1
|
Bharti, Nair MS. Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods. J Mol Recognit 2024:e3106. [PMID: 39396813 DOI: 10.1002/jmr.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
The human papillomavirus (HPV) 33 is a high-risk strain that causes lesions with potential cancerous outcomes. Its E2 protein regulates the viral protein transcription and life cycle maintenance. The DNA binding domain (DBD) of the E2 protein plays a crucial role in the viral life cycle. The DBD region of the E2 protein is particularly interesting for targeting and finding potential inhibitors to inhibit its function or dimerization. Given the limited research on HPV 33 and its proteins, the present work delved into the interaction of two natural polyphenolic compounds, resveratrol, and baicalein, with the E2 DBD of HPV 33 using biophysical and in silico studies. Fluorescence studies of the E2 DBD-polyphenol complexes showed fluorescence quenching with a binding constant of the order of 106 M-1. Circular dichroism data reveal conformational changes upon binding with the polyphenols, possibly due to distinct binding sites of the E2 DBD. Differential scanning calorimetry exhibited higher melting temperatures for the two complexes than alone DBD, suggesting the complexes' stability. ITC experiment suggested favorable binding reactions with kd values in the micromolar range. Molecular docking and dynamic simulation studies revealed that the resveratrol binds to the helical region and baicalein near the central dimeric interface of E2 DBD with a good binding affinity, forming a stable protein-ligand complex during the run of 100 ns simulation. Therefore, the current study identifies both polyphenolic compounds as promising candidates for potential antiviral drug development.
Collapse
Affiliation(s)
- Bharti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
2
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
3
|
Yang Y, Du Y, Cui B. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo. Front Immunol 2024; 15:1387329. [PMID: 39119340 PMCID: PMC11306171 DOI: 10.3389/fimmu.2024.1387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Bingnan Cui
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang M, Liu J, Yu Y, Liu X, Shang X, Du Z, Xu ML, Zhang T. Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12340-12355. [PMID: 38776233 DOI: 10.1021/acs.jafc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Meng Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
5
|
Amiri Khosroshahi R, Heidari Seyedmahalle M, Zeraattalab-Motlagh S, Fakhr L, Wilkins S, Mohammadi H. The Effects of Omega-3 Fatty Acids Supplementation on Inflammatory Factors in Cancer Patients: A Systematic Review and Dose-Response Meta-Analysis of Randomized Clinical Trials. Nutr Cancer 2023; 76:1-16. [PMID: 37897076 DOI: 10.1080/01635581.2023.2274135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Until now, no study evaluated the impact of optimum intake of omega-3 fatty acids on inflammatory factors. We aimed to investigate the dose-dependent effects of omega-3 fatty acids supplementation on inflammatory factors in cancer patients. PubMed, Scopus and ISI Web of Science were searched until July 2022 to find randomized controlled trials (RCTs) for examining the efficacy of omega-3 fatty acids on inflammatory factors. Our primary outcomes were interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and albumin. The results of 33 trials (2068 participants) revealed that each 1 g/day omega-3 fatty acids (oral/enteral) significantly reduced IL-6 (SMD: -1.17 pg/ml; 95% CI: -1.78, -0.55; p < 0.001; GRADE = moderate), and TNF-α (SMD: -2.15 pg/ml; 95% CI: -3.14, -1.16; p < 0.001; GRADE = very low). Moreover, each 0.5 g/kg/day omega-3 fatty acids (parenteral) significantly reduced TNF-α (SMD: -1.11 pg/ml; 95% CI: -2.02, -0.19; p = 0.017; GRADE = low). With moderate and very low evidence certainty, each 1 g/day of omega-3 fatty acids supplementation (oral/enteral) has a beneficial effect on IL-6 and TNF-α. Each 0.5 g/kg/day omega-3 fatty acids (parenteral) could also exert a favorable impact on TNF-α, but the certainty of the evidence was low.
