1
|
Ye L, Zhang Y, Jin S, Zhou C, Pang J, Luo Y, Yu Y, Xu W. Mechanochemical Synthesis of High-Entropy MOF-74 with Multiple Active Sites for CO 2 Adsorption and Synergistic Conversion. Inorg Chem 2024; 63:20572-20583. [PMID: 39422667 DOI: 10.1021/acs.inorgchem.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Compared with monometallic metal-organic frameworks (MOFs), the synergistic effect of multiple metals significantly enhances the catalytic performance of the CO2 cycloesterification reaction, leading to improved CO2 adsorption and catalytic conversion capabilities. To investigate this concept, a high-entropy MOF-74 (HE-MOF-74) with a uniform distribution of five distinct metal ions (Zn2+, Mg2+, Ni2+, Co2+, and Cu2+) was successfully synthesized using a straightforward mechanical ball milling technique and comprehensively characterized (including structural, morphological, and physicochemical properties). The results reveal that HE-MOF-74 exhibits significantly increased specific surface area and CO2 adsorption capacity compared with those of monometallic MOF-74. The presence of multiple unsaturated metal centers as Lewis acid sites, oxygen atoms linking the metals, and ligand-based hydroxyl groups serving as base sites enable efficient immobilization of CO2 into cyclic carbonate. This study introduces a novel synthetic approach for the green and efficient production of HE-MOF-74 and proposes a new application for CO2 utilization.
Collapse
Affiliation(s)
- Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yuhang Yu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
2
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Damián Burgoa J, Álvarez-Miguel L, Mosquera MEG, Hamilton A, Whiteoak CJ. Binary and Halide-free Catalyst Systems Based on Al/Ga/In Aminopyridylbisphenolate Complexes for the Cycloaddition of Epoxides and CO 2. Inorg Chem 2024; 63:15376-15387. [PMID: 39093822 PMCID: PMC11337169 DOI: 10.1021/acs.inorgchem.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Group 13 complexes bearing an aminopyridylbisphenol ligand have been prepared [ML-X; L = ligand, M = Al (X = Cl and Br), Ga (X = Cl, Br, and I), or In (X = Cl)]. The structures of the complexes containing the chloride ligand (ML-Cl; M = Al, Ga, and In) have been directly compared through an X-ray crystallography study, with differences in the monomeric or dimeric nature of their structures observed. All of the complexes obtained have been studied as potential catalysts for the synthesis of cyclic carbonates from epoxides and CO2. It has been found that the indium complex, as part of a traditional binary catalyst system (catalyst + tetra-butylammonium halide cocatalyst), displays the highest catalytic activity and is active under rather mild reaction conditions (balloon pressure of CO2). Meanwhile, it has been found that the GaL-I complex is a competent single-component catalyst (no need for addition of a cocatalyst) at more elevated reaction temperatures and pressures. A full substrate scope has been performed with both developed catalyst systems to demonstrate their applicability. In addition to the experimental results, a density functional theory study was performed on both catalyst systems. These results explain both why the indium catalyst is the most active under binary catalyst system conditions and how the gallium catalyst with an iodide (GaL-I) is able to act as a single-component catalyst in contrast to the indium-based complex.
Collapse
Affiliation(s)
- Jesús Damián Burgoa
- Departamento
de Química Orgánica y Química Inorgánica,
Facultad de Farmacia and Instituto de Investigación Química
Andrés M. del Río (IQAR), Universidad de Alcalá, Grupo SOSCATCOM, Campus Universitario, Ctra. Madrid-Barcelona
Km. 33,600, Alcalá de Henares 28871, Madrid, Spain
| | - Lucía Álvarez-Miguel
- Departamento
de Química Orgánica y Química Inorgánica,
Facultad de Farmacia and Instituto de Investigación Química
Andrés M. del Río (IQAR), Universidad de Alcalá, Grupo SOSCATCOM, Campus Universitario, Ctra. Madrid-Barcelona
Km. 33,600, Alcalá de Henares 28871, Madrid, Spain
| | - Marta E. G. Mosquera
- Departamento
de Química Orgánica y Química Inorgánica,
Facultad de Farmacia and Instituto de Investigación Química
Andrés M. del Río (IQAR), Universidad de Alcalá, Grupo SOSCATCOM, Campus Universitario, Ctra. Madrid-Barcelona
Km. 33,600, Alcalá de Henares 28871, Madrid, Spain
| | - Alex Hamilton
- Biomolecular
Sciences Research Centre (BMRC) and Department of Biosciences and
Chemistry, College of Health, Wellbeing and Life Sciences Howard Street, Sheffield Hallam University, Sheffield S1 1WB, U.K.
