PVA) Base Electrospinning Microfibers for Drug Delivery. Polymers (Basel) 2023; 15:polym15061554. [PMID: 36987334 PMCID: PMC10056133 DOI: 10.3390/polym15061554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, electrospun membranes were developed for controlled drug release applications. Both uniaxial Polyvinyl alcohol (PVA) and coaxial fibers with a PVA core and a poly (L-lactic acid) (PLLA) and polycaprolactone (PCL) coating were produced with different coating structures. The best conditions for the manufacture of the fibers were also studied and their morphology was analyzed as a function of the electrospinning parameters. Special attention was paid to the fiber surface morphology of the coaxial fibers, obtaining both porous and non-porous coatings. Bovine serum albumin (BSA) was used as the model protein for the drug release studies and, as expected, the uncoated fibers were determined to have the fastest release kinetics. Different release rates were obtained for the coated fibers, which makes this drug release system suitable for different applications according to the release time required.
Collapse
Affiliation(s)
- Sofía Mares-Bou
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María-Antonia Serrano
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Antonio Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Instituto de Salud Carlos III, 46022 Valencia, Spain
| |
Collapse
|
16
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
17
|
Youssef SH, Kim S, Khetan R, Afinjuomo F, Song Y, Garg S. The development of 5-fluorouracil biodegradable implants: A comparative study of PCL/PLGA blends. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
18
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
19
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
20
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications. Multifunctional bioactive citrate-based biomaterials have broad applications in regenerative medicine. Recent advances in multifunctional design and biomedical applications of citate-based polymers are summarized. Future challenge of citrate-based polymers in various biomedical applications are discussed.
Collapse
|
21
|
Chowdhary SJ, Chowdhary A, Agrawal GP, Mody N, Jain A. Biodegradable concanavalin A functionalized polycaprolactone nanoparticle: A promising avenue for cancer therapy. J Cancer Res Ther 2023; 19:S691-S700. [PMID: 38384041 DOI: 10.4103/jcrt.jcrt_278_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/31/2022] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Receptor-based tumor-selective delivery of therapeutic efficacy and therapeutic index of cytotoxic drugs that exhibit dose-limiting toxicity is observed. Concanavalin A (Con A) was selected as the ligand for the proposed system, which was appended to the polycaprolactone nanoparticles (NPs) carrying the drug to be a very efficient approach for the treatment of cancer. METHODS Preparation of plain polycaprolactone nanoparticles was carried out employing the emulsion diffusion evaporation technique. Con A was conjugated using carbodiimide chemistry by coupling -COOH group on the surface of nanoparticles. The paclitaxel-loaded Con A-conjugated nanoparticles were further subjected to the characterization of various parameters, that is, surface morphology, particle size, and polydispersity index. In vitro drug release study of both the formulations (plain & conjugated) was done using a dialysis tube up to 48 h in phosphate buffer (pH 7.4). RESULTS Studies done in xenograft models evidently propose a dose-dependent cytotoxicity response, that is, shrink in % cell growth with increase in the concentration of the drug. The fluorescence photomicrograph clearly revealed the access of the Con A-conjugated nanoparticles to the tumor. A noteworthy biodistribution difference of the paclitaxel from prepared systems was observed. At the same time, Con A-coupled nanoparticles increased the accumulation of paclitaxel in the tumor cells. CONCLUSIONS Hence, the Con A-conjugated nanoparticles formulation as compared to uncoupled solid lipid nanoparticles formulation and free drug solution showed nearly two times higher uptake because of the lectin receptors on the surface of tumors. Hence, it was envisaged to design polymeric nanoparticles which would be administered intravenously for better therapeutic efficacy.
Collapse
Affiliation(s)
- Sapna Jain Chowdhary
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP, India
| | | | | | | | | |
Collapse
|
22
|
Nimbalkar Y, Gharat SA, Tanna V, Nikam VS, Nabar S, Sawarkar SP. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Crit Rev Biomed Eng 2023; 51:21-58. [PMID: 37560878 DOI: 10.1615/critrevbiomedeng.2023043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Bone is one of the most complex, inaccessible body structures, responsible for calcium storage and haematopoiesis. The second highest cause of death across the world is cancer. Amongst all the types of cancers, bone cancer treatment modalities are limited due to the structural complexity and inaccessibility of bones. The worldwide incidence of bone diseases and bone defects due to cancer, infection, trauma, age-related bone degeneration is increasing. Currently different conventional therapies are available for bone cancer such as chemotherapy, surgery and radiotherapy, but they have several disadvantages associated with them. Nanomedicine is being extensively researched as viable therapeutics to mitigate drug resistance in cancer therapy and promote bone regeneration. Several natural polymers such as chitosan, dextran, alginate, hyaluronic acid, and synthetic polymers like polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone are investigated for their application in nanomedicine for bone cancer treatment and bone regeneration. Nanocarriers have shown promising results in preclinical experimental studies. However, they still face a major drawback of inadequate targetability. The paper summarizes the status of research and the progress made so far in modifications and functionalization of natural polymers for improving their site specificity and targeting for effective treatment of bone cancer and enhancing bone regeneration.