Collapse
Affiliation(s)
- Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heidari Seyedmahalle
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Laleh Fakhr
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Simon Wilkins
- Cabrini Monash Department of Surgery, Cabrini Hospital, Melbourne, VIC, Australia
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Kim KH, Ki MR, Min KH, Pack SP. Advanced Delivery System of Polyphenols for Effective Cancer Prevention and Therapy. Antioxidants (Basel) 2023; 12:antiox12051048. [PMID: 37237914 DOI: 10.3390/antiox12051048] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Polyphenols from plants such as fruits and vegetables are phytochemicals with physiological and pharmacological activity as potential drugs to modulate oxidative stress and inflammation associated with cardiovascular disease, chronic disease, and cancer. However, due to the limited water solubility and bioavailability of many natural compounds, their pharmacological applications have been limited. Researchers have made progress in the development of nano- and micro-carriers that can address these issues and facilitate effective drug delivery. The currently developed drug delivery systems maximize the fundamental effects in various aspects such as absorption rate, stability, cellular absorption, and bioactivity of polyphenols. This review focuses on the antioxidant and anti-inflammatory effects of polyphenols enhanced by the introduction of drug delivery systems, and ultimately discusses the inhibition of cancer cell proliferation, growth, and angiogenesis.
Collapse
Affiliation(s)
- Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Tang L, Zhang S, Zhang M, Wang PJ, Liang GY, Gao XL. Integrated Proteomics and Metabolomics Analysis to Explore the Amelioration Mechanisms of Rosa roxburghii Tratt Fruit Polyphenols on Lipopolysaccharide-Induced Acute Lung Injury Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3079-3092. [PMID: 36745194 DOI: 10.1021/acs.jafc.2c04344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acute lung injury (ALI) is the main cause of death for the elderly and children due to its high morbidity and mortality rates. Plant-derived functional foods are becoming increasingly important to the healthcare and food industries for adjunctive and alternative treatments of ALI. Polyphenols have been regarded to be beneficial to the prevention and amelioration of ALI. Rosa roxburghii Tratt fruit polyphenols (RRTP) has potential to prevent ALI, but mechanism remains unclear. This study was set up to systematically analyze the RRTP extract active ingredients, comprehensively evaluate its protective effects via lung histopathological examination, protein concentration, and cytokines production in ALI mice induced by lipopolysaccharide (LPS), and finally revealed alleviation mechanisms of the regulatory effects of RRTP by proteomics and metabolomics approach. The results demonstrated RRTP could synergistically exert significant preventive effects against ALI by notably ameliorating lung histopathological damage and pulmonary capillary permeability in ALI mice, inhibiting lung tissue inflammatory response and acute phase proteins and S-100 calcium binding proteins, suppressing excessive activation of complement and coagulation cascades, and regulating disordered lipids metabolism and amino acid metabolism. This study illustrated that RRTP has obvious advantages in ALI adjunctive therapy and revealed the complicated amelioration mechanisms, which provides a breakthrough for the development and demonstration of RRTP as a nutritional compound additive for complementary therapy of ALI.
Collapse
Affiliation(s)
- Li Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuo Zhang
- School of Basic Medical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng-Jiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Gui-You Liang
- Translational Medicine Research Center & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| | - Xiu-Li Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Tang L, Zhang S, Zhang M, Wang P, Liang G, Gao X. Analysis of protective effects of Rosa Roxburghii Tratt fruit polyphenols on lipopolysaccharide-induced acute lung injury through network pharmacology and metabolomics. Food Sci Nutr 2022; 10:4258-4269. [PMID: 36514748 PMCID: PMC9731534 DOI: 10.1002/fsn3.3019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates and is the primary cause of death in children and the elderly around the world. The use of Chinese foods in the complementary and alternative treatment of ALI has attracted more and more attention. This study aimed to explore the anti-ALI activity of Chinese functional foods Rosa roxburghii Tratt fruit polyphenols (RRTP). RRTP was administered to lipopolysaccharide-induced ALI mice, and its protective effects were comprehensively evaluated by lung histopathological examination, wet/dry (W/D) ratio, and cytokine production. Metabolomics analysis was used to identify the differential metabolites and metabolic pathways in plasma, and molecular docking and systemic biology-based network pharmacology assay were performed to explore the active components and potential therapeutic targets. The results indicated that RRTP significantly attenuated the severity of pathological changes and pulmonary capillary permeability. Furthermore, RRTP limited the increase in tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) levels and the decrease in interleukin 10 (IL-10) levels in ALI mice. Metabolomics studies revealed that RRTP markedly affected 19 different metabolites, three amino acid metabolism pathways, and sphingolipid metabolism. Moreover, network pharmacology identified AKT1 (AKT serine/threonine kinase 1), TP53, IL-6, VEGFA (vascular endothelial growth factor A), and TNF (tumor necrosis factor) as the most promising target proteins, while quercetin, luteolin, and kaempferol were the core active components of RRTP. This study investigated the complex mechanisms of RRTP against ALI for the first time, and provided a foundation for the application of RRTP as a functional food, facilitating the research of nutritional food additives for the adjuvant treatment of ALI.
