1
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abella L, D'Adamo E, Strozzi M, Botondi V, Abella E, Cassinari M, Mazzucco L, Maconi A, Testa M, Zanelli C, Patacchiola R, Librandi M, Osmelli J, Carabotta M, Chiarelli F, Gazzolo D. Early changes in S100B maternal blood levels can predict fetal intrauterine growth restriction. Clin Chem Lab Med 2023; 61:2205-2211. [PMID: 37366015 DOI: 10.1515/cclm-2023-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES Intrauterine growth restriction (IUGR) represents one of the main causes of perinatal mortality and morbidity. Nowadays, IUGR early diagnosis is mandatory in order to limit the occurrence of multiorgan failure, especially the brain. Therefore, we investigated whether longitudinal S100B assessment in maternal blood could be a trustable predictor of IUGR. METHODS We conducted a prospective study in 480 pregnancies (IUGR: n=40; small for gestational age, SGA: n=40; controls: n=400) in whom S100B was measured at three predetermined monitoring time-points (T1: 8-18 GA; T2: 19-23 GA; T3: 24-28 GA). RESULTS Lower S100B in IUGR fetuses than SGA and controls (p<0.05, for all) at T1-T3. Receiver operating characteristic curve showed that S100B at T1 was the best predictor of IUGR (sensitivity: 100 %; specificity: 81.4 %) than T2, T3. CONCLUSIONS The early lower S100B concentration in pregnant women lately complicated by IUGR support the notion that non-invasive early IUGR diagnosis and monitoring is becoming feasible. Results open the way to further studies aimed at diagnosing and monitoring fetal/maternal diseases at earliest time.
Collapse
Affiliation(s)
| | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Mariachiara Strozzi
- Neonatal Intensive Care Unit, ASO SS Antonio, Biagio, C. Arrigo, Alessandria, Italy
| | - Valentina Botondi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | - Maurizio Cassinari
- Neonatal Intensive Care Unit, ASO SS Antonio, Biagio, C. Arrigo, Alessandria, Italy
| | - Laura Mazzucco
- Neonatal Intensive Care Unit, ASO SS Antonio, Biagio, C. Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Neonatal Intensive Care Unit, ASO SS Antonio, Biagio, C. Arrigo, Alessandria, Italy
| | - Michela Testa
- Neonatal Intensive Care Unit, ASO SS Antonio, Biagio, C. Arrigo, Alessandria, Italy
| | - Cristian Zanelli
- Neonatal Intensive Care Unit, ASO SS Antonio, Biagio, C. Arrigo, Alessandria, Italy
| | | | | | - Jacopo Osmelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Maura Carabotta
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
3
|
Sadat-Shirazi MS, Sadeghi-Adl M, Akbarabadi A, Ashabi G, Mokri A, Zarrindast MR. Inter/Transgenerational Effects of Drugs of Abuse: A Scoping Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:512-538. [PMID: 35507779 DOI: 10.2174/1871527321666220429122819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Drug addiction is a chronic relapsing disorder that makes it a global problem. Genetics and environmental factors are the two most important factors that make someone vulnerable to drug addiction. Investigations in the past decade highlighted the role of epigenetics in the inter/transgenerational inheritance of drug addiction. A growing body of evidence showed that parental (paternal, maternal, and biparental) drug exposure before conception changes the phenotype of the offspring, which is correlated with neurochemical and neurostructural changes in the brain. The current paper reviews the effects of parental (maternal, paternal, and biparental) exposure to drugs of abuse (opioids, cocaine, nicotine, alcohol, and cannabis) before gestation in animal models.