Collapse
Affiliation(s)
- Yogesh Nimbalkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Sankalp A Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vandana S Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Kondhwa, S.P. Pune University, Pune 411048, India
| | - Swapna Nabar
- Radiation Medicine Centre, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| |
Collapse
|
23
|
Branched Poly( ε-caprolactone)-Based Copolyesters of Different Architectures and Their Use in the Preparation of Anticancer Drug-Loaded Nanoparticles. Int J Mol Sci 2022; 23:ijms232315393. [PMID: 36499719 PMCID: PMC9735713 DOI: 10.3390/ijms232315393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Limitations associated with the use of linear biodegradable polyesters in the preparation of anticancer nano-based drug delivery systems (nanoDDS) have turned scientific attention to the utilization of branched-chain (co-)polymers. In this context, the present study evaluates the use of novel branched poly(ε-caprolactone) (PCL)-based copolymers of different architectures for the preparation of anticancer nanoparticle (NP)-based formulations, using paclitaxel (PTX) as a model drug. Specifically, three PCL-polyol branched polyesters, namely, a three-arm copolymer based on glycerol (PCL-GLY), a four-arm copolymer based on pentaerythritol (PCL-PE), and a five-arm copolymer based on xylitol (PCL-XYL), were synthesized via ring-opening polymerization and characterized by proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), intrinsic viscosity, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy and cytotoxicity. Then, PTX-loaded NPs were prepared by an oil-in-water emulsion. The size of the obtained NPs varied from 200 to 300 nm, while the drug was dispersed in crystalline form in all formulations. High encapsulation efficiency and high yields were obtained in all cases, while FTIR analysis showed no molecular drug polymer. Finally, in vitro drug release studies showed that the studied nanocarriers significantly enhanced the dissolution rate and extent of the drug.
Collapse
|
24
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
25
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
27
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Di Luca M, Hoskins C, Corduas F, Onchuru R, Oluwasanmi A, Mariotti D, Conti B, Lamprou DA. 3D Printed Biodegradable Multifunctional Implants for Effective Breast Cancer Treatment. Int J Pharm 2022; 629:122363. [DOI: 10.1016/j.ijpharm.2022.122363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
29
|
Akkravijitkul N, Cheechana N, Rithchumpon P, Junpirom T, Limwanich W, Nalampang K, Thavornyutikarn P, Punyodom W, Meepowpan P. Scalable and Room-Temperature Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Active Lithium Tetramethylene-Tethered Bis[ N-( N'-butylimidazol-2-ylidene)] N-Heterocyclic Carbene as a Lewis Acid Organocatalyst. J Org Chem 2022; 87:12052-12064. [PMID: 36073019 DOI: 10.1021/acs.joc.2c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Lewis acid organocatalytic system of lithium tetramethylene-tethered bis[N-(N'-butylimidazol-2-ylidene)] N-heterocyclic carbene (1,4-bisNHC) including lithium benzyloxide and benzyl alcohol has been successfully utilized in the ring-opening polymerization (ROP) of ε-caprolactone (CL) for the first time. The catalytic performance of this organic catalyst in the synthesis of high-molecular-weight polymers was investigated via bulk polymerization using different combinations of tetramethylene-tethered bis[N-(N'-butylimidazolium)] hexafluorophosphate (1,4-bis[Bim][PF6]), benzyl alcohol (BnOH), and n-butyl lithium (nBuLi) ([1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi]) with the molar ratios of 0:2:2, 1:1:3, 1:2:3, and 1:2:4. The results showed that the molar ratio of 1:2:3 efficiently and rapidly initiated the bulk ROP of CL at room temperature with a high molar ratio of CL to 1,4-bis[Bim][PF6] of 3000/1 and produced the highest number of average-molecular-weight (Mn) poly(ε-caprolactone) (103,057 g mol-1) with the dispersity (D̵) and %conversion of 1.73 and 98% in a short period of time (152 s). From comparative studies, the relative polymerization rates of the bulk ROP of CL with different [1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi] molar ratios was determined in the following order: 1:2:4 > 1:1:3 > 1:2:3 > 0:2:2. For mechanistic investigation, the bulk ROP mechanism of CL with our organic catalyst was proposed through the intramolecular bis-lithium-carbene interaction pathway for 1,4-bisNHC1,1,3, 1,4-bisNHC1,2,3, and 1,4-bisNHC1,2,4 systems.