Collapse
Affiliation(s)
- Li Tang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
- School of Ethnic MedicineGuizhou Minzu UniversityGuiyangChina
| | - Shuo Zhang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Min Zhang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Peng‐Jiao Wang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Gui‐You Liang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangChina
| | - Xiu‐Li Gao
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
9
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Speciani MC, Cintolo M, Marino M, Oren M, Fiori F, Gargari G, Riso P, Ciafardini C, Mascaretti F, Parpinel M, Airoldi A, Vangeli M, Leone P, Cantù P, Lagiou P, Del Bo’ C, Vecchi M, Carnevali P, Oreggia B, Guglielmetti S, Bonzi R, Bonato G, Ferraroni M, La Vecchia C, Penagini R, Mutignani M, Rossi M. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients 2022; 14:4516. [PMID: 36364779 PMCID: PMC9653960 DOI: 10.3390/nu14214516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Flavonoids have been inversely associated to colorectal cancer (CRC) and are plausible intermediaries for the relation among gut microbiome, intestinal permeability and CRC. We analyzed the relation of flavonoid intake with CRC and blood bacterial DNA. We conducted a case-control study in Italy involving 100 incident CRC cases and 200 controls. A valid and reproducible food-frequency questionnaire was used to assess dietary habits and to estimate six flavonoid subclass intakes. We applied qPCR and 16S rRNA gene profiling to assess blood bacterial DNA. We used multiple logistic regression to derive odds ratios (ORs) of CRC and Mann-Whitney and chi--square tests to evaluate abundance and prevalence of operational taxonomic units (OTUs) according to flavonoid intakes. Inverse associations with CRC were found for anthocyanidins (OR for the highest versus the lowest tertile = 0.24, 95% confidence interval, CI = 0.11-0.52) and flavanones (OR = 0.18, 95% CI = 0.08-0.42). We found different abundance and prevalence according to anthocyanidin and flavanone intake for OTUs referring to Oligoflexales order, Diplorickettsiaceae family, Staphylococcus, Brevundimonas, Pelomonas and Escherischia-Shigella genera, and Flavobacterium and Legionella species. The study provides evidence to a protective effect of dietary anthocyanidins and flavanones on CRC and suggests an influence of flavonoids on blood bacterial DNA, possibly through intestinal permeability changes.
Collapse
Affiliation(s)
- Michela Carola Speciani
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maya Oren
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Pierfrancesco Leone
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Cantù
- Gastroenterology and Digestive Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, GR-115 27 Athens, Greece
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Pietro Carnevali
- Division of Minimally–Invasive Surgical Oncology, Niguarda Cancer Center, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20133 Milan, Italy
| | - Barbara Oreggia
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Rossella Bonzi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Bonato
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Monica Ferraroni
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Penagini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
11
|
Urueña C, Ballesteros-Ramírez R, Gomez-Cadena A, Barreto A, Prieto K, Quijano S, Aschner P, Martínez C, Zapata-Cardona MI, El-Ahanidi H, Jandus C, Florez-Alvarez L, Rugeles MT, Zapata-Builes W, Garcia AA, Fiorentino S. Randomized double-blind clinical study in patients with COVID-19 to evaluate the safety and efficacy of a phytomedicine (P2Et). Front Med (Lausanne) 2022; 9:991873. [PMID: 36160152 PMCID: PMC9494348 DOI: 10.3389/fmed.2022.991873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background It has been proposed that polyphenols can be used in the development of new therapies against COVID-19, given their ability to interfere with the adsorption and entrance processes of the virus, thus disrupting viral replication. Seeds from Caesalpinia spinosa, have been traditionally used for the treatment of inflammatory pathologies and respiratory diseases. Our team has obtained an extract called P2Et, rich in polyphenols derived from gallic acid with significant antioxidant activity, and the ability to induce complete autophagy in tumor cells and reduce the systemic inflammatory response in animal models. Methods In this work, a phase II multicenter randomized double-blind clinical trial on COVID-19 patients was designed to evaluate the impact of the P2Et treatment on the clinical outcome and the immunological parameters related to the evolution of the disease. The Trial was registered with the number No. NCT04410510*. A complementary study in an animal model of lung fibrosis was carried out to evaluate in situ lung changes after P2Et in vivo administration. The ability of P2Et to inhibit the viral load of murine and human coronaviruses in cellular models was also evaluated. Results Patients treated