1
|
Kotwal N, Pathania D, Singh A, Din Sheikh ZU, Kothari R. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Carbohydr Res 2024; 543:109208. [PMID: 39013334 DOI: 10.1016/j.carres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.
Collapse
Affiliation(s)
- Neha Kotwal
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| |
Collapse
|
2
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
3
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Costa IO, Morais JRF, de Medeiros Dantas JM, Gonçalves LRB, Dos Santos ES, Rios NS. Enzyme immobilization technology as a tool to innovate in the production of biofuels: A special review of the Cross-Linked Enzyme Aggregates (CLEAs) strategy. Enzyme Microb Technol 2023; 170:110300. [PMID: 37523882 DOI: 10.1016/j.enzmictec.2023.110300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This review emphasizes the crucial role of enzyme immobilization technology in advancing the production of two main biofuels, ethanol and biodiesel, with a specific focus on the Cross-linked Enzyme Aggregates (CLEAs) strategy. This method of immobilization has gained attention due to its simplicity and affordability, as it does not initially require a solid support. CLEAs synthesis protocol includes two steps: enzyme precipitation and cross-linking of aggregates using bifunctional agents. We conducted a thorough search for papers detailing the synthesis of CLEAs utilizing amylases, cellulases, and hemicellulases. These key enzymes are involved in breaking down starch or lignocellulosic materials to produce ethanol, both in first and second-generation processes. CLEAs of lipases were included as these enzymes play a crucial role in the enzymatic process of biodiesel production. However, when dealing with large or diverse substrates such as lignocellulosic materials for ethanol production and oils/fats for biodiesel production, the use of individual enzymes may not be the most efficient method. Instead, a system that utilizes a blend of enzymes may prove to be more effective. To innovate in the production of biofuels (ethanol and biodiesel), enzyme co-immobilization using different enzyme species to produce Combi-CLEAs is a promising trend.
Collapse
Affiliation(s)
- Isabela Oliveira Costa
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Srivastava N, Singh R, Srivastava M, Mohammad A, Harakeh S, Pratap Singh R, Pal DB, Haque S, Tayeb HH, Moulay M, Kumar Gupta V. Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach. BIORESOURCE TECHNOLOGY 2023; 369:128471. [PMID: 36521823 DOI: 10.1016/j.biortech.2022.128471] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Biomass to biofuels production technology appears to be one of the most sustainable strategies among various renewable energy resources. Herein, pretreatment is an unavoidable and key step to increase free cellulose availability and digestibility to produce green fuels. Various existing pretreatment technologies of lignocellulosics biomasses (LCBs) face distinct challenges e.g., energy consuming, cost intensive, may lead partial removal of lignin, complex inhibitors production as well as may cause environmental pollutions. These, limitations may be overcome with the application of nanomaterials, employed as nanocatalysts during the pretreatment process of LCBs. In this prospect, the present review focuses and summarizes results of numerous studies and exploring the utilizations of magnetic, carbon based nanostructure, and nanophotocatalysts mediated pretreatment processes along with their possible mechanisms to improve the biofuels production compared to conventional chemical based pretreatment approaches. Furthermore, different aspects of nanomaterials based pretreatment methods with their shortcomings and future prospects have been discussed.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj Kanpur 208002, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hossam H Tayeb
- Nanomedicine Unit, Center of Innovation in Personalised Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
6
|
Liew KJ, Zakaria MR, Hong CWL, Tan MCY, Chong CS. Draft genome sequence of Joostella atrarenae M1-2 T with cellulolytic and hemicellulolytic ability. 3 Biotech 2023; 13:50. [PMID: 36685320 PMCID: PMC9845502 DOI: 10.1007/s13205-023-03472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The halophilic genus Joostella is one of the least-studied genera in the family of Flavobacteriaceae. So far, only two species were taxonomically identified with limited genomic analysis in the aspect of application has been reported. Joostella atrarenae M1-2T was previously isolated from a seashore sample and it is the second discovered species of the genus Joostella. In this project, the genome of J. atrarenae M1-2T was sequenced using NovaSeq 6000. The final assembled genome is comprised of 71 contigs, a total of 3,983,942 bp, a GC ratio of 33.2%, and encoded for 3,416 genes. The 16S rRNA gene sequence of J. atrarenae M1-2T shows 97.3% similarity against J. marina DSM 19592T. Genome-genome comparison between the two strains by ANI, dDDH, AAI, and POCP shows values of 80.8%, 23.3%, 83.4%, and 74.1% respectively. Pan-genome analysis shows that strain M1-2T and J. marina DSM 19592T shared a total of 248 core genes. Taken together, strain M-2T and J. marina DSM 19592T belong to the same genus but are two different species. CAZymes analysis revealed that strain M1-2T harbors 109 GHs, 40 GTs, 5 PLs, 9 CEs, and 6 AAs. Among these CAZymes, while 5 genes are related to cellulose degradation, 12 and 24 genes are found to encode for xylanolytic enzymes and other hemicellulases that involve majorly in the side chain removal of the lignocellulose structure, respectively. Furthermore, both the intracellular and extracellular crude extracts of strain M1-2T exhibited enzymatic activities against CMC, xylan, pNPG, and pNPX substrates, which corresponding to endoglucanase, xylanase, β-glucosidase, and β-xylosidase, respectively. Collectively, description of genome coupled with the enzyme assay results demonstrated that J. atrarenae M1-2T has a role in lignocellulosic biomass degradation, and the strain could be useful for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | | | - Clarine Wan Ling Hong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Melvin Chun Yun Tan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| |