Collapse
Affiliation(s)
- Natthapol Akkravijitkul
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Nathaporn Cheechana
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Thiti Junpirom
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Wanich Limwanich
- Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
| | - Kanarat Nalampang
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Praput Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Atanase LI, Salhi S, Cucoveica O, Ponjavic M, Nikodinovic-Runic J, Delaite C. Biodegradability Assessment of Polyester Copolymers Based on Poly(ethylene adipate) and Poly(ε-caprolactone). Polymers (Basel) 2022; 14:polym14183736. [PMID: 36145879 PMCID: PMC9504934 DOI: 10.3390/polym14183736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/19/2022] Open
Abstract
Biodegradable polymers contain chains that are hydrolytically or enzymatically cleaved, resulting in soluble degradation products. Biodegradability is particularly desired in biomedical applications, in which degradation of the polymer ensures clearance from the body and eliminates the need for retrieval or explant. In this study, a homologues series of poly(ε-caprolactone)-b-poly(ethylene adipate)-b-poly(ε-caprolactone) (PCL-b-PEA-b-PCL) block copolymers, with constant PEA molar mass and different PCL sequence lengths was obtained. The starting point of these copolymers was a dihydroxy-PEA precursor with a molar mass (Mn) of 2500 g/mol. Mn values of the PCL varied between 1000 and 10,000 g/mol. Both the precursors and the copolymers were characterized using different physicochemical methods, such as: NMR, SEC, Maldi-TOFF, DSC, and ATG. The molecular characteristics of the copolymers were in a direct correlation with the sequence length of the PCL. Enzymatic degradability studies were also conducted by using cell-free extract containing Pseudomonas aeruginosa PAO1 for 10 and 21 days, and it appeared that the presence of the PEA central sequence has an important influence on the biodegradability of the copolymer samples. In fact, copolymer PCL7000-PEA2500-PCL7000 had a weight loss of around 50% after 10 days whereas the weight loss of the homopolymer PCL, with a similar Mn of 14,000 g/mol, was only 6%. The results obtained in this study indicate that these copolymer samples can be further used for the preparation of drug delivery systems with modulated biodegradability.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Correspondence:
| | - Slim Salhi
- Laboratoire de Chimie Appliquée, Faculté des Sciences de Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Oana Cucoveica
- Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Marijana Ponjavic
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Christelle Delaite
- Laboratoire de Photochimie et d’Ingenierie Macromoleculaires (LPIM), University of Haute Alsace, 68100 Mulhouse, France
| |
Collapse
|
31
|
Spaniol K, Borrelli M, Menzel-Severing J, Geerling G. [Conjunctival reconstruction-State of the art of regenerative treatment forms beyond the limbus]. DIE OPHTHALMOLOGIE 2022; 119:902-909. [PMID: 35925338 DOI: 10.1007/s00347-022-01673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The demands on conjunctival replacement tissues are high: they need to be elastic, clinically compatible, surgically feasible and support goblet cell growth. OBJECTIVE This article provides an overview of currently applied conjunctival replacement tissues and those under investigation. METHOD Current publications on clinically applied conjunctival replacement tissues and substrates which are the subject of scientific research and those already tested in animal models are presented and discussed. RESULTS Replacement tissues in clinical use are autologous and allogenic conjunctiva, nasal and oral mucous membranes, amniotic membrane and decellularized tissues. Autologous conjunctiva shows good results but is not suitable for large defects due to limited availability. In these cases autologous nasal and oral mucous membranes can be used; however, success is limited in cases of autoimmune diseases. Amniotic membranes are frequently applied clinically but goblet cell growth is limited. Different decellularized tissues are used clinically and goblet cell growth was found in vivo. Robust comparative studies are not yet available. Biological matrices such as fibrin, collagen, elastin, gelatin or hyaluronate and synthetic tissues from the group of polyesters are being investigated in the laboratory and in animal models. These studies show good epithelialization and goblet cell growth in vivo. CONCLUSION Transplantation of conjunctiva, nasal and oral mucous membranes and amniotic membranes show satisfactory clinical results but exhibit individual weaknesses. Further studies in animal models and clinical settings are required to further evaluate the benefits of other matrices, such as cell-free tissues or other biological and synthetic matrices.