Collapse
Affiliation(s)
| | - Mahsa Sadeghi-Adl
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azarakhsh Mokri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Vassoler FM, Wimmer ME. Consequences of Parental Opioid Exposure on Neurophysiology, Behavior, and Health in the Next Generations. Cold Spring Harb Perspect Med 2021; 11:a040436. [PMID: 32601130 PMCID: PMC8485740 DOI: 10.1101/cshperspect.a040436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substance abuse and the ongoing opioid epidemic represents a large societal burden. This review will consider the long-term impact of opioid exposure on future generations. Prenatal, perinatal, and preconception exposure are reviewed with discussion of both maternal and paternal influences. Opioid exposure can have long-lasting effects on reproductive function, gametogenesis, and germline epigenetic programming, which can influence embryogenesis and alter the developmental trajectory of progeny. The potential mechanisms by which preconception maternal and paternal opioid exposure produce deleterious consequences on the health, behavior, and physiology of offspring that have been identified by clinical and animal studies will be discussed. The timing, nature, dosing, and duration of prenatal opioid exposure combined with other important environmental considerations influence the extent to which these manipulations affect parents and their progeny. Epigenetic inheritance refers to the transmission of environmental insults across generations via mechanisms independent of the DNA sequence. This topic will be further explored in the context of prenatal, perinatal, and preconception opioid exposure for both the maternal and paternal lineage.
Collapse
Affiliation(s)
- Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts 01536, USA
| | - Mathieu E Wimmer
- Department of Psychology and Program in Neuroscience, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
5
|
Azadi M, Zare M, Pachenari N, Shojaei A, Semnanian S, Azizi H. Sex-specific transgenerational effects of adolescent morphine exposure on short-term memory and anxiety behavior: Male linage. Neurosci Lett 2021; 761:136111. [PMID: 34271134 DOI: 10.1016/j.neulet.2021.136111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Current estimates indicate that opioid use and misuse are a rising epidemic, which presents a substantial socioeconomic burden around the world. Chronic opioid consumption, specifically during the critical period of adolescence, can lead to enduring effects not only in individuals but also in future generations. Utilizing rodent model, we have previously reported the impacts of paternal exposure to chronic morphine during adolescence on neurobehavioral features in progenies. Currently, the potential transgenerational effects of paternal morphine exposure during adolescence on anxiety-like behavior and short-term memory remains unknown. Male Wistar rats were exposed to increasing doses of morphine for ten days in adolescence (PND 30-39). Thereafter, following a 30-days drug-free period, the treated male rats mated with naïve females. The anxiety-like behavior and short-term memory performance were assessed in adult male and female offspring (PND 60) using open field and Y-maze tests. Both male and female progenies of morphine-treated sires revealed a significant reduction in the movement velocity compared to progenies of saline-treated sires as measured by open field test. Morphine-sired male but not female offspring also showed a non-significant large decreasing effect on time spent in the center and frequency of entries to the center of open field box. Moreover, a significant reduction in the number of entries and percent of time spent in the novel arm was observed in male and female morphine-sired offspring, as measured using Y-maze test. Growth outcomes also did not demonstrate any difference in the number of dam's fertility, pups birth, and death between morphine-sired and saline-sired groups in both sexes. Collectively, paternal exposure to morphine during adolescence induces sex-specific and selective disturbances in short-term memory while anxiety-like behavior was slightly disturbed.
Collapse
Affiliation(s)
- Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Pachenari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
El-Sheikh AAK, Khired Z. Morphine Deteriorates Cisplatin-Induced Cardiotoxicity in Rats and Induces Dose-Dependent Cisplatin Chemoresistance in MCF-7 Human Breast Cancer Cells. Cardiovasc Toxicol 2021; 21:553-562. [PMID: 33796943 DOI: 10.1007/s12012-021-09646-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
Morphine (MOR) is a strong analgesic that is often used in treatment of severe pains during cancer treatment, and thus might be concomitantly used with anticancer drugs as cisplatin (CP). The aim of the current study was to investigate the mechanisms by which MOR can affect CP-induced cardiotoxicity and to explore effects of MOR on the cytotoxic efficacy of CP. MOR (10 mg/kg/day i.p.) was administered to rats for 10 days, with or without 7.5 mg/kg CP single i.p. dose at day 5 of the experiment. In addition, MOR and/or CP were administered to MCF-7 cells to test their cytotoxicity. Compared to control, CP caused cardiotoxic effects manifested by significant increase in serum enzymatic markers; creatine kinase-MB and lactate dehydrogenase, with histopathological cardiac damage. In addition, CP caused cardiac oxidative stress, manifested by significant increased tissue lipid peroxidation product; malondialdehyde and nitric oxide, with significant decrease in tissue antioxidants as reduced glutathione, superoxide dismutase and catalase compared to control. Furthermore, CP significantly increased tissue proinflammatory cytokines; TNF-α and IL-6, as well as upregulated the apoptotic marker; caspase 3 compared to control. MOR/CP combination significantly deteriorated all tested parameters compared to CP alone. In MCF-7 breast cancer cells, administration of MOR in concentrations of 0.1, 1, 10 or 30 μM concomitantly with 1 or 10 μM CP caused dose-dependent reduction in CP-induced cytotoxicity in vitro. In conclusion, MOR administration might deteriorate CP-induced cardiotoxicity during cancer chemotherapy through oxidant, pro-inflammatory and apoptotic mechanisms, and might reduce CP chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El Minia, 61511, Egypt.