Collapse
|
7
|
Penneru SK, Saharay M, Krishnan M. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. J Chem Inf Model 2022; 62:6628-6638. [PMID: 35649216 DOI: 10.1021/acs.jcim.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis. Cellobiohydrolase CelS is a microbial enzyme that binds to cellulose fiber and efficiently cleaves it into a simple sugar (cellobiose) by a repeated processive chopping mechanism. The two contributing factors to the catalytic reaction rate and the yield of cellobiose are the efficient product expulsion from the product binding site of CelS and the movement of the substrate or cellulose chain into the active site. Despite progress in understanding product expulsion in other cellulases, much remains to be understood about the molecular mechanism of processive action of these enzymes. Here, nonequilibrium molecular dynamics simulations using suitable reaction coordinates are carried out to investigate the energetics and mechanism of the substrate dynamics and product expulsion in CelS. The calculated free energy barrier for the product expulsion is three times lower than that for the processive action indicating that product removal is relatively easier and faster than the sliding of the substrate to the catalytic active site. The water traffic near the active site in response to the product expulsion and the processive action is also explored.
Collapse
Affiliation(s)
- Sree Kavya Penneru
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996-1939, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
8
|
Sharma P, Bano A, Pratap Singh S, Atkinson JD, Shiung Lam S, Iqbal HM, Wah Tong Y. Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. FUEL 2022; 329:125408. [DOI: 10.1016/j.fuel.2022.125408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
9
|
Markandan K, Chai WS. Perspectives on Nanomaterials and Nanotechnology for Sustainable Bioenergy Generation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7769. [PMID: 36363361 PMCID: PMC9658981 DOI: 10.3390/ma15217769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The issue of global warming calls for a greener energy production approach. To this end, bioenergy has significant greenhouse gas mitigation potential, since it makes use of biological products/wastes and can efficiently counter carbon dioxide emission. However, technologies for biomass processing remain limited due to the structure of biomass and difficulties such as high processing cost, development of harmful inhibitors and detoxification of produced inhibitors that hinder widespread usage. Additionally, cellulose pre-treatment is often required to be amenable for an enzymatic hydrolysis process. Nanotechnology (usage of nanomaterials, in this case) has been employed in recent years to improve bioenergy generation, especially in terms of catalyst and feedstock modification. This review starts with introducing the potential nanomaterials in bioenergy generation such as carbon nanotubes, metal oxides, silica and other novel materials. The role of nanotechnology to assist in bioenergy generation is discussed, particularly from the aspects of enzyme immobilization, biogas production and biohydrogen production. Future applications using nanotechnology to assist in bioenergy generation are also prospected.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Wai Siong Chai
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
10
|
Li Y, Song W, Han X, Wang Y, Rao S, Zhang Q, Zhou J, Li J, Liu S, Du G. Recent progress in key lignocellulosic enzymes: Enzyme discovery, molecular modifications, production, and enzymatic biomass saccharification. BIORESOURCE TECHNOLOGY 2022; 363:127986. [PMID: 36126851 DOI: 10.1016/j.biortech.2022.127986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Lignocellulose, the most prevalent biomass on earth, can be enzymatically converted into carbohydrates for bioethanol production and other uses. Among lignocellulosic enzymes, endoglucanase, xylanase, and laccase are the key enzymes, owing to their ability to disrupt the main structure of lignocellulose. Recently, new discovery methods have been established to obtain key lignocellulosic enzymes with excellent enzymatic properties. Molecular modification of enzymes to modulate their thermostability, catalytic activity, and substrate specificity has been performed with protein engineering technology. In addition, the enzyme expression has been effectively improved through expression element screening and host modification, as well as fermentation optimization. Immobilization of enzymes, use of surfactants, synergistic degradation, and optimization of reaction conditions have addressed the inefficiency of enzymatic saccharification. In this review, recent advances in key lignocellulosic enzymes are summarized, along with future prospects for the development of super-engineered strains and integrative technologies for enzymatic biomass saccharification.