with P2Et were discharged on average after 7.4 days of admission vs. 9.6 days in the placebo group. Although a decrease in proinflammatory cytokines such as G-CSF, IL-15, IL-12, IL-6, IP10, MCP-1, MCP-2 and IL-18 was observed in both groups, P2Et decreased to a greater extent G-CSF, IL-6 and IL-18 among others, which are related to lower recovery of patients in the long term. The frequency of T lymphocytes (LT) CD3+, LT double negative (CD3+CD4-CD8-), NK cells increased in the P2Et group where the population of eosinophils was also significantly reduced. In the murine bleomycin model, P2Et also reduced lung inflammation and fibrosis. P2Et was able to reduce the viral replication of murine and human coronaviruses in vitro, showing its dual antiviral and anti-inflammatory role, key in disease control. Conclusions Taken together these results suggest that P2Et could be consider as a good co-adjuvant in the treatment of COVID-19. Clinical trail registration https://clinicaltrials.gov/ct2/show/NCT04410510, identifier: NCT04410510.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alejandra Gomez-Cadena
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Alfonso Barreto
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pablo Aschner
- Oficina de Investigaciones, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Carlos Martínez
- Departamento de Cardiología, Clínica CardioVID, Medellín, Colombia
| | - Maria I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Hajar El-Ahanidi
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Lizdany Florez-Alvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Maria Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Angel Alberto Garcia
- Departamento de Cardiología, Hospital Universitario San Ignacio – Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Susana Fiorentino
| |
Collapse
|
12
|
Sundaram TS, Giromini C, Rebucci R, Pistl J, Bhide M, Baldi A. Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals. J Anim Sci Biotechnol 2022; 13:40. [PMID: 35399093 PMCID: PMC8996583 DOI: 10.1186/s40104-022-00690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Juraj Pistl
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| |
Collapse
|
13
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
14
|
Soliman MM, Gaber A, Alsanie WF, Mohamed WA, Metwally MMM, Abdelhadi AA, Elbadawy M, Shukry M. Gibberellic acid-induced hepatorenal dysfunction and oxidative stress: Mitigation by quercetin through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. J Food Biochem 2022; 46:e14069. [PMID: 34984688 DOI: 10.1111/jfbc.14069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
The plant growth regulator gibberellic acid (GA3) is widely used in agriculture in many countries. However, little is known about its danger to human health or its physiologic and biochemical pathways. Our study examined the effect of GA3 on liver and kidney function and the effect of quercetin on the hepatorenal toxicity induced by GA3 in four groups of male albino rats. For 4 weeks, the control group (CNT) received saline, the quercetin group (QR) received daily intraperitoneal injections of quercetin (50 mg/kg/BW) dissolved in saline, the gibberellic acid group (GA3) received GA3 (55 mg/kg/BW) via oral gavage, and the protective group (QR) was injected with quercetin and gavaged with GA3 in the same doses used in the QR and GA3 groups (50 mg/kg/BW +GA3 and 55 mg/kg/BW). GA3 induced liver and kidney injury, as shown by elevated serum glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and gamma-glutamyl transferase (GPT, GOT, and GGT) as well as increased levels of creatinine, urea, and uric acid. Hepatorenal toxicity was demonstrated by a significant increase in levels of serum and tissue malondialdehyde (MDA) and decreased antioxidant enzyme activity, such as catalase (CAT) and superoxide dismutase (SOD), accompanied by a subsequent decrease in glutathione peroxidase (GPx) levels in liver and kidney tissue of GA3-treated rats. Administration of quercetin (QR) significantly protected hepatorenal tissue against the toxic effect of GA3 through normalization of the hepatic and renal function markers. It also retrieved the antioxidant ability by modulating the hepatorenal toxic effect at the molecular level through upregulation of antiapoptotic genes and downregulation of transforming growth factor-β1 (TFG-β1), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB). Impairment of liver and kidney function was confirmed by histologic and immunohistochemical analyses. Pretreatment with quercetin was effective at attenuating histopathologic changes in hepatic and renal tissues by regulating the immunoexpression of caspase-3 and Bcl-2 to return them to more normal values. PRACTICAL APPLICATIONS: The confirmed hepatorenal dysfunction caused by GA3 was ameliorated by quercetin administration. Moreover, quercetin demonstrated the potential to reverse hepatorenal dysfunction by regulating inflammatory and antioxidant properties, inhibiting the production of free radicals and inflammation-associated cytokines, and modulating antioxidants and antiapoptotic activity.