| | - Christopher J. Whiteoak
- Departamento
de Química Orgánica y Química Inorgánica,
Facultad de Farmacia and Instituto de Investigación Química
Andrés M. del Río (IQAR), Universidad de Alcalá, Grupo SOSCATCOM, Campus Universitario, Ctra. Madrid-Barcelona
Km. 33,600, Alcalá de Henares 28871, Madrid, Spain
| |
Collapse
|
4
|
Lin L, Yang H, Li S, Liu Y, Zhi Y, Shan S, Xu J. Synthesis of metal-free benzimidazole-based catalysts and its application in CO 2 cycloaddition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45204-45216. [PMID: 38958860 DOI: 10.1007/s11356-024-34085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Ionic polymers functionalized with hydroxyl, carboxyl, and amino groups can enhance the catalytic activity of catalysts. However, the straightforward preparation of bifunctional ionic polymers containing abundant ionic active sites and hydrogen bond donors remains challenging. In this study, a series of porous ionic polymers (BZIs) containing different hydrogen bond donors (-NH2, -OH, -COOH) were prepared through a simple one-pot Friedel-Crafts alkylation using benzimidazole derivatives and benzyl bromide. The structures and properties of BZIs were characterized by various techniques such as Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance, and scanning electron microscopy. Among the prepared catalysts (BZI-NH2, BZI-OH, and BZI-COOH), BZI-NH2 exhibited the highest catalytic activity and recyclability, achieving a yield of 97% in the CO2 cycloaddition. The synergistic effect of Br-, hydrogen bond donors (-NH-, -NH2), and N+ in BZI-NH2 was found to contribute to its superior catalytic performance. DFT calculations were employed to study the effect of hydrogen bonds, Br-, and N+ in BZI-NH2 and BZI-OH on the CO2 cycloaddition. Using BZI-NH2 as an example, a mechanism was proposed for the synergistic effect between amino groups and bromide ions in catalyzing the CO2 cycloaddition reaction.
Collapse
Affiliation(s)
- Li Lin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Huigui Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Juan Xu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
5
|
Zhu T, Xu Y, Li Z, He J, Yuan X, Qian D, Chang T, Lu L, Chi B, Guo K. Cholinium Pyridinolate Ionic Pair-Catalyzed Fixation of CO 2 into Cyclic Carbonates. J Org Chem 2024. [PMID: 38787343 DOI: 10.1021/acs.joc.3c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A halide-free ionic pair organocatalyst was proposed for the cycloaddition of CO2 into epoxide reactions. Cholinium pyridinolate ionic pairs with three different substitution positions were designed. Under conditions of temperature of 120 °C, pressure of 1 MPa CO2, and catalyst loading of 5 mol %, the optimal catalyst cholinium 4-pyridinolate ([Ch]+[4-OP]-) was employed. After a reaction time of 12 h, styrene oxide was successfully converted into the corresponding cyclic carbonate, and its selectivity was improved to 90%. A series of terminal epoxides were converted into cyclic carbonates within 12 h, with yields ranging from 80 to 99%. The proposed mechanism was verified by 1H NMR and 13C NMR titrations. Cholinium cations act as a hydrogen bond donor to activate epoxides, and pyridinolate anions combine with carbon dioxide to form intermediate carbonate anions that attack epoxides as nucleophiles and lead to ring opening. In summary, a halide-free ionic pair organocatalyst was designed and the catalytic mechanism in the cycloaddition of CO2 into epoxides reactions was proposed.
Collapse
Affiliation(s)
- Tianyu Zhu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yue Xu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Zhenjiang Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Jun He
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Xin Yuan
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Dong Qian
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Tong Chang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Longlin Lu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
6
|
Dong J, Zhang H, Ma J, Gao K, Liu F, Li Y, Liu M. Synergistic effects of core-shell poly(ionic liquids)@ZIF-8 nanocomposites for enhancing additive-free CO 2 conversion. J Colloid Interface Sci 2024; 661:1000-1010. [PMID: 38335785 DOI: 10.1016/j.jcis.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The present study, for the first time, reports the fabrication of core-shell poly(ionic liquids)@ZIF-8 nanocomposites through a facile in-situ polymerization strategy. These composites exhibited exceptional structural characteristics including high specific surface areas and the integration of high-density Lewis acid/base and nucleophilic active sites. The structure-activity relationship, reusability, and versatility of the poly(ionic liquids)@ZIF-8 composites were investigated for the cycloaddition reaction between CO2 and epoxide. By optimizing the composites structures and their catalytic performance, PIL-Br@ZIF-8(2:1) was identified as an exciting catalyst that exhibits high activity and selectivity in the synthesis of various cyclic carbonates under mild or even atmospheric pressure or simulated flue gas conditions. Moreover, the catalyst demonstrated excellent structural stability while maintaining its catalytic activity throughout multiple usage cycles. By combining DFT calculations, we investigated the transition states and intermediate geometries of the cycloaddition reaction in different coordination microenvironments, thereby proposing a synergistic catalytic mechanism involving multiple active sites.