Collapse
Affiliation(s)
- Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weiyan Song
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuyue Han
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yachan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
11
|
Sulman AM, Matveeva VG, Bronstein LM. Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3796. [PMID: 36364572 PMCID: PMC9656580 DOI: 10.3390/nano12213796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received considerable attention because they are potential remedies to overcome shortcomings of traditional biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible deactivation. In this short review, we will analyze major aspects of immobilization of cellulase-an enzyme for cellulosic biomass waste processing-on nanostructured supports. Such supports provide high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use. This review will discuss methods for cellulase immobilization, morphology of nanostructured supports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to major problems of sustainable biorefinery.
Collapse
Affiliation(s)
- Aleksandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
- Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Current Trends in Biological Valorization of Waste-Derived Biomass: The Critical Role of VFAs to Fuel A Biorefinery. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The looming climate and energy crises, exacerbated by increased waste generation, are driving research and development of sustainable resource management systems. Research suggests that organic materials, such as food waste, grass, and manure, have potential for biotransformation into a range of products, including: high-value volatile fatty acids (VFAs); various carboxylic acids; bioenergy; and bioplastics. Valorizing these organic residues would additionally reduce the increasing burden on waste management systems. Here, we review the valorization potential of various sustainably sourced feedstocks, particularly food wastes and agricultural and animal residues. Such feedstocks are often micro-organism-rich and well-suited to mixed culture fermentations. Additionally, we touch on the technologies, mainly biological systems including anaerobic digestion, that are being developed for this purpose. In particular, we provide a synthesis of VFA recovery techniques, which remain a significant technological barrier. Furthermore, we highlight a range of challenges and opportunities which will continue to drive research and discovery within the field. Analysis of the literature reveals growing interest in the development of a circular bioeconomy, built upon a biorefinery framework, which utilizes biogenic VFAs for chemical, material, and energy applications.
Collapse
|
13
|
Luo H, Liu X, Yu D, Yuan J, Tan J, Li H. Research Progress on Lignocellulosic Biomass Degradation Catalyzed by Enzymatic Nanomaterials. Chem Asian J 2022; 17:e202200566. [PMID: 35862657 DOI: 10.1002/asia.202200566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e.g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.
Collapse
Affiliation(s)
- Hangyu Luo
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Xiaofang Liu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Dayong Yu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Junfa Yuan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Jinyu Tan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Hu Li
- Guizhou University, Center for R&D of Fine Chemicals, Huaxi Street, 550025, Guiyang, CHINA
| |
Collapse
|
14
|
Cellulase immobilized onto amino-functionalized magnetic Fe3O4@SiO2 nanoparticle for poplar deconstruction. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Chandel H, Kumar P, Chandel AK, Verma ML. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-23. [PMID: 35529175 PMCID: PMC9064403 DOI: 10.1007/s13399-022-02746-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 05/05/2023]
Abstract
Globally, the fossil fuel reserves are depleting rapidly and the escalating fuel prices as well as plethora of the pollutants released from the emission of burning fossil fuels cause global warming that massively disturb the ecological balance. Moreover, the unnecessary utilization of non-renewable energy sources is a genuine hazard to nature and economic stability, which demands an alternative renewable source of energy. The lignocellulosic biomass is the pillar of renewable sources of energy. Different conventional pretreatment methods of lignocellulosic feedstocks have employed for biofuel production. However, these pretreatments are associated with disadvantages such as high cost of chemical substances, high load of organic catalysts or mechanical equipment, time consuming, and production of toxic inhibitors causing the environmental pollution. Nanotechnology has shown the promised biorefinery results by overcoming the disadvantages associated with the conventional pretreatments. Recyclability of nanomaterials offers cost effective and economically viable biorefineries processes. Lignolytic and saccharolytic enzymes have immobilized onto/into the nanomaterials for the higher biocatalyst loading due to their inherent properties of high surface area to volume ratios. Nanobiocatalyst enhance the hydrolyzing process of pretreated biomass by their high penetration into the cell wall to disintegrate the complex carbohydrates for the release of high amounts of sugars towards biofuel and various by-products production. Different nanotechnological routes provide cost-effective bioenergy production from the rich repertoires of the forest and agricultural-based lignocellulosic biomass. In this article, a critical survey of diverse biomass pretreatment methods and the nanotechnological interventions for opening up the biomass structure has been carried out.