| | - Zenat Khired
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
7
|
Enhanced H3K4 Trimethylation in TNF- α Promoter Gene Locus with Cell Apoptosis in the Ventral-Medial Striatum following Opioid Withdrawal of Neonatal Rat Offspring from Morphine-Addicted Mothers. Mediators Inflamm 2021; 2021:9828995. [PMID: 34220336 PMCID: PMC8221879 DOI: 10.1155/2021/9828995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
Prenatal opioid exposure might disturb epigenetic programming in the brain of neonatal offspring with various consequences for gene expressions and behaviors. This study determined whether altered trimethylation of histone 3 at lysine 4 (H3K4me3) in the promoter of the tumor necrosis factor-α (tnf-α) gene with neural cell apoptosis was involved in the ventral-medial striatum, an important brain region for withdrawal symptoms, of neonatal rat offspring from morphine-addicted mothers. Female adult rats were injected with morphine before gestation and until 14 days after giving birth. On postnatal day 14 (P14), rat offspring from morphine-addicted mothers were subjected to an opioid-withdrawal protocol and were analyzed 2 or 8 h after administration of that protocol. Expressions of the TNF-α protein, H3K4me3 in the tnf-α promoter gene, and neural cell apoptosis within the ventral-medial striatum of neonatal rat offspring were evaluated. In the absence of significant opioid withdrawal (2 h after initiation of the opioid-withdrawal protocol on P14), prenatal morphine exposure led to increased levels of H3K4me3 in the tnf-α promoter gene, of the TNF-α protein, and of neural cell apoptosis within the ventral-medial striatum of neonatal rat offspring. Following opioid withdrawal (8 h after initiation of the opioid-withdrawal protocol on P14), differential expression of H3K4me3 in the tnf-α promoter gene locus and upregulation of the level of TNF-α protein expression were further enhanced in these offspring. In addition, increased levels of caspase-3 and neural cell apoptosis were also observed. Taken together, this study revealed that prenatal opioid exposure can activate an epigenetic histone mechanism which regulates proinflammatory factor generation, which hence, led to cell apoptotic damage within the ventral-medial striatum of neonatal rat offspring from morphine-addicted mothers. More importantly, the opioid-withdrawal episode may provide augmented effects for the abovementioned alterations and could lead to deleterious effects in the neonatal brain of such offspring.