Collapse
Affiliation(s)
- Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif, Saudi Arabia
| | - Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
15
|
Effect of a Combination of Rosa canina Fruits and Apple Cider Vinegar against Hydrogen Peroxide-Induced Toxicity in Experimental Animal Models. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7381378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress is the trigger of several diseases. It is an imbalance between the production of free radicals and antioxidants. This study aims to evaluate the antioxidant capacity and the protective property of Rosa canina fruits and apple cider vinegar combined or not against hydrogen peroxide (H2O2)-induced toxicity in Wistar rats. The experiment included five groups: group 1 received distilled water (10 mL/kg b.wt), group 2 received H2O2 10% (10 mL/kg b.wt), group 3 received H2O2 10% (10 mL/kg b.wt) and apple vinegar (2 mL/kg b.wt); group 4 received H2O2 10% (10 mL/kg b.wt) and apple vinegar supplemented with Rosa canina fruits extract (300 mg/kg b.wt); group 5 received H2O2 10% (10 mL/kg b.wt) and extract of Rosa canina fruits (300 mg/kg b.wt). The doses were given once daily via a gavage. The antioxidant capacity of apple vinegar and Rosa canina extract was analyzed, and AST, ALT, PAL, urea, and creatinine were determined on day 22 of the experiment. In addition, the kidney and the liver tissues were analyzed. The results showed that H2O2 caused a significant elevation of blood urea, blood creatinine, and transaminases. The histopathology examination revealed that H2O2 caused congestion, hemorrhage, and Bowman’s space enlarged. On the other hand, the results clearly showed that apple vinegar and Rosa canina fruits counterbalance the biochemical and histological changes induced by H2O2. In conclusion, the two natural products studied in this work are effective against the harmful effect of oxidative stress, which explains their use in traditional medicine.
Collapse
|
16
|
Hong S, Dia VP, Zhong Q. Synergistic anti-inflammatory activity of apigenin and curcumin co-encapsulated in caseins assessed with lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Biol Macromol 2021; 193:702-712. [PMID: 34717976 DOI: 10.1016/j.ijbiomac.2021.10.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Dietary polyphenols are potential anti-inflammatory agents, and their combinations with enhanced biological activities may lower toxicity and side effects. The objective of this work was to investigate the potential synergistic anti-inflammatory activities of apigenin and curcumin co-nanoencapsulated in sodium caseinate, with comparison to unencapsulated polyphenol combinations. Non-toxic concentrations of apigenin, curcumin, and their combinations in the free and co-encapsulated forms were studied in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Combinations of free polyphenols produced stronger inhibition of nitric oxide (NO) production, more significant at a higher proportion of curcumin, which was further enhanced after co-encapsulation. The enhanced reduction of NO was concomitant with the decreased expression of iNOS, the enhanced inhibition of pro-inflammatory cytokines of IL-6 and TNF-α, and the reduced production of intracellular reactive oxygen species. The potential multi-target effects and the enhanced solubility, proximity, and bioavailability of AP and CUR after co-encapsulation contributed to the synergistic activities. These results demonstrated that co-nanoencapsulation of apigenin and curcumin may enable the practical application utilizing the synergistic anti-inflammation effects to improve health.
Collapse
Affiliation(s)
- Shan Hong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
17
|
Rajha HN, Paule A, Aragonès G, Barbosa M, Caddeo C, Debs E, Dinkova R, Eckert GP, Fontana A, Gebrayel P, Maroun RG, Napolitano A, Panzella L, Pasinetti GM, Stevens JF, Schieber A, Edeas M. Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Mol Nutr Food Res 2021; 66:e2100670. [PMID: 34806294 DOI: 10.1002/mnfr.202100670] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Indexed: 01/02/2023]
Abstract
Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.