Collapse
Affiliation(s)
- Heena Chandel
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology Una, Himachal Pradesh, 177209 India
| | - Prateek Kumar
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology Una, Himachal Pradesh, 177209 India
| | - Anuj K. Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São, Paulo-12.602.810, Brazil
| | - Madan L. Verma
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology Una, Himachal Pradesh, 177209 India
| |
Collapse
|
16
|
Mumtaz M, Baqar Z, Hussain N, Afifa, Bilal M, Azam HMH, Baqir QUA, Iqbal HM. Application of nanomaterials for enhanced production of biodiesel, biooil, biogas, bioethanol, and biohydrogen via lignocellulosic biomass transformation. FUEL 2022; 315:122840. [DOI: 10.1016/j.fuel.2021.122840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Bioethanol Production in Poland in the Context of Sustainable Development-Current Status and Future Prospects. ENERGIES 2022. [DOI: 10.3390/en15072582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The high dependence on imported fuels, the need to reduce greenhouse gas (GHG) emissions and the need to develop a low-carbon economy are reasons for the development of the renewable energy market in Poland. The wider use of biofuels can be a method for reducing oil dependence and reducing CO2 emission. Opportunities to reduce emissions and meet international requirements in the field of environmental protection are seen, among others, in the development of the production and greater use of biocomponents, including bioethanol. This article presents the current state of development in the area of bioethanol production in Poland. An outline of legal regulations in the examined area and statistical data, as well as the largest producers and their production capacity, are presented. The basic time range of analyses covered the years 2015–2019. According to the analyses, liquid biofuels in Poland are used on a small scale, although over 2015–2019, the production of bioethanol as a biocomponent in motor fuels increased by 43,537 tonnes. However, production potential is still underused. In recent years, there have been major changes in the structure of the use of raw materials for bioethanol production. The share of maize has significantly decreased (although it is still dominant in the consumption structure) in favour of waste raw materials.
Collapse
|
18
|
Srivastava N, Singh R, Srivastava M, Syed A, Bahadur Pal D, Bahkali AH, Mishra PK, Gupta VK. Impact of mixed lignocellulosic substrate and fungal consortia to enhance cellulase production and its application in NiFe 2O 4 nanoparticles mediated enzymatic hydrolysis of wheat straw. BIORESOURCE TECHNOLOGY 2022; 345:126560. [PMID: 34915113 DOI: 10.1016/j.biortech.2021.126560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Economic biowaste to biofuels production technology suffers from issues including high production cost of cellulase enzyme and its low efficiency. In this study five lignocellulosic biomass based on their high cellulosic contents are employed in 1:1 ratio with mixed fungal consortia to achieve enhance cellulase production via solid state fermentation. Under the optimum condition total 41 IU/gds FP activity was achieved in 120 h at 40 °C and pH 6.0. Further, crude cellulase was evaluated to improve thermal and pH stability under the influence of 2.0 mg/L NiFe2O4 nanoparticles, showed stability at 70 °C and pH 6.0 up to 8 h. Consequently, NiFe2O4 nanoparticles treated cellulase was used for the enzymatic hydrolysis of alkali treated wheat straw, and total 53 g/L reducing sugars could be produced in 18 h at 65 °C and pH 6.0. Thus, nanoparticles mediated enzymatic hydrolysis exhibited ∼ 29% and ∼ 28% higher sugar yield and productivity as compared to control after 18 h.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefiningand Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Centerfor Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
19
|
Dey N, Kumar G, Vickram AS, Mohan M, Singhania RR, Patel AK, Dong CD, Anbarasu K, Thanigaivel S, Ponnusamy VK. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery - A review. BIORESOURCE TECHNOLOGY 2022; 344:126171. [PMID: 34695586 DOI: 10.1016/j.biortech.2021.126171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 05/22/2023]
Abstract
The need to develop sustainable alternatives for pretreatment and hydrolysis of lignocellulosic biomass (LCB) is a massive concern in the industrial sector today. Breaking down of LCB yields sugars and fuel in the bulk scale. If explored under nanotechnology, LCB can be refined to yield high-performance fuel sources. The toxicity and cost of conventional methods can be reduced by applying nanoparticles (NPs) in refining LCB. Immobilization of enzymes onto NPs or used in conjugation with nanomaterials would instill specific and eco-friendly options for hydrolyzing LCB. Nanomaterials increase the proficiency, reusability, and stability of enzymes. Notably, magnetic NPs have bagged their place in the downstream processing of LCB effluents due to their efficient separation and cost-effectiveness. The current review highlights the role of nanotechnology and its particles in refining LCB into various commercial precursors and value-added products. The relationship between nanotechnology and LCB refinery is portrayed effectively in the present study.