Collapse
Affiliation(s)
- Jiqing Dong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Han Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingjing Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Kunqi Gao
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yantao Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengshuai Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
7
|
Chen C, Jin H, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Local reaction environment in electrocatalysis. Chem Soc Rev 2024; 53:2022-2055. [PMID: 38204405 DOI: 10.1039/d3cs00669g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huanyu Jin
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaogang Sun
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
8
|
Chen K, Wu Y, Zhang Z, Yang Y, Luo R. Two in one: aluminum porphyrin-based porous organic polymers containing symmetrical quaternary phosphonium salts for catalytic conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:2073-2081. [PMID: 38180046 DOI: 10.1039/d3dt03627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Based on the double activation models of epoxides, the design and synthesis of ionic porous organic polymers (iPOPs) is considered to be very attractive and promising but has remained a great challenge in recent decades owing to electrostatic interactions between charged groups. In this contribution, we developed a two-in-one strategy to fabricate metalloporphyrin-based iPOPs with unique nanostructures (named AlPor-QP@POP), which are composed of aluminum porphyrin units and three-dimensional quaternary phosphonium salts that work synergistically in the cycloaddition of CO2 with epoxides under mild conditions. The high symmetry of two monomers allows them to possess similar reactivity ratios and thus endows AlPor-QP@POP with densely located active sites, a large surface area and good CO2 capture capacity. More importantly, bifunctional AlPor-QP@POP has enormous potential to produce cyclic carbonates with simulated flue gas under ambient conditions. Moreover, AlPor-QP@POP can be readily recycled and efficiently reused more than ten times without an obvious decrease in catalytic activity. Finally, kinetic investigations and a comparative study have been conducted to understand the possible mechanism of CO2 catalytic cycloaddition.
Collapse
Affiliation(s)
- Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuanxiang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zixuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Li Y, Weng S, Wang S, Zhang G, Liu F, Liu M. Engineering the activity and stability of ZIF-8(Zn/Co)@g-C 3N 4 nanocomposites and their synergistic action in converting atmospheric CO 2 into cyclic carbonates. J Colloid Interface Sci 2023; 656:24-34. [PMID: 37980721 DOI: 10.1016/j.jcis.2023.11.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
The development of novel catalytic materials that integrate multifunctional sites has significant implications for expanding the utilization of CO2 resources. However, simultaneously achieving high activity and stability remains a formidable challenge. In this study, a series of ZIF-8(Zn/Co)@g-C3N4 nanocomposites were prepared by employing a thermo-physical compounding strategy that involved the combination of nitrogen-rich graphitic carbon nitride (g-C3N4) nanosheets with ZIF-8(ZnCo). The influences of different compositions of g-C3N4 and ZIF-8(Zn/Co) on the catalyst structure were systematically investigated. Subsequently, the catalytic activities of these nanocomposites towards the cycloaddition reaction between CO2 and epoxide were examined under different conditions. The presence of abundant Lewis base sites in g-C3N4 facilitates CO2 activation, while multiple Lewis acid sites in ZIF-8(Zn/Co) enable efficient epoxide activation. By working synergistically with a co-catalyst, tetrabutylammonium bromide (TBAB), CO2 and epoxides can be efficiently reacted to synthesize the corresponding cyclic carbonates under mild or even atmospheric pressure conditions. The catalytic reaction conditions were optimized, and both the catalyst's recycling performance and the scope of epoxides with various substituents were investigated. The integration of g-C3N4 and ZIF-8(Zn/Co) endows the catalytic material with exceptional structural stability and remarkable catalytic activity, thereby providing a new platform for highly efficient CO2 conversion.
Collapse
Affiliation(s)
- Yingwei Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shiwei Weng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shasha Wang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, PR China
| | - Guojie Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Mengshuai Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
10
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
11
|
Hu Y, Abazari R, Sanati S, Nadafan M, Carpenter-Warren CL, Slawin AMZ, Zhou Y, Kirillov AM. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37300-37311. [PMID: 37497576 DOI: 10.1021/acsami.3c04506] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.