Collapse
Affiliation(s)
- Kristina Spaniol
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Maria Borrelli
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Johannes Menzel-Severing
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Gerd Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
32
|
Fallah A, Altunbek M, Bartolo P, Cooper G, Weightman A, Blunn G, Koc B. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J Mech Behav Biomed Mater 2022; 134:105418. [PMID: 36007489 DOI: 10.1016/j.jmbbm.2022.105418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Bone defect treatment is still a challenge in clinics, and synthetic bone scaffolds with adequate mechanical and biological properties are highly needed. Adequate waste and nutrient exchange of the implanted scaffold with the surrounded tissue is a major concern. Moreover, the risk of mechanical instability in the defect area during regular activity increases as the defect size increases. Thus, scaffolds with better mass transportation and mechanical properties are desired. This study introduces 3D printed polymeric scaffolds with a continuous pattern, ZigZag-Spiral pattern, for bone defects treatments. This pattern has a uniform distribution of pore size, which leads to uniform distribution of wall shear stress which is crucial for uniform differentiation of cells attached to the scaffolds. The mechanical, mass transportation, and biological properties of the 3D printed scaffolds are evaluated. The results show that the presented scaffolds have permeability similar to natural bone and, with the same porosity level, have higher mechanical properties than scaffolds with conventional lay-down patterns 0-90° and 0-45°. Finally, human mesenchymal stem cells are seeded on the scaffolds to determine the effects of geometrical microstructure on cell attachment and morphology. The results show that cells in scaffold with ZigZag-Spiral pattern infilled pores gradually, while the other patterns need more time to fill the pores. Considering mechanical, transportation, and biological properties of the considered patterns, scaffolds with ZigZag-Spiral patterns can mimic the properties of cancellous bones and be a better choice for treatments of bone defects.
Collapse
Affiliation(s)
- Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Paulo Bartolo
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University Portsmouth, Portsmouth, PO1 2UP, UK
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| |
Collapse
|
33
|
Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022; 14:1522. [PMID: 35890416 PMCID: PMC9315807 DOI: 10.3390/pharmaceutics14071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
The conventional cancer therapeutic modalities include surgery, chemotherapy and radiotherapy. Although immunotherapy and targeted therapy are also widely used in cancer treatment, chemotherapy remains the cornerstone of tumor treatment. With the rapid development of nanotechnology, nanomedicine is believed to be an emerging field to further improve the efficacy of chemotherapy. Until now, there are more than 17 kinds of nanomedicine for cancer therapy approved globally. Thereinto, conjugated nanomedicine, as an important type of nanomedicine, can not only possess the targeted delivery of chemotherapeutics with great precision but also achieve controlled drug release to avoid adverse effects. Meanwhile, conjugated nanomedicine provides the platform for combining several different therapeutic approaches (chemotherapy, photothermal therapy, photodynamic therapy, thermodynamic therapy, immunotherapy, etc.) with the purpose of achieving synergistic effects during cancer treatment. Therefore, this review focuses on conjugated nanomedicine and its various applications in synergistic chemotherapy. Additionally, the further perspectives and challenges of the conjugated nanomedicine are also addressed, which clarifies the design direction of a new generation of conjugated nanomedicine and facilitates the translation of them from the bench to the bedside.
Collapse
Affiliation(s)
- Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Department of Epidemiology, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an 710054, China
| | - Ye Hong
- Center of Digestive Endoscopy, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China;
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Research Institute of Xi’an Jiaotong University, Hangzhou 311200, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| |
Collapse
|
34
|
Mills H, Acquah R, Tang N, Cheung L, Klenk S, Glassen R, Pirson M, Albert A, Hoang DT, Van TN. Preparation of PCL Electrospun Fibers Loaded with Cisplatin and Their Potential Application for the Treatment of Prostate Cancer. Emerg Med Int 2022; 2022:6449607. [PMID: 35875248 PMCID: PMC9307411 DOI: 10.1155/2022/6449607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer is a global fatal type of cancer. It is a type of cancer that affect men. Signs and symptoms of the disease include blood in the urine, pain when one micturates, and difficulties in penis erection. Cisplatin chemotherapy is a principal treatment normally given to the prostate cancer patients. Nonetheless, on its own, cisplatin loses efficacy once administered due to liver pass effects and other biochemical attacks. In this paper, we looked at preparation of PCL nanoparticles loaded with cisplatin and their potential for the treatment of prostate cancer. PCL nanoparticles protect cisplatin from biochemical attack, thus increasing drug efficacy. Incorporation of P-glycoprotein inhibitors in PCL nanoparticles (NPs) loaded with cisplatin could improve prostate cancer treatment even more.