Collapse
Affiliation(s)
- Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Monisha Mohan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Reeta Rani Singhania
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - Anil Kumar Patel
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - Cheng-Di Dong
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - S Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Vinoth Kumar Ponnusamy
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan; Department of Medicinal and Applied Chemistry. & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan.
| |
Collapse
|
20
|
Sankaran R, Markandan K, Khoo KS, Cheng CK, Ashokkumar V, Deepanraj B, Show PL. The Expansion of Lignocellulose Biomass Conversion Into Bioenergy via Nanobiotechnology. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.793528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic biomass has arisen as a solution to our energy and environmental challenges because it is rich in feedstock that can be converted to biofuels. Converting lignocellulosic biomass to sugar is a complicated system involved in the bioconversion process. There are indeed a variety of techniques that have been utilized in the bioconversion process consisting of physical, chemical, and biological approaches. However, most of them have drawbacks when used on a large scale, which include the high cost of processing, the development of harmful inhibitors, and the detoxification of the inhibitors that have been produced. These constraints, taken together, hinder the effectiveness of current solutions and demand for the invention of a new, productive, cost-effective, and environmentally sustainable technique for LB processing. In this context, the approach of nanotechnology utilizing various nanomaterials and nanoparticles in treating lignocellulose biomass and bioenergy conversion has achieved increased interest and has been explored greatly in recent times. This mini review delves into the application of nanotechnological techniques in the bioconversion of lignocellulose biomass into bioenergy. This review on nanotechnological application in biomass conversion provides insights and development tools for the expansion of new sectors, resulting in excellent value and productivity, contributing to the long-term economic progress.
Collapse
|
21
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
22
|
Srivastava N, Mohammad A, Singh R, Srivastava M, Syed A, Bahadur Pal D, Elgorban AM, Mishra PK, Gupta VK. Evaluation of enhanced production of cellulose deconstructing enzyme using natural and alkali pretreated sugar cane bagasse under the influence of graphene oxide. BIORESOURCE TECHNOLOGY 2021; 342:126015. [PMID: 34592619 DOI: 10.1016/j.biortech.2021.126015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
High production cost of cellulase enzyme is one of the main constraints in the practical implementation of biofuels at global scale. Therefore, the present investigation is focused to produce low-cost cellulase via sustainable strategies. This work evaluates to achieve enhanced fungal cellulase production using natural and pretreated sugar cane bagasse (SCB) via Rhizopus oryzae NS5 under the solid state fermentation (SSF) while implementing graphene oxide (GO) as a catalyst. A low alkali treatment showed better performance for cellulase production wherein 14 IU/gds FP activity is observed in 96 h using 0.5% alkali treated SCB, significantly higher as compared to 10 IU/gds FP in case of untreated SCB. Further, the effect of GO has been investigated on cellulase production, incubation temperature and pH of the production medium. Under the influence of 1.5% concentration of GO, alkali pretreated SCB produced maximum 25 IU/gds cellulase in 72 h at pH 5.0 and 40 °C.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra Ranchi 835215, Jharkhand, India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
23
|
Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 2021; 11:480. [PMID: 34790504 DOI: 10.1007/s13205-021-03002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/26/2021] [Indexed: 01/28/2023] Open
Abstract
The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.
Collapse
|
24
|
Roy S, Dikshit PK, Sherpa KC, Singh A, Jacob S, Chandra Rajak R. Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113422. [PMID: 34351298 DOI: 10.1016/j.jenvman.2021.113422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 05/22/2023]
Abstract
Increase in human population, rapid industrialization, excessive utilization of fossil fuel utilization and anthropogenic activities have caused serious threats to the environment in terms of greenhouse gas emissions (GHGs), global warming, air pollution, acid rain, etc. This destruction in sustainability can be averted by a paradigm shift in the fuel production from fossil resources to bioenergy. Amongst different forms of bioenergy, lignocellulosic biomass can be utilized as an attractive substrate for the production of several high-value products owing to its renewability, easy availability, and abundance. Additionally, utilization of these waste biomasses reduces the environmental hazards associated with its disposal. Impedance of lignin and crystalline nature of cellulose pose major bottlenecks in biomass based energy. Though, several physio-chemicals processes are recommended as mitigation route but none of them seems to be promising for large scale application. In recent years, a right fusion of biological treatment combined with nanotechnology for efficient pretreatment and subsequent hydrolysis of biomass by ubiquitous enzymes seems to be promising alternative. In addition, to overcome these difficulties, nanotechnology-based methods have been recently adopted in catalytic valorization of lignocellulosic biomass. The present review has critically discussed the application of nano-biotechnology in lignocellulosic biomass valorization in terms of pretreatment and hydrolysis. A detailed discussion on the application of various nanoparticles in these processes, enzyme immobilization and end-production utilization is presented in this review. Finally, the review emphasizes the major challenges of this process along with different routes and recommendations to address the issues.