Collapse
Affiliation(s)
- Yaxuan Hu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran
| | | | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
12
|
Song C, Moon H, Baek K, Shin C, Lee K, Kang SJ, Choi NS. Acid- and Gas-Scavenging Electrolyte Additive Improving the Electrochemical Reversibility of Ni-Rich Cathodes in Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22157-22166. [PMID: 37126475 DOI: 10.1021/acsami.3c02231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In view of their high theoretical capacities, nickel-rich layered oxides are promising cathode materials for high-energy Li-ion batteries. However, the practical applications of these oxides are hindered by transition metal dissolution, microcracking, and gas/reactive compound formation due to the undesired reactions of residual lithium species. Herein, we show that the interfacial degradation of the LiNi0.9CoxMnyAlzO2 (NCMA, x + y + z = 0.1) cathode and the graphite (Gr) anode of a representative Li-ion battery by HF can be hindered by supplementing the electrolyte with tert-butyldimethylsilyl glycidyl ether (tBS-GE). The silyl ether moiety of tBS-GE scavenges HF and PF5, thus stabilizing the interfacial layers on both electrodes, while the epoxide moiety reacts with CO2 released by the parasitic reaction between HF and Li2CO3 on the NCMA surface to afford cyclic carbonates and thus suppresses battery swelling. NCMA/Gr full cells fabricated by supplementing the baseline electrolyte with 0.1 wt % tBS-GE feature an increased capacity retention of 85.5% and deliver a high discharge capacity of 162.9 mAh/g after 500 cycles at 1 C and 25 °C. Thus, our results reveal that the molecular aspect-based design of electrolyte additives can be efficiently used to eliminate reactive species and gas components from Li-ion batteries and increase their performance.
Collapse
Affiliation(s)
- Chaeeun Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeongyu Moon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyungeun Baek
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Chorong Shin
- LG Energy Solution, 188 Munji-ro, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Kwansoo Lee
- LG Energy Solution, 188 Munji-ro, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Nam-Soon Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Chen J, Yang J, Wu Q, Shi D, Chen K, Zhang Y, Zheng X, Li H. Intramolecular Synergistic Catalysis of Ternary Active Sites of Imidazole Ionic-liquid Polymers Immobilized on Nanosized CoFe2O4@polystyrene Composites for CO2 Cycloaddition. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
14
|
Zhang F, Chen W, Li W. Recent advances in the catalytic conversion of CO2 to chemicals and demonstration projects in China. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
16
|
Detz H, Butera V. In-depth DFT Insights into the Crucial Role of Hydrogen Bonding Network in CO2 Fixation into Propylene Oxide Promoted by Biomass-Derived Deep Eutectic Solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Cabrera DJ, Lewis RD, Díez-Poza C, Álvarez-Miguel L, Mosquera MEG, Hamilton A, Whiteoak CJ. Group 13 salphen compounds (In, Ga and Al): a comparison of their structural features and activities as catalysts for cyclic carbonate synthesis. Dalton Trans 2023; 52:5882-5894. [PMID: 36852925 DOI: 10.1039/d3dt00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Many complexes based on group 13 elements have been successfully applied as catalysts for the synthesis of cyclic carbonates from epoxides and CO2 and to date these have provided some of the most active catalysts developed. It is notable that most reports have focused on the use of aluminium-based compounds likely because of the well-established Lewis acidity of this element and its cost. In comparison, relatively little attention has been paid to the development of catalysts based on the heavier group 13 elements, despite their known Lewis acidic properties. This study describes the synthesis of aluminium, gallium and indium compounds supported by a readily prepared salphen ligand and explores both their comparative structures and also their potential as catalysts for the synthesis of cyclic carbonates. In addition, the halide ligand which forms a key part of the compound has been systematically varied and the effect of this change on the structure and catalytic activity is also discussed. It is demonstrated that the indium compounds are actually, and unexpectedly, the most active for cyclic carbonate synthesis, despite their lower Lewis acidity when compared to their aluminium congeners. The experimental observations from this work are fully supported by a Density Functional Theory (DFT) study, which provides important insights into the reasons as to why the indium catalyst with bromide, [InBr(salphen)], is most active.
Collapse
Affiliation(s)
- Diego Jaraba Cabrera
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ryan D Lewis
- Sheffield Hallam University, Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Carlos Díez-Poza
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Lucía Álvarez-Miguel
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Marta E G Mosquera
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Alex Hamilton
- Sheffield Hallam University, Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Christopher J Whiteoak
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
18
|
El-Hendawy MM, Desoky IM, Mohamed MMA, Curran HJ. Pyridinium-Inspired Organocatalysts for Carbon Dioxide Fixation: A Density Functional Theory Inspection. J Phys Chem A 2023; 127:29-37. [PMID: 36595451 DOI: 10.1021/acs.jpca.2c05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current project aims to apply the virtues of minimalism to examine the catalytic ability of commercially organic compounds of small chemical structures to catalyze the coupling reaction between carbon dioxide and propylene oxide (PO) under mild conditions. The proposed catalysts are pyridinium iodide (A), 2-hydroxypyridinium iodide (B), and piperidinium iodide (C), where their structure is based on cooperative acidic and nucleophilic motifs. The quantum chemistry model, M062X-D3/def2-TZVP//M062X-D3/def2-SVPP, was used to understand the reaction mechanism and the catalytic performance. Since the coupling reaction was performed under excess PO, we proposed that PO serves as a reactant and solvent. Therefore, calculations were performed in gas and liquid phases for comparison. The findings indicated that the rate-determining step depends on the chemical structure of the catalyst and whether the phase is a gas or liquid phase. In general, modeling in the liquid phase produces potential energy surfaces of lower energy barriers. The noncovalent interactions reflect the role of hydrogen bonding in controlling the kinetic behavior of the coupling reaction. Based on the finding, catalyst A is the best candidate for transforming CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Morad M El-Hendawy