Collapse
Affiliation(s)
- Hilla Mills
- Department of Medical Science, University for Development, Accra, Ghana
| | - Ronald Acquah
- Department of Medical Science, University for Development, Accra, Ghana
| | - Nova Tang
- RD Lab, The Hospital Institute for Hebal Research, 50200 Toluca, Mexico, Mexico
| | - Luke Cheung
- RD Lab, The Hospital Institute for Hebal Research, 50200 Toluca, Mexico, Mexico
| | - Susanne Klenk
- Research Institution of Clinical Biomedicine, Hospital University Medical Centre, 89000 Ulm, Germany
| | - Ronald Glassen
- Research Institution of Clinical Biomedicine, Hospital University Medical Centre, 89000 Ulm, Germany
| | - Magali Pirson
- Industrial Research Group, International College of Science and Technology, Route de Lennik 800, CP 590, 1070 Brussels, Belgium
| | - Alain Albert
- Industrial Research Group, International College of Science and Technology, Route de Lennik 800, CP 590, 1070 Brussels, Belgium
| | | | | |
Collapse
|
35
|
Gama-Castañeda NO, Franco-Colín M, Aguilar-Méndez MÁ, San Martin-Martinez E, Cano-Europa E, Casañas-Pimentel RG. Polymeric nanofiber dressings with incorporated rifampicin for transdermal administration. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2075870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ningel Omar Gama-Castañeda
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Mexico City, Mexico
| | - Margarita Franco-Colín
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Fisiología, Mexico City, Mexico
| | - Miguel Ángel Aguilar-Méndez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Mexico City, Mexico
| | - Eduardo San Martin-Martinez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Mexico City, Mexico
| | - Edgar Cano-Europa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Fisiología, Mexico City, Mexico
| | - Rocio Guadalupe Casañas-Pimentel
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Mexico City, Mexico
| |
Collapse
|
36
|
Kawai A, Hamamoto N, Sasanuma Y. Conformational characteristics and conformation-dependent properties of poly(ε-caprolactone). Phys Chem Chem Phys 2022; 24:11382-11394. [PMID: 35502818 DOI: 10.1039/d2cp01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structures and properties of isolated and crystalline poly(ε-caprolactone) (PCL) chains have been investigated. Ab initio molecular orbital (MO) calculations were conducted for methyl 6-acetoxyhexanoate (MAH), a model compound of PCL, to yield Gibbs free energies of all its existent conformers. Bond conformations of its seven bonds corresponding to the repeating unit of PCL were calculated therefrom; two C-C bonds close to the ester group show gauche preferences owing to intramolecular C-H⋯O attractions, and the other five prefer trans forms. 1H and 13C NMR vicinal coupling constants of 13C-labeled MAH yielded bond conformations consistent with the MO calculations. The rotational isomeric state (RIS) calculations on PCL led to the characteristic ratios (4.1-4.5) that agree with those estimated experimentally from the Stockmayer-Fixman plots. Periodic density functional theory calculations on PCL crystals yielded the optimum structures and Young's moduli in the a-, b-, and c (fiber)-axis directions. The fiber-axis modulus (252 GPa) falls short of that (333 GPa) of polyethylene but exceeds that (182 GPa) of poly(ethylene terephthalate), whereas the three-dimensionally averaged Young's modulus (10.7 GPa) of PCL is the smallest of those of representative polymers investigated so far. The enzymatic selectivity of biodegradable polyesters is discussed herein in terms of their conformational characteristics and surface structures of enzymes.
Collapse
Affiliation(s)
- Azumi Kawai
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Naoki Hamamoto
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuji Sasanuma
- Department of Applied Chemistry and Biotechnology, Graduate School and Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
37
|
Granata G, Riccobene C, Napoli E, Geraci C. Polymeric Nanocapsules Containing Fennel Essential Oil: Their Preparation, Physicochemical Characterization, Stability over Time and in Simulated Gastrointestinal Conditions. Pharmaceutics 2022; 14:873. [PMID: 35456707 PMCID: PMC9026405 DOI: 10.3390/pharmaceutics14040873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Plant essential oils, a source of biologically active compounds, represent a promising segment in the pharmaceutical market. However, their volatility, hydrophobicity, poor stability, and low toxicity limit direct use in pharmaceutical-related applications. Nanoencapsulation is a technique that allows overcoming these obstacles by improving bioaccessibility and bioavailability. Nanocapsules (NCs) based on biodegradable and biocompatible poly(ɛ-caprolactone) containing Foeniculum vulgare Mill. essential oil (FEO), known for its biological activities, were successfully prepared by interfacial deposition of the preformed polymer method. The composition of FEO (trans-anethole chemotype) was determined by gas chromatography analyses. The FEO presence inside the NCs was confirmed by nuclear magnetic resonance experiments. The FEO-NCs showed nanometer size (210 nm), low polydispersity index (0.10), negative zeta potential (-15 mV), non-Newtonian rheological behavior, and high efficiency of encapsulation (93%). Moreover, parameters such as FEO-NC particle size, bioactive compound retention, and FEO composition were monitored for 30 days at storage temperatures of 4 and 40 °C, confirming the robustness of the nanosystem. Finally, FEO-NCs were resistant to the simulated gastric digestion and showed an effective bioaccessibility of 29% in simulated intestinal digestion. Based on the results obtained, this FEO-NC nanosystem could find interesting applications in the nutraceutical and pharmaceutical sectors.