Collapse
Affiliation(s)
| | - Armelle Paule
- International Society of Antioxidants in Nutrition and Health, Paris, France
| | | | | | | | | | - Rada Dinkova
- University of Food Technologies, Plovdiv, Bulgaria
| | | | | | - Prisca Gebrayel
- International Society of Antioxidants in Nutrition and Health, Paris, France
| | | | | | | | | | | | | | - Marvin Edeas
- University de Paris, Institut Cochin, Inserm, Paris, 1016, France
| |
Collapse
|
18
|
Hilary S, Kizhakkayil J, Souka U, Al-Meqbaali F, Ibrahim W, Platat C. In-vitro Investigation of Polyphenol-Rich Date ( Phoenix dactylifera L.) Seed Extract Bioactivity. Front Nutr 2021; 8:667514. [PMID: 34497817 PMCID: PMC8419249 DOI: 10.3389/fnut.2021.667514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Date seeds are a by-product of the date fruit processing industry with minimal human use; however, they are a rich source of polyphenols with a range of potential biological properties. The current study investigates the cytotoxicity of date seed polyphenols against cancer cell lines, its ability to combat hyperglycemia, its antioxidant potential and its anti-adipogenic effect. The present work aimed to establish the usefulness of date seeds in the food industry as a functional ingredient. The anti-tumour activity of DSE was tested in a panel of cell lines such as MCF-7, MDA-MB-231, Hep-G2, Caco-2, and PC-3 by measuring cell viability and cleaved PARP. Lipid accumulation and effect on the differentiation of 3T3-L1 cells (adipocytes) were tested with date seed extract treatments. The influence of date seed polyphenols on glucose uptake was studied in 3T3-L1 cells and C2C12 cells (muscle cells). The antioxidant activity of the polyphenols from date seed products such as date seed extract (DSE), date seed powder (DSP), and date seeds fortified bread (DSB) was tested following in-vitro digestion to study their stability in the gastrointestinal milieu. DSE treatment resulted in significantly reduced viability in MCF-7 and Hep-G2 cells with 48-h treatments. Glucose uptake increased in the adipocytes with DSE treatments; moreover, it inhibited adipocyte differentiation and lipid accumulation. DSE decreased the expression levels of PPAR-γ, C/EBPα, adiponectin and upregulated GLUT-4, and phospho-AMPK. This study also found that date seed samples retained antioxidant activity in the digestive milieu and concludes that the date seed polyphenols remain active in the digestive milieu and exhibit potential anti-hyperglycemic and anti-adipogenic activity.
Collapse
Affiliation(s)
- Serene Hilary
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Usama Souka
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatima Al-Meqbaali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Wissam Ibrahim
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Patra S, Pradhan B, Nayak R, Behera C, Das S, Patra SK, Efferth T, Jena M, Bhutia SK. Dietary polyphenols in chemoprevention and synergistic effect in cancer: Clinical evidences and molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153554. [PMID: 34371479 DOI: 10.1016/j.phymed.2021.153554] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies has revealed that a diet rich in fruits and vegetables could lower the risk of certain cancers. In this setting, natural polyphenols are potent anticancer bioactive compounds to overcome the non-target specificity, undesirable cytotoxicity and high cost of treatment cancer chemotherapy. PURPOSE The review focuses on diverse classifications of the chemical diversity of dietary polyphenol and their molecular targets, modes of action, as well as preclinical and clinical applications in cancer prevention. RESULTS The dietary polyphenols exhibit chemo-preventive activity through modulation of apoptosis, autophagy, cell cycle progression, inflammation, invasion and metastasis. Polyphenols possess strong antioxidant activity and control multiple molecular events through activation of tumor suppressor genes and inhibition of oncogenes involved in carcinogenesis. Numerous in vitro and in vivo studies have evidenced that these dietary phytochemicals regulate critical molecular targets and pathways to limit cancer initiation and progression. Moreover, natural polyphenols act synergistically with existing clinically approved drugs. The improved anticancer activity of combinations of polyphenols and anticancer drugs represents a promising perspective for clinical applications against many human cancers. CONCLUSION The anticancer properties exhibited by dietary polyphenols are mainly attributed to their anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic and autophagic effects. Hence, regular consumption of dietary polyphenols as food or food additives or adjuvants can be a promising tactic to preclude adjournment or cancer therapy.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Odisha, India
| | - Biswajita Pradhan
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur-760007, Odisha, India
| | - Rabindra Nayak
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur-760007, Odisha, India
| | - Chhandashree Behera
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur-760007, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Odisha, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur-760007, Odisha, India.