Collapse
|
8
|
Parekh SV, Paniccia JE, Adams LO, Lysle DT. Hippocampal TNF-α Signaling Mediates Heroin Withdrawal-Enhanced Fear Learning and Withdrawal-Induced Weight Loss. Mol Neurobiol 2021; 58:2963-2973. [PMID: 33580871 PMCID: PMC8128733 DOI: 10.1007/s12035-021-02322-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
There is significant comorbidity of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms underlying the relationship between chronic opioid use and withdrawal and development of PTSD are poorly understood. Our previous work identified that chronic escalating heroin administration and withdrawal can produce enhanced fear learning, an animal model of hyperarousal, and is associated with an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β). However, other cytokines, such as TNF-α, work synergistically with IL-1β and may have a role in the development of enhanced fear learning. Based on both translational rodent and clinical studies, TNF-α has been implicated in hyperarousal states of PTSD, and has an established role in hippocampal-dependent learning and memory. The first set of experiments tested the hypothesis that chronic heroin administration followed by withdrawal is capable of inducing alterations in DH TNF-α expression. The second set of experiments examined whether DH TNF-α expression is functionally relevant to the development of enhanced fear learning. We identified an increase of TNF-α immunoreactivity and positive cells at 0, 24, and 48 h into withdrawal in the dentate gyrus DH subregion. Interestingly, intra-DH infusions of etanercept (TNF-α inhibitor) 0, 24, and 48 h into heroin withdrawal prevented the development of enhanced fear learning and mitigated withdrawal-induced weight loss. Overall, these findings provide insight into the role of TNF-α in opioid withdrawal and the development of anxiety disorders such as PTSD.
Collapse
Affiliation(s)
- Shveta V Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Lydia O Adams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
9
|
Abstract
The inheritance of substance abuse, including opioid abuse, may be influenced by genetic and non-genetic factors related to the environment, such as stress and socioeconomic status. These non-genetic influences on the heritability of a trait can be attributed to epigenetics. Epigenetic inheritance can result from modifications passed down from the mother, father, or both, resulting in either maternal, paternal, or parental epigenetic inheritance, respectively. These epigenetic modifications can be passed to the offspring to result in multigenerational, intergenerational, or transgenerational inheritance. Human and animal models of opioid exposure have shown generational effects that result in molecular, developmental, and behavioral alterations in future generations.
Collapse
|
10
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:ph14020097. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
11
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
12
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Bornavard M, Fanaei H, Mirshekar MA, Farajian Mashhadi F, Atashpanjeh A. Morphine consumption during pregnancy exacerbates neonatal hypoxia-ischemia injury in rats. Int J Dev Neurosci 2020; 80:96-105. [PMID: 31981237 DOI: 10.1002/jdn.10008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Hypoxia-Ischemia (HI) is the most common cause of death and disability in human infants. The use of opiate in pregnant women affects their children. The aim of this study was to evaluate the effect of morphine consumption during pregnancy and lactation on vulnerability to neonatal HI in rats. MATERIALS AND METHODS Female Wistar rats were randomly assigned into two groups: Group 1-Rats that did not receive any treatment during pregnancy and lactation and Group 2-Rats that received morphine during pregnancy and lactation. After delivery, male offspring were divided into four groups including: (a) SHAM, (b) SHAM/Morphine (SHAM/MO), (c) HI, (d) HI/Morphine (HI/MO). Seven days after HI induction, neurobehavioral tests were performed, and then, brain tissue was taken from the skull to measure cerebral edema, infarct volume, inflammatory factors, oxidative stress, and brain-derived neurotrophic factor (BDNF). RESULTS Total antioxidant capacity (TAC) and BDNF levels in the HI/MO group were significantly lower than HI and SHAM groups. TNF-α, C-reactive protein and total oxidant capacity levels in the HI/MO group were significantly higher than HI and SHAM groups. Cerebral edema and infarct volume in the HI/MO group were significantly higher than the HI group. CONCLUSION Based on the results, morphine consumption during pregnancy and lactation enhanced the deleterious effects of HI injury in pups.
Collapse
Affiliation(s)
- Morad Bornavard
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzaneh Farajian Mashhadi
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Atashpanjeh
- Department of English Language, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
14
|
Azadi M, Azizi H, Haghparast A. Paternal exposure to morphine during adolescence induces reward-resistant phenotype to morphine in male offspring. Brain Res Bull 2019; 147:124-132. [DOI: 10.1016/j.brainresbull.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
|
15
|
Transgenerational consequences of prepregnancy chronic morphine use on spatial learning and hippocampal Mecp2 and Hdac2 expression. Neuroreport 2018; 29:739-744. [DOI: 10.1097/wnr.0000000000001025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|