Collapse
Affiliation(s)
- Giuseppe Granata
- Istituto di Chimica Biomolecolare—C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy; (C.R.); (E.N.)
| | | | | | - Corrada Geraci
- Istituto di Chimica Biomolecolare—C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy; (C.R.); (E.N.)
| |
Collapse
|
38
|
Ganea IV, Nan A, Ciorîță A, Turcu R, Baciu C. Responsiveness assessment of cell cultures exposed to poly(tartaric acid) and its corresponding magnetic nanostructures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Chen J, Wu X, Zhang L, Duan Z, Liu B. Ring-Opening Polymerization of ε-Caprolactone Mediated by Di-Zinc Complex Bearing Macrocyclic Thioether-phenolate [OSSO]-type Ligand. Polym Chem 2022. [DOI: 10.1039/d2py00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique example of zinc bromide complexes bearing macrocyclic [OSSO]-type thioetherphenolate ligand (Di-[OSSO]ZnBr) has been successfully explored toward ring-opening polymerization (ROP) of -caprolactone (ε-CL) in the presence of epoxides and...
Collapse
|
40
|
Oh Y, Kim S. Hydrogel‐shelled biodegradable microspheres for sustained release of encapsulants. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yoonjin Oh
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Shin‐Hyun Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| |
Collapse
|
41
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
42
|
Kaur H, Ghosh S, Kumar P, Basu B, Nagpal K. Ellagic acid-loaded, tween 80-coated, chitosan nanoparticles as a promising therapeutic approach against breast cancer: In-vitro and in-vivo study. Life Sci 2021; 284:119927. [PMID: 34492262 DOI: 10.1016/j.lfs.2021.119927] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023]
Abstract
AIMS Among polyphenolic phytoconstituents with anticancer properties, Ellagic acid (EA) is widely reported for its translational potential in vitro but efficient in vivo delivery of EA has been a challenge. We, for the first time, used a tween 80 coated nano delivery of Ellagic acid to evaluate its preclinical efficacy in vitro and in vivo for breast cancer. MAIN METHODS To overcome the challenges of in vivo delivery, two batches of chitosan-based nanoformulations of EA (with and without tween 80 coating) were prepared by the ionotropic gelation method. The nanoformulations were characterized and further evaluated in vitro against breast cancer cells (MCF7) and in vivo with EAC tumor-bearing mice for establishing their anticancer efficacy compared to Ellagic acid alone. A quantitative simulation study was undertaken to understand if the observed antitumor efficacy is due to the synergistic efficacy of the Chitosan-Ellagic acid combination. KEY FINDINGS Results revealed that nanoformulations consist of good nano-sized encapsulation of EA and showed good drug entrapment-release capacity. Nano-encapsulated EA is biocompatible and exhibited higher cytotoxicity in vitro compared to EA alone. Similarly, significantly higher tumor regression was observed in nano-EA treated mice compared to EA alone, and best efficacy was observed with the nanoformulation with tween 80 coating. Furthermore, nanoformulations showed higher apoptosis in tumor tissues with no significant tissue toxicity in vital organs. SIGNIFICANCE We report synergism of Chitosan-Ellagic acid combination in the tween 80 coated nanoparticles of Ellagic acid resulting in enhanced anti-breast tumor efficacy that may be of translational value for other tumor types, too.
Collapse
Affiliation(s)
- Harsheen Kaur
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, AUUP 201303, India
| | - Sandip Ghosh
- Department of Neuroendocrinology & Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Biswarup Basu
- Department of Neuroendocrinology & Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata 700026, India.
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, AUUP 201303, India.
| |
Collapse
|
43
|
Patel PR, Pandey K, Killi N, Gundloori RVN. Manipulating hydrophobicity of polyester nanofiber mats with egg albumin to enhance cell interactions. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratikshkumar R. Patel
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Komal Pandey
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Naresh Killi
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Rathna Venkata Naga Gundloori
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
44
|
Gordienko M, Karakatenko E, Menshutina N, Koroleva M, Gilmutdinova I, Eremin P. Composites Composed of Hydrophilic and Hydrophobic Polymers, and Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Study of Their Biocompatible Properties. J Funct Biomater 2021; 12:jfb12040055. [PMID: 34698183 PMCID: PMC8544586 DOI: 10.3390/jfb12040055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 10/26/2022] Open
Abstract
The creation of artificial biocomposites consisting of biocompatible materials in combination with bioactive molecules is one of the main tasks of tissue engineering. The development of new materials, which are biocompatible, functional, and also biodegradable in vivo, is a specific problem. Two types of products can be formed from these materials in the processes of biodegradation. The first types of substances are natural for a living organism and are included in the metabolism of cells, for example, sugars, lactic, glycolic, and β-hydroxybutyric acids. Substances that are not metabolized by cells represent the other type. In the latter case, such products should not be toxic, and their concentration when entering the bloodstream should not exceed the established maximum permissible level. The composite materials based on a mixture of biodegradable synthetic and natural polymers with the addition of hydroxyapatite nanoparticles, which acts as a stabilizer of the dispersed system during production of the composite, and which is a biologically active component of the resulting matrix, were obtained and studied. The indirect effect of the shape, size, and surface charge of hydroxyapatite nanoparticles on the structure and porosity of the formed matrix was shown. An in vivo study showed the absence of acute toxicity of the developed composites.