Collapse
Affiliation(s)
- Sharmili Roy
- Division of Oncology, School of Medicine, Stanford University, CA, 94305, USA
| | - Pritam Kumar Dikshit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, India
| | - Knawang Chhunji Sherpa
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, 721302, India
| | - Anshu Singh
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, 721302, India
| | - Samuel Jacob
- Department of Biotechnology, School of Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Rajiv Chandra Rajak
- Department of Botany, Marwari College, Ranchi University, Ranchi, 834008, India.
| |
Collapse
|
25
|
Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel) 2021; 13:2886. [PMID: 34502925 PMCID: PMC8433819 DOI: 10.3390/polym13172886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing demand for petroleum-based polyethylene terephthalate (PET) grows population impacts daily. A greener and more sustainable raw material, lignocellulose, is a promising replacement of petroleum-based raw materials to convert into bio-PET. This paper reviews the recent development of lignocellulose conversion into bio-PET through bioethanol reaction pathways. This review addresses lignocellulose properties, bioethanol production processes, separation processes of bioethanol, and the production of bio-terephthalic acid and bio-polyethylene terephthalate. The article also discusses the current industries that manufacture alcohol-based raw materials for bio-PET or bio-PET products. In the future, the production of bio-PET from biomass will increase due to the scarcity of petroleum-based raw materials.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Didik Supriyadi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Devita Amelia
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Desi Riana Saputri
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Yuniar Luthfia Listya Devi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Wika Atro Auriyani
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Ho Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
26
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
27
|
Sharma S, Nargotra P, Sharma V, Bangotra R, Kaur M, Kapoor N, Paul S, Bajaj BK. Nanobiocatalysts for efficacious bioconversion of ionic liquid pretreated sugarcane tops biomass to biofuel. BIORESOURCE TECHNOLOGY 2021; 333:125191. [PMID: 33951579 DOI: 10.1016/j.biortech.2021.125191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to study the hydrolysis of ionic liquid (IL) pretreated sugarcane tops (SCT) biomass with in-house developed IL-stable enzyme preparation, from a fungal isolate Aspergillus flavus PN3. Maximum reducing sugar yield (181.18 mg/g biomass) was obtained from tris (2-hydroxyethyl) methylammonium-methylsulfate ([TMA]MeSO4) pretreated biomass. Pretreatment parameters were optimized to attain enhanced sugar yield (1.57-fold). Functional mechanism of IL mediated pretreatment of SCT biomass was elucidated by SEM, XRD, FTIR and 1H NMR studies. Furthermore, nanobiocatalysts prepared by immobilization of enzyme preparation by covalent coupling on magnetic nanoparticles functionalized with amino-propyl triethoxysilane, were assessed for their hydrolytic efficacy and reusability. Nanobiocatalysts were examined by SEM and FTIR analysis for substantiation of immobilization. This is the first ever report of application of magnetic nanobiocatalysts for saccharification of IL-pretreated sugarcane tops biomass.
Collapse
Affiliation(s)
- Surbhi Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Parushi Nargotra
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Vishal Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Ridhika Bangotra
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Manpreet Kaur
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Nisha Kapoor
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Satya Paul
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
28
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
29
|
Sanusi IA, Suinyuy TN, Kana GEB. Impact of nanoparticle inclusion on bioethanol production process kinetic and inhibitor profile. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00585. [PMID: 33511040 PMCID: PMC7817428 DOI: 10.1016/j.btre.2021.e00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 01/06/2023]
Abstract
NiO nanoparticle (NP) inclusion enhanced bioethanol production up to 59.96 %. Band energy gap impact NP catalytic performance in bioethanol production. NiO nanoparticle biocatalyst improved bioethanol productivity by 145 %. Modified Gompertz model was used to describe ethanol production with NP inclusion. Metallic NiO nanoparticles significantly reduced acetic acid concentration by 110 %.