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Odisha, India.
| |
Collapse
|
20
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 881] [Impact Index Per Article: 293.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
21
|
Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110494] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Ray SK, Mukherjee S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota-An Emerging Importance in Healthcare. Front Nutr 2021; 8:634944. [PMID: 34109202 PMCID: PMC8180580 DOI: 10.3389/fnut.2021.634944] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are natural plant compounds and are the most abundant antioxidants in the human diet. As the gastrointestinal tract is the primary organ provided to diet sections, the diet may be regarded as one of the essential factors in the functionality, integrity, and composition of intestinal microbiota. In the gastrointestinal tract, many polyphenols remain unabsorbed and may accumulate in the large intestine, where the intestinal microbiota are most widely metabolized. When assuming primary roles for promoting host well-being, this intestinal health environment is presented to the effect of external influences, including dietary patterns. A few different methodologies have been developed to increase solvency and transport across the gastrointestinal tract and move it to targeted intestinal regions to resolve dietary polyphenols at the low bioavailability. Polyphenols form a fascinating community among the different nutritional substances, as some of them have been found to have critical biological activities that include antioxidant, antimicrobial, or anticarcinogenic activities. Besides, it affects metabolism and immunity of the intestines and has anti-inflammatory properties. The well-being status of subjects can also benefit from the development of bioactive polyphenol-determined metabolites, although the mechanisms have not been identified. Even though the incredible variety of health-advancing activities of dietary polyphenols has been widely studied, their effect on intestinal biology adaptation, and two-way relationship between polyphenols and microbiota is still poorly understood. We focused on results of polyphenols in diet with biological activities, gut ecology, and the influence of their proportional links on human well-being and disease in this study.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
23
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Tan ML, Hamid SBS. Beetroot as a Potential Functional Food for Cancer Chemoprevention, a Narrative Review. J Cancer Prev 2021; 26:1-17. [PMID: 33842401 PMCID: PMC8020175 DOI: 10.15430/jcp.2021.26.1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Patients with cancer are prone to several debilitating side effects including fatigue, insomnia, depression and cognitive disturbances. Beetroot (Beta vulgaris L.) as a health promoting functional food may be potentially beneficial in cancer. As a source of polyphenols, flavonoids, dietary nitrates and other useful nutrients, beetroot supplementation may provide a holistic means to prevent cancer and manage undesired effects associated with chemotherapy. The main aim of this narrative review is to discuss beetroot's nutrient composition, current studies on its potential utility in chemoprevention and cancer-related fatigue or treatment-related side effects such as cardiotoxicity. This review aims to provide the current status of knowledge and to identify the related research gaps in this area. The flavonoids and polyphenolic components present in abundance in beetroot support its significant antioxidant and anti-inflammatory capacities. Most in vitro and in vivo studies have shown promising results; however, the molecular mechanisms underlying chemopreventive and chemoprotective effects of beetroot have not been completely elucidated. Although recent clinical trials have shown that beetroot supplementation improves human performance, translational studies on beetroot and its functional benefits in managing fatigue or other symptoms in patients with cancer are still lacking.
Collapse
Affiliation(s)
- Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | | |
Collapse
|
25
|
Enhancement of the antibiotic activity by quercetin against Staphylococcus aureus efflux pumps. J Bioenerg Biomembr 2021; 53:157-167. [PMID: 33683535 DOI: 10.1007/s10863-021-09886-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
The objective of this work was to evaluate the inhibitory effect of quercetin on S. aureus Efflux Pumps. The MIC of Quercetin was evaluated through the broth microdilution method, as well as the Efflux Pump inhibition assay through the method of reducing the antibiotic minimum inhibitory concentration as well as that of ethidium bromide. The in silico approach through bioinformatics was performed to demonstrate the molecular mechanism of interaction of the substrate and the binding cavity. The Quercetin inhibition concentration was not clinically relevant. With respect to the reversal of bacterial resistance effect by efflux pump inhibition, this effect was observed with the strains carrying the TetK and NorA pumps. Regarding the interaction between the Quercetin complex and the NorA pump, the extra stability was provided by hydrogen bonds produced by the hydroxyl group.