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt.,Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ibtesam M Desoky
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, Kharga 72511, Egypt
| | - Henry J Curran
- Combustion Chemistry Centre, School of Chemistry, Ryan Institute, MaREI, National University of Ireland Galway, Galway H91 TK33, Ireland
| |
Collapse
|
19
|
Liu X, Yang Y, Chen M, Xu W, Chen K, Luo R. High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO 2 Capture and Catalytic Conversion into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1085-1096. [PMID: 36538671 DOI: 10.1021/acsami.2c18283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metalloporphyrin-based porous organic polymers (POPs) that behave as advanced biomimetic nanoreactors have drawn continuous attention for heterogeneous CO2 catalysis in the past decades. Inspired by the double activation model of epoxides, the design and synthesis of metalloporphyrin-based porous ionic polymers (PIPs) are considered as one of the most promising approaches for converting CO2 to cyclic carbonates under cocatalyst- and solvent-free conditions. To overcome the obstacle of poor reaction activity of ionic monomers or highly irregular stacking architecture, in this paper, we have proposed and demonstrated a modular bottom-up approach for constructing a series of high-surface-area metalloporphyrin-based PIPs in high yields by the direct condensation strategy, thus boosting the close contact of multiple active sites and achieving the enhanced CO2 capture and catalytic conversion into cyclic carbonates with high turnover frequencies under mild conditions. These recyclable aluminum-porphyrin-based PIPs are featured with high surface areas, prominent CO2 adsorptive capacities, rigid porphyrin skeletons, and flexible ionic pendants, as well as the matched amounts and spatial positions of metal centers and ionic sites, in which is demonstrated to be one of the quite competitive catalysts. Therefore, this strategy of introducing ionic components into the porphyrin frameworks as flexible side chains rather than main chains and adjusting the reactivity ratios of comonomers by structure-oriented methods, provides feasible guidance for the multifunctionalization of metalloporphyrin-based POPs, thereby increasing the accessibility of multiple active sites and improving their synergistic catalytic behavior.
Collapse
Affiliation(s)
- Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
20
|
Boric acid as a hydrogen bond donor with TBAB catalyze the cycloaddition of CO2 to internal bio-epoxides under solvent-free conditions. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Du H, Ye Y, Xu P, Sun J. Experimental and theoretical study on dicationic imidazolium derived poly(ionic liquid)s for catalytic cycloaddition of CO2-epoxide. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Zhang SR, Fu Y, Lu H, Cao GP. Hydrotalcite-calcined derivatives doped by zinc: A nucleophile-modified multifunctional catalyst for synthesis of propylene carbonate by cycloaddition. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Potassium‐ion‐bound
porous organic polymers having crown ether struts enable cooperative conversion of
CO
2
to cyclic carbonates under mild conditions. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
A simple multiple-amine heterogeneous composite for efficient conversion of CO2 to cyclic carbonates under atmospheric pressure. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Xiao L, Guo B, Lu Z, Zhao Y, Yin X, Lai Y, Cai J, Hou L. Polymetric pseudo liquid behavior of ionic cyclic polypyrazoles for efficient CO2 cycloaddition reaction under mild conditions. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Qu Y, Chen Y, Ye Y, Xu P, Sun J. Supercritical CO2 assisted synthesis of SBA-15 supported amino acid ionic liquid for CO2 cycloaddition under cocatalyst/metal/solvent-free conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Gao L, Zhou Y, Li Z, He J, Qu Y, Zou X, Liu B, Ma C, Sun J, Guo K. Nicotinamide onium halide bidentate hybrid H–bond donor organocatalyst for CO2 fixation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Xiao L, Lai Y, Zhao R, Song Q, Cai J, Yin X, Zhao Y, Hou L. Ionic Conjugated Polymers as Heterogeneous Catalysts for the Cycloaddition of Carbon Dioxide to Epoxides to Form Carbonates under Solvent- and Cocatalyst-Free Conditions. Chempluschem 2022; 87:e202200324. [PMID: 36420867 DOI: 10.1002/cplu.202200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
The generation of cyclic carbonates by the cycloaddition of CO2 with epoxides is attractive in the industry, by which CO2 is efficiently used as C1 source. Herein, a series of catalysts were developed to efficient mediate the cycloaddition of CO2 with epoxides to generate carbonates. The catalysts were easily synthesized via the amine-formaldehyde condensation of ethidium bromide with a variety of linkers. The newly prepared heterogeneous catalysts have high thermal stability and degradation temperatures. The surface of the catalysts is smooth and spherical in shape. The effect of temperature, pressure, reaction time and catalyst dosage on the cycloaddition of CO2 with epoxide were investigated. The results show that the catalyst with 1,3,5-tris(4-formylphenyl)benzene as the linker can achieve 97.4 % conversion efficiency at the conditions of 100 °C, reaction time of 12 h, and the reaction pressure of 1.2 MPa in a solvent-free environment. Notably, the polymers serve as homogeneous catalysts during the reaction (reaction temperature above Tg ) and can be separated and recovered easily as homogeneous catalysts at room temperature. In addition, the catalyst is not only suitable for a wide range of epoxide substrates, but also can be recycled many times. Furthermore, DFT calculations show that the coordination between the electrophilic center of the catalyst and the epoxide reduces the energy barrier, and the reaction mechanism is proposed based on the reaction kinetic studies and DFT calculations.