This study examines the effects of nanoparticle inclusion in instantaneous saccharification and fermentation (NIISF) of waste potato peels. The effect of nanoparticle inclusion on the fermentation process was investigated at different stages which were: pre-treatment, liquefaction, saccharification and fermentation. Inclusion of NiO NPs at the pre-treatment stage gave a 1.60-fold increase and 2.10-fold reduction in bioethanol and acetic acid concentration respectively. Kinetic data on the bioethanol production fit the modified Gompertz model (R 2 > 0.98). The lowest production lag time (t L) of 1.56 h, and highest potential bioethanol concentration (P m) of 32 g/L were achieved with NiO NPs inclusion at different process stages; the liquefaction stage and the pre-treatment phase, respectively. Elevated bioethanol yield, coupled with substantial reduction in process inhibitors in the NIISF processes, demonstrated the significance of point of nanobiocatalysts inclusion for the scale-up development of bioethanol production from potato peels.
Collapse
Key Words
- ATP, Adenosine triphosphate
- Band energy gap
- Bioethanol
- EDS, Energy dispersive spectrophotometric
- EDX, Energy-dispersive X-ray spectroscopy
- GC–MS, Gas chromatography-Mass spectrometry
- HMF, 5-Hydroxymethyl Furfural
- ISF, Instant saccharification and fermentation
- Inhibitor profile
- NPs, Nanoparticles
- NSLIS, Nano + SATP + Liquefaction + SS + No Fermentation
- NSLISF, Nano + SATP + liquefaction + ISF
- Nanoparticles
- ORP, Oxidation–reduction potential
- SATP, Soaking assisted thermal pre-treatment
- SEM, Scanning electron microscopy
- SLIS, SATP + Liquefaction + SS + No Fermentation
- SLISF, SATP + Liquefaction + ISF
- SLNISF, SATP + Liquefaction + Nano + ISF
- SNLISF, SATP + Nano + Liquefaction + ISF
- SPA, Surface Plasmon Absorption
- SPR, Surface plasmon resonance
- Saccharomyces cerevisiae
- TEM, Transmission electron microscopy
- UV–vis, Ultraviolent visible
- VICs, Volatile inhibitory compounds
- wt%, Weight percent
Collapse
Affiliation(s)
- Isaac A Sanusi
- Discipline of Microbiology, Biotechnology Cluster, University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa
| | - Terence N Suinyuy
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela, South Africa
| | - Gueguim E B Kana
- Discipline of Microbiology, Biotechnology Cluster, University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa
| |
Collapse
|
30
|
Liu T, Pei B, Lin J, Zhang G. Immobilization of β-1,3-xylanase on pitch-based hyper-crosslinked polymers loaded with Ni2+ for algal biomass manipulation. Enzyme Microb Technol 2020; 142:109674. [DOI: 10.1016/j.enzmictec.2020.109674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 01/11/2023]
|
31
|
Kyriienko PI, Larina OV, Soloviev SO, Orlyk SM. Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review. THEOR EXP CHEM+ 2020. [DOI: 10.1007/s11237-020-09654-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. ENERGIES 2020. [DOI: 10.3390/en13205300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.