Collapse
Affiliation(s)
- Mariia Gordienko
- Chemical and Pharmaceutical Engineering Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia;
- Correspondence: ; Tel./Fax: +7-4954950029
| | - Elena Karakatenko
- Nanomaterials and Nanotechnology Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia; (E.K.); (M.K.)
| | - Natalia Menshutina
- Chemical and Pharmaceutical Engineering Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia;
| | - Marina Koroleva
- Nanomaterials and Nanotechnology Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia; (E.K.); (M.K.)
| | - Ilmira Gilmutdinova
- National Research Medical Centre of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, 121099 Moscow, Russia; (I.G.); (P.E.)
| | - Petr Eremin
- National Research Medical Centre of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, 121099 Moscow, Russia; (I.G.); (P.E.)
| |
Collapse
|
45
|
|
46
|
Günday C, Anand S, Gencer HB, Munafò S, Moroni L, Fusco A, Donnarumma G, Ricci C, Hatir PC, Türeli NG, Türeli AE, Mota C, Danti S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res 2021; 10:706-720. [PMID: 32100267 DOI: 10.1007/s13346-020-00736-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presented work focuses on the development of biodegradable polymer nanoparticles loaded with antibiotics as drug delivery systems deposited on electrospun scaffolds for tissue engineering. The innovative ciprofloxacin-loaded poly(DL-lactide-co-glycolide) NPs ensure a continuous slow release and high local concentration at the site of action for an optimal therapy. The local delivery of antibiotics as an integrated part of electrospun scaffolds offers an effective, safe, and smart enhancement supporting tissue regeneration. Presented data provides solid scientific evidence for fulfilling the requirements of local nano antibiotic delivery systems with biodegradability and biocompatibility for a wide range of tissue engineering applications, including middle ear tissues (e.g., tympanic membranes) which are subject to bacterial infections. Further characterization of such systems, including in vivo studies, is required to ensure successful transfer from lab to clinical applications. Graphical abstract .
Collapse
Affiliation(s)
- Cemre Günday
- MJR PharmJet GmbH, Industriestr. 1B, 66802, Überherrn, Germany
| | - Shivesh Anand
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hikmet Burcu Gencer
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | - Sara Munafò
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Claudio Ricci
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Pinar Cakir Hatir
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | | | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| |
Collapse
|
47
|
Kapustová M, Puškárová A, Bučková M, Granata G, Napoli E, Annušová A, Mesárošová M, Kozics K, Pangallo D, Geraci C. Biofilm inhibition by biocompatible poly(ε-caprolactone) nanocapsules loaded with essential oils and their cyto/genotoxicity to human keratinocyte cell line. Int J Pharm 2021; 606:120846. [PMID: 34216769 DOI: 10.1016/j.ijpharm.2021.120846] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Essential oils (EOs) of Thymus capitatus (Th) carvacrol chemotype and Origanum vulgare (Or) thymol and carvacrol chemotype were encapsulated in biocompatible poly(ε-caprolactone) nanocapsules (NCs). These nanosystems exhibited antibacterial, antifungal, and antibiofilm activities against Staphylococcus aureus, Escherichia coli, and Candida albicans. Th-NCs and Or-NCs were more effective against all tested strains than pure EOs and at the same time were not cytotoxic on HaCaT (T0020001) human keratinocyte cell line. The genotoxic effects of EO-NCs and EOs on HaCaT were evaluated using an alkaline comet assay for the first time, revealing that Th-NCs and Or-NCs did not induce DNA damage compared with untreated control HaCaT cells in vitro after 24 h. The cells morphological changes were assessed by label-free live cell Raman imaging. This study demonstrate the ability of poly(ε-caprolactone) nanocapsules loaded with thyme and oregano EOs to reduce microbial and biofilm growth and could be an ecological alternative in the development of new antimicrobial strategies.