Collapse
Affiliation(s)
- Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Yiming Lai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rui Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Qianyu Song
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
29
|
Amide-functionalized organic cationic polymers toward enhanced catalytic performance for conversion of CO2 into cyclic carbonates. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Chen Y, Li Y, Wang H, Chen Z, Lei YZ. Facile Construction of Carboxyl-Functionalized Ionic Polymer towards Synergistic Catalytic Cycloaddition of Carbon Dioxide into Cyclic Carbonates. Int J Mol Sci 2022; 23:ijms231810879. [PMID: 36142788 PMCID: PMC9506212 DOI: 10.3390/ijms231810879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of bifunctional ionic polymers as heterogeneous catalysts for effective, cocatalyst- and metal-free cycloaddition of carbon dioxide into cyclic carbonates has attracted increasing attention. However, facile fabrication of such polymers having high numbers of ionic active sites, suitable types of hydrogen bond donors (HBDs), and controlled spatial positions of dual active sites remains a challenging task. Herein, imidazolium-based ionic polymers with hydroxyl/carboxyl groups and high ionic density were facilely prepared by a one-pot quaternization reaction. Catalytic evaluation demonstrated that the presence of HBDs (hydroxyl or carboxyl) could enhance the catalytic activities of ionic polymers significantly toward the CO2 cycloaddition reaction. Among the prepared catalysts, carboxyl-functionalized ionic polymer (PIMBr-COOH) displayed the highest catalytic activity (94% yield) in the benchmark cycloaddition reaction of CO2 and epichlorohydrin, which was higher than hydroxyl-functionalized ionic polymer (PIMBr-OH, 76% yield), and far exceeded ionic polymer without HBDs groups (PIMBr, 54% yield). Furthermore, PIMBr-COOH demonstrated good recyclability and wide substrate tolerance. Under ambient CO2 pressure, a number of epoxides were smoothly cycloadded into cyclic carbonates. Additionally, density functional theory (DFT) calculation verified the formation of strong hydrogen bonds between epoxide and the HBDs of ionic polymers. Furthermore, a possible mechanism was proposed based on the synergistic effect between carboxyl and Br− functionalities. Thus, a facile, one-pot synthetic strategy for the construction of bifunctional ionic polymers was developed for CO2 fixation.
Collapse
Affiliation(s)
- Ying Chen
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yingjun Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Hu Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Zaifei Chen
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yi-Zhu Lei
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Correspondence:
| |
Collapse
|
31
|
Liu Y, Hu S, Zhi Y, Hu T, Yue Z, Tang X, Shan S. Non-metal and non-halide enol PENDI catalysts for the cycloaddition of CO2 and epoxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Liu YL, Zhao Y, Zhang J, Ye Y, Sun Q. Cu2-cluster-based MOF with open metal sites and Lewis basic sites: Construction, CO2 adsorption and fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Bezerra WDA, Milani JLS, Franco CHDJ, Martins FT, de Fátima Â, da Mata ÁFA, das Chagas RP. Bis-benzimidazolium salts as bifunctional organocatalysts for the cycloaddition of CO2 with epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Xu YT, Ye ZM, Liu DX, Tian XY, Zhou DD, He CT, Chen XM. Non-3d metal modulated zinc imidazolate frameworks for CO2 cycloaddition in simulated flue gas under ambient condition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Parmar B, Patel P, Bhadu GR, Eringathodi S. Comparative Effect of Amino Functionality on the Performance of Isostructural Mixed‐Ligand MOFs Towards Multifunctional Catalytic Application. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bhavesh Parmar
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Parth Patel
- Central Salt and Marine Chemicals Research Institute CSIR Inorganic Materials and Catalysis Division Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Gopala Ram Bhadu