Collapse
|
33
|
Zeng M, Pan X. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1819936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meijun Zeng
- Department of Biological System Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xuejun Pan
- Department of Biological System Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Papadopoulou A, Zarafeta D, Galanopoulou AP, Stamatis H. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles. Protein J 2020; 38:640-648. [PMID: 31549278 DOI: 10.1007/s10930-019-09869-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulase from Trichoderma reesei was immobilized by covalent or non-covalent binding onto magnetic hierarchical porous carbon (MHPC) nanomaterials. The immobilization yield and the enzyme activity were higher when covalent immobilization approach was followed. The covalent immobilization approach leads to higher immobilization yield (up to 96%) and enzyme activity (up to 1.35 U mg-1) compared to the non-covalent cellulase binding. The overall results showed that the thermal, storage and operational stability of the immobilized cellulase was considerably improved compared to the free enzyme. The immobilized cellulose catalyzed the hydrolysis of microcrystalline cellulose up to 6 consecutive successive reaction cycles, with a total operation time of 144 h at 50 °C. The half-life time of the immobilized enzyme in deep eutectic solvents-based media was up to threefold higher compared to the soluble enzyme. The increased pH and temperature tolerance of the immobilized cellulase, as well as the increased operational stability in aqueous and deep eutectic solvents-based media indicate that the use of MHPCs as immobilization nanosupport could expand the catalytic performance of cellulolytic enzymes in various reaction conditions.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitra Zarafeta
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | | | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
35
|
Enzymatic degradation of algal 1,3-xylan: from synergism of lytic polysaccharide monooxygenases with β-1,3-xylanases to their intelligent immobilization on biomimetic silica nanoparticles. Appl Microbiol Biotechnol 2020; 104:5347-5360. [PMID: 32318768 DOI: 10.1007/s00253-020-10624-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) with synergistic effect on polysaccharide hydrolase represent a revolution in biotechnology, which may accelerate the conversion of biomass to the second-generation biofuels. Discovering more hydrolases that have synergism with LPMOs will considerably expand the knowledge and application of biomass degradation. The LPMOs named CgAA9 were verified to exhibit 1.52-fold synergism when incubated with β-1,3-xylanase at a molar ratio of 3:1. The ion chromatography results proved that CgAA9 did not alter the endogenous hydrolysis mode of β-1,3-xylanase. Meanwhile, to decrease the operational cost of enzymes, a novel strategy for immobilizing LPMOs and β-1,3-xylanases based on the biomimetic silica nanoparticles was developed. It enabled preparation of immobilized enzymes directly from the cell lysate. The immobilization efficiency and activity recovery reached 84.6 and 81.4%. They showed excellent reusability for 12 cycles by retaining 68% of initial activity. The optimum temperature for both free and immobilized biocatalyst were 40 and 37 °C, indicating they were ideal candidates for typical simultaneous saccharification and fermentation (SSF) in ethanol production from algea biomass. This was the first report on the synergy between LPMOs and β-1,3-xylanase, and the strategy for enzyme self-immobilization was simple, timesaving, and efficient, which might have great potentials in algae biomass hydrolysis. KEY POINTS: • The lytic polysaccharide monooxygenases (LPMOs) from Chaetomium globosum were firstly verified to boost the hydrolysis of β-1,3-xylanases for β-1,3-xylan. • A novel strategy for simple preparation of SpyCather-modifed silica nanopartilcles and intelligent immobilization of target enzymes from the cell lysate was proposed. • The immobilized LPMOs and β-1,3-xylanases could be reasonable alternatives for typical simultaneous saccharification and fermentation (SSF) in manipulation of algae biomass.
Collapse
|
36
|
Ingle AP, Philippini RR, Rai M, Silvério da Silva S. Catalytic hydrolysis of cellobiose using different acid-functionalised Fe 3O 4 magnetic nanoparticles. IET Nanobiotechnol 2020; 14:40-46. [PMID: 31935676 PMCID: PMC8676166 DOI: 10.1049/iet-nbt.2019.0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2023] Open
Abstract
The present study demonstrated the preparation of three different acid-functionalised magnetic nanoparticles (MNPs) and evaluation for their catalytic efficacy in hydrolysis of cellobiose. Initially, iron oxide (Fe3O4)MNPs were synthesised, which further modified by applying silica coating (Fe3O4-MNPs@Si) and functionalised with alkylsulfonic acid (Fe3O4-MNPs@Si@AS), butylcarboxylic acid (Fe3O4-MNPs@Si@BCOOH) and sulphonic acid (Fe3O4-MNPs@Si@SO3H) groups. The Fourier transform infrared analysis confirmed the presence of above-mentioned acid functional groups on MNPs. Similarly, X-ray diffraction pattern and energy dispersive X-ray spectroscopy analysis confirmed the crystalline nature and elemental composition of MNPs, respectively. TEM micrographs showed the synthesis of spherical and polydispersed nanoparticles having diameter size in the range of 20-80 nm. Cellobiose hydrolysis was used as a model reaction to evaluate the catalytic efficacy of acid-functionalised nanoparticles. A maximum 74.8% cellobiose conversion was reported in case of Fe3O4-MNPs@Si@SO3H in first cycle of hydrolysis. Moreover, thus used acid-functionalised MNPs were magnetically separated and reused. In second cycle of hydrolysis, Fe3O4-MNPs@Si@SO3H showed 49.8% cellobiose conversion followed by Fe3O4-MNPs@Si@AS (45%) and Fe3O4-MNPs@Si@BCOOH (18.3%). However, similar pattern was reported in case of third cycle of hydrolysis. The proposed approach is considered as rapid and convenient. Moreover, reuse of acid-functionalised MNPs makes the process economically viable.
Collapse
Affiliation(s)
- Avinash P Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, SP, Brazil.
| | - Rafael R Philippini
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, SP, Brazil
| |
Collapse
|