Collapse
Affiliation(s)
- Magdaléna Kapustová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Giuseppe Granata
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Edoardo Napoli
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Adriana Annušová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Sk-84511 Bratislava, Slovakia; Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Monika Mesárošová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Katarína Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia.
| | - Corrada Geraci
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
48
|
HPLC method for levothyroxine quantification in long-acting drug delivery systems. Validation and evaluation of bovine serum albumin as levothyroxine stabilizer. J Pharm Biomed Anal 2021; 203:114182. [PMID: 34089980 DOI: 10.1016/j.jpba.2021.114182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Deficiency of thyroid hormones (hypothyroidism) is treated with oral levothyroxine (LEVO). However, the effectiveness of oral administration is highly dependent on the co-administration of food and other drugs. This factor, in combination with the chronic nature of this condition, mean that there are concerns with patient compliance. Development of long acting formulations to treat hypothyroidism could potentially solve this problem. However, LEVO instability in solution could be problematic. In order to develop long acting LEVO delivery systems in vitro drug release experiments should be carried out. However, short term LEVO stability in aqueous solution will prevent this. BSA was used as a stabiliser for LEVO; extending the stability of the drug in aqueous solutions from a few hours to 2 weeks. In order to achieve this, the required concentration of the protein was 0.1% w/v. Subsequently, an HPLC method capable of separating LEVO from the protein was developed and validated following ICH guidelines. The analysis was carried out using a reverse phase HPLC method on an Agilent 1220 Infinity II LC system. The column used to achieve separation was a Zorbax Eclipse plus C18 (95 Å pore size, 250 mm length x 4.6 mm internal diameter; 5 μm particle size). The mobile phase used was composed of acetonitrile and 0.1% trifluoroacetic acid at a ratio of 50:50% v/v. UV detection of LEVO sodium was carried out at 225 nm. The retention time for the drug was 6.6 minutes. The method showed a limit of detection of 0.03 μg/mL and a limit of quantification of 0.09 μg/mL. Finally, this method was used to evaluate the release from implants containing 20% w/w of LEVO. These devices were prepared using a solvent casting method with poly(caprolactone) and LEVO. These devices showed an initial burst release over the first 3 days. Subsequently, they were capable of providing a linear release rate over the following 25 days.
Collapse
|
49
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
50
|
Ryu S, Park S, Lee HY, Lee H, Cho CW, Baek JS. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. Int J Mol Sci 2021; 22:ijms22062792. [PMID: 33801871 PMCID: PMC7998393 DOI: 10.3390/ijms22062792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
Recently, nano- and micro-particulate systems have been widely utilized to deliver pharmaceutical compounds to achieve enhanced therapeutic effects and reduced side effects. Poly (DL-lactide-co-glycolide) (PLGA), as one of the biodegradable polyesters, has been widely used to fabricate particulate systems because of advantages including controlled and sustained release, biodegradability, and biocompatibility. However, PLGA is known for low encapsulation efficiency (%) and insufficient controlled release of water-soluble drugs. It would result in fluctuation in the plasma levels and unexpected side effects of drugs. Therefore, the purpose of this work was to develop microcapsules loaded with alginate-coated chitosan that can increase the encapsulation efficiency of the hydrophilic drug while exhibiting a controlled and sustained release profile with reduced initial burst release. The encapsulation of nanoparticles in PLGA microcapsules was done by the emulsion solvent evaporation method. The encapsulation of nanoparticles in PLGA microcapsules was confirmed by scanning electron microscopy and confocal microscopy. The release profile of hydrophilic drugs can further be altered by the chitosan coating. The chitosan coating onto alginate exhibited a less initial burst release and sustained release of the hydrophilic drug. In addition, the encapsulation of alginate nanoparticles and alginate nanoparticles coated with chitosan in PLGA microcapsules was shown to enhance the encapsulation efficiency of a hydrophilic drug. Based on the results, this delivery system could be a promising platform for the high encapsulation efficiency and sustained release with reduced initial burst release of the hydrophilic drug.
Collapse
Affiliation(s)
- Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea;
| | - Seungyeop Park
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Gangwon-do, Korea; (S.P.); (H.Y.L.); (H.L.)
| | - Ha Yeon Lee
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Gangwon-do, Korea; (S.P.); (H.Y.L.); (H.L.)
| | - Hyungjun Lee
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Gangwon-do, Korea; (S.P.); (H.Y.L.); (H.L.)
| | - Cheong-Weon Cho
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheong, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); Tel.: +82-33-540-3324 (J.-S.B.)
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea;
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Gangwon-do, Korea; (S.P.); (H.Y.L.); (H.L.)
- Correspondence: (C.-W.C.); (J.-S.B.); Tel.: +82-33-540-3324 (J.-S.B.)
| |
Collapse
|