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Suresh Eringathodi
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division & Centralized Instrument Facility Lab 013, AESD&CIF,CSIR-CSMCRIG B Marg 364002 Bhavnagar INDIA
| |
Collapse
|
36
|
Mujmule RB, Kim H. Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO 2 into cyclic carbonates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115045. [PMID: 35436708 DOI: 10.1016/j.jenvman.2022.115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The recent increase in CO2 levels has had an extensive impact on the environment; hence an effective catalyst for chemical CO2 fixation into value-added products is demanded. This work demonstrates a simple approach towards the chemical fixation of CO2 to cyclic carbonates without solvent, metal and additives using one-pot synthesized tri-functional-imidazolium bromide ionic liquid. Herein, synthesized tri-functional-imidazolium-based ionic liquids, namely 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium bromide ([VIMEtOH][Br] (24 and 72 h)), 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium hydroxyl ([VIMEtOH][OH]) and poly 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium bromide (poly [VIMEtOH][Br]), were used for the comprehensive investigation of chemical fixation of CO2 into cyclic carbonates and their physiochemical properties. In case of [VIMEtOH][Br] ionic liquid, it displayed time-dependent synthesis dissolution in the reaction system. This study found that [VIMEtOH][Br]-72 ionic liquid is not dissolved in the reaction system. The effect on the catalytic efficiency of the presence of functional groups in ionic liquids such as N-vinyl (-CC-N), acidic proton of imidazolium (-C (2)-H) and hydroxyl (-OH) along with bromide anion and the reaction conditions are systematically investigated. For CO2 fixation, 99.6% conversion of propylene oxide with an excellent selectivity of propylene carbonate (≥99%) over [VIMEtOH][Br]-72 catalyst (at 120 °C, 2 MPa, 2 h) was observed without co-catalyst, metal and solvent. Also, it demonstrated an excellent wide substrates scope of epoxide and all reactions were performed on gram-scalable, which are potential prospects for industrial use.
Collapse
Affiliation(s)
- Rajendra B Mujmule
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
37
|
Jiang Y, Li D, Zhao Y, Sun J. Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide. J Colloid Interface Sci 2022; 618:22-33. [DOI: 10.1016/j.jcis.2022.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
|
38
|
Borah R, Lahkar S, Deori N, Brahma S. Synthesis, characterization and application of oxovanadium(iv) complexes with [NNO] donor ligands: X-ray structures of their corresponding dioxovanadium(v) complexes. RSC Adv 2022; 12:13740-13748. [PMID: 35541435 PMCID: PMC9076100 DOI: 10.1039/d2ra01448c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Two oxovanadium(iv) complexes ligated by [NNO] donor ligands have been synthesized and characterized by ESI-HRMS, elemental (CHN) analysis and spectroscopic (UV-Vis, IR and EPR) techniques. Block shaped brown crystals from the methanolic solutions of these oxovanadium(iv) complexes were obtained during the crystallization process. Crystallographic structures of the resulting crystals revealed that the original oxovanadium(iv) complexes have been transformed into new dioxovanadium(v) complexes with concomitant oxidation of VIV to VV. The original oxovanadium(iv) complexes have been identified to be an efficient catalyst for the CO2 cycloaddition reaction with epoxides resulting up to 100% cyclic carbonate products. The geometries of oxovanadium(iv) complexes are optimized by the density functional theory (DFT) calculations at the uB3LYP/6-31G**/LANL2DZ level of theory. The geometry and structural parameters of optimized structures of oxovanadium(iv) complexes are in excellent agreement with the parameters of X-ray structures of their dioxovanadium(v) counterparts. Further, TD-DFT and Spin Density Plots for the oxovanadium(iv) complexes are performed in order to get more insights about their electronic absorption and EPR spectroscopies, respectively.
Collapse
Affiliation(s)
- Rakhimoni Borah
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Naranarayan Deori
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
39
|
Bai X, Su Z, Wei J, Ma L, Duan S, Wang N, Zhang X, Li J. Zinc(II)porphyrin-Based Porous Ionic Polymers (PIPs) as Multifunctional Heterogeneous Catalysts for the Conversion of CO 2 to Cyclic Carbonates. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaolong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Zhenping Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Jiaojiao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Linjing Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Sujiao Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
40
|
Chang T, Yan X, Li Y, Hao Y, Fu X, Liu X, Panchal B, Qin S, Zhu Z. Quaternary ammonium immobilized PAMAM as efficient catalysts for conversion of carbon dioxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Yang X, Liu Z, Chen P, Liu F, Zhao T. Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by acetylcholine bromide-based deep eutectic solvents. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Reguero M, Masdeu-Bultó AM, Claver C. Mechanistic insights of CO2 photocatalytic reduction: experimental versus computational studies. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mar Reguero
- Universitat Rovira i Virgili Química Física i Inorgànica C. Marcel·lí Domingo, 1 43007 Tarragona SPAIN
| | | | - Carmen Claver
- Universitat Rovira i Virgili Physical and Inorganic Chemistry SPAIN
| |
Collapse
|
43
|
Nickel–cobalt hydroxide catalysts for the cycloaddition of carbon dioxide to epoxides. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04697-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Qiu Y, Chen Y, Lei L, Wang X, Zeng X, Feng Z, Deng C, Lin D, Ji H. Bottom-up oriented synthesis of metalloporphyrin-based porous ionic polymers for the cycloaddition of CO2 to epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Emelyanov MA, Lisov AA, Medvedev MG, Maleev VI, Larionov VA. Cobalt(III) Complexes as Bifunctional Hydrogen Bond Donor Catalysts Featuring Halide Anions for Cyclic Carbonate Synthesis at Ambient Temperature and Pressure: Mechanistic Insight. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mikhail A. Emelyanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Alexey A. Lisov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Leninskie Gory 1/3 119991 Moscow RUSSIAN FEDERATION
| | - Michael G. Medvedev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Chemistry Leninsky prospect 47 119991 Moscow RUSSIAN FEDERATION
| | - Victor I. Maleev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Vladimir A. Larionov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Laboratory of Asymmetric Catalysis Vavilov Street 28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
46
|
Gao A, Li F, Xu Z, Ji C, Gu J, Zhou YH. Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates. Dalton Trans 2022; 51:2567-2576. [PMID: 35048931 DOI: 10.1039/d1dt04110j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The development of heterogeneous catalysts for promoting epoxide cycloaddition with carbon dioxide is highly desirable for recycling CO2 and achieving the goal of carbon neutrality. Herein, we designed and synthesized Zr-based metal organic frameworks (MOFs) by implanting functional guanidyl into the framework via mixing different molar ratios of 4-guanidinobenzoic acid (Gua) with 1,4-benzenedicarboxylic acid (BDC). Consequently, a small sized Zr-MOF (∼350 nm) can be prepared by implanting Gua with 20% molar ligands, denoted as UiO-66-Gua0.2(s). Compared to large sized and different guanidyl Zr-MOFs, UiO-66-Gua0.2(s) exhibited an optimal activity on catalyzing epoxide cycloaddition with CO2 in the presence of the Bu4NBr cocatalyst. A yield of 97% for the product of chloropropene carbonate was achieved at 90 °C under 1 atm CO2. The great performance of UiO-66-Gua0.2(s) might be attributed to the synergistic effect of guanidyl groups as hydrogen-bond donors and Zr centers acting as Lewis-acidic sites. In addition, the heterogeneous catalyst of UiO-66-Gua0.2(s) exhibited a great versatility towards converting other epoxides and a satisfactory recyclability for five consecutive runs. Moreover, a plausible reaction mechanism has been proposed for UiO-66-Gua0.2(s) in promoting CO2 epoxide cycloaddition reactions.
Collapse
Affiliation(s)
- Aijia Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Fangfang Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Zhi Xu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Changchun Ji
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, USA.
| | - Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| |
Collapse
|
47
|
Qu Y, Chen Y, Sun J. Conversion of CO2 with epoxides to cyclic carbonates catalyzed by amino acid ionic liquids at room temperature. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Suo X, Yang Z, Fu Y, Do-Thanh CL, Maltsev D, Luo H, Mahurin SM, Jiang DE, Xing H, Dai S. New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination. CHEMSUSCHEM 2022; 15:e202102136. [PMID: 34862754 DOI: 10.1002/cssc.202102136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient carbon capture-and-release technologies with minimal energy input is a long-term challenge in mitigating CO2 emissions, especially via CO2 chemisorption driven by engineered chemical bond construction. Herein, taking advantage of the structural diversity of ionic liquids (ILs) in tuning their physical and chemical properties, precise reaction energy regulation of CO2 chemisorption was demonstrated deploying metal-ion-amino-based ionic liquids (MAILs) as absorbents. The coordination ability of different metal sites (Cu, Zn, Co, Ni, and Mg) to amines was harnessed to achieve fine-tuning on stability constants of the metal ion-amine complexes, acting as the corresponding cations in the construction of diverse ILs coupled with CO2 -philic anions. The as-afforded MAILs exhibited efficient and controllable CO2 release behavior with great reduction in energy input and minimal sacrifice on CO2 uptake capacity. This coordination-regulated approach offers new prospects for the development of ILs-based systems and beyond towards energy-efficient carbon capture technologies.
Collapse
Affiliation(s)
- Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuqing Fu
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dmitry Maltsev
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Huimin Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
49
|
Jiang Y, Zhao Y, Liang L, Zhang X, Sun J. Imidazolium-based poly(ionic liquid)s@MIL-101 for CO 2 adsorption and subsequent catalytic cycloaddition without additional cocatalyst and solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj05358b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ionic liquid)@MIL-101 incorporates an ionic liquid in a MOF and can be used in CO2 capture and conversion.
Collapse
Affiliation(s)
- Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yifei Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
50
|
Phatake VV, Gokhale TA, Bhanage BM. [TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2,4(1H,3H)-diones in the presence of ambient temperature and pressure. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|