Collapse
|
26
|
Philips N, Richardson R, Siomyk H, Bynum D, Gonzalez S. “Skin cancer, polyphenols, and oxidative stress” or Counteraction of oxidative stress, inflammation, signal transduction pathways, and extracellular matrix remodeling that mediate skin carcinogenesis by polyphenols. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Majnooni MB, Fakhri S, Shokoohinia Y, Kiyani N, Stage K, Mohammadi P, Gravandi MM, Farzaei MH, Echeverría J. Phytochemicals: Potential Therapeutic Interventions Against Coronavirus-Associated Lung Injury. Front Pharmacol 2020; 11:588467. [PMID: 33658931 PMCID: PMC7919380 DOI: 10.3389/fphar.2020.588467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) in December 2019, millions of people have been infected and died worldwide. However, no drug has been approved for the treatment of this disease and its complications, which urges the need for finding novel therapeutic agents to combat. Among the complications due to COVID-19, lung injury has attained special attention. Besides, phytochemicals have shown prominent anti-inflammatory effects and thus possess significant effects in reducing lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, the prevailing evidence reveales the antiviral effects of those phytochemicals, including anti-SARS-CoV activity, which could pave the road in providing suitable lead compounds in the treatment of COVID-19. In the present study, candidate phytochemicals and related mechanisms of action have been shown in the treatment/protection of lung injuries induced by various methods. In terms of pharmacological mechanism, phytochemicals have shown potential inhibitory effects on inflammatory and oxidative pathways/mediators, involved in the pathogenesis of lung injury during COVID-19 infection. Also, a brief overview of phytochemicals with anti-SARS-CoV-2 compounds has been presented.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Narges Kiyani
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Katrina Stage
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento De Ciencias Del Ambiente, Facultad De Química y Biología, Universidad De Santiago De Chile, Santiago, Chile
| |
Collapse
|
28
|
A Potential Inhibition Process of Ricin Protein with the flavonoids Quercetin and Epigallocatechin Gallate. A Quantum-Chemical and Molecular Docking Study. Processes (Basel) 2020. [DOI: 10.3390/pr8111393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Castor bean (Ricinus Communis) oil has been reported as one of the most important bio-based fuels; however, high amounts of toxic solid residue are generated in the production. This toxicity is due to several molecules, ricin protein being the most studied compound. The inhibition of the ricin protein is essential for eliminating its toxicity. The objective of this study is to predict the possible inhibition process via the interactions between the ricin protein and the flavonoids quercetin (Q) and epigallocatechin gallate (EGCG). The molecular structures of the complexes formed between the ricin protein and flavonoids were studied using quantum-chemical and molecular docking calculations to analyze the type of interaction, active site of the protein, binding energies, and different conformations in the inhibition process. Different methodologies were applied for the molecular structure determination; the best approximation was obtained with B3LYP/6-31G (d,p) theoretical methodology. Mappings of electrostatic potential (MEP) and frontier molecular orbitals were used for the identification of the probable sites of interaction, which were confirmed by molecular docking. The adjustment and alignment of flavonoid groups before and after the interaction, and charge transfer parameters, showed that Q and EGCG act as electron donors inside of the active site in ricin.
Collapse
|
29
|
Abstract
Polyphenols are naturally occurring compounds in plants and they are the most abundant antioxidants in the human diet. Due to their considerable structural diversity, this largely influences their bioavailability. Since a large proportion of polyphenols remains unabsorbed along the gastrointestinal tract, they may accumulate in the large intestine, where most of them are extensively metabolized by the intestinal microbiota. The formation of bioactive polyphenol-derived metabolites may also benefit the health status of the subjects, although the mechanisms have not been delineated. This review aims to highlight the impact of polyphenols on gut health and the modes of action could be through modulation of intestinal barrier function, innate and adaptive immune response, signaling pathways, as well as the ability to modify gut microbiota composition. The review will conclude by presenting future perspective and challenges of polyphenols application in food products to be used for preventing or treating diseases.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Abreu IN, Brennan RM, Kanichukattu EN, Stewart D, Hancock RD, McDougall GJ, Hackett CA. Quantitative trait loci mapping of polyphenol metabolites in blackcurrant (Ribes nigrum L.). Metabolomics 2020; 16:25. [PMID: 32030531 DOI: 10.1007/s11306-020-1647-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Commercially, blackcurrants (Ribes nigrum L.) are grown mainly for processing, especially for juice production. They are valued for their high levels of polyphenols, especially anthocyanins, which contribute to their characteristic deep colour, but also as a good source of vitamin C. Recently, evidence has accrued that polyphenols, such as anthocyanins, may have specific human health benefits. OBJECTIVE The aims of this study were to investigate the genetic control of polyphenols and other key juice processing traits in blackcurrants. METHODS The levels, over 2 years, of vitamin C, citrate, malate, succinate, total organic acids, total anthocyanins and total phenolics together with 46 mainly polyphenol metabolites were measured in a blackcurrant biparental mapping population. Quantitative trait loci (QTLs) for these traits were mapped onto a high-density SNP linkage map. RESULTS At least one QTL was detected for each trait, with good consistency between the 2 years. Clusters of QTLs were found on each of the eight linkage groups (LG). For example, QTLs for the major anthocyanidin glucosides, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, co-localised with a QTL for total anthocyanin content on LG3 whereas the major anthocyanidin rutinosides, delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, had QTLs on LG1 and LG2. Many of the QTLs explained a high proportion of the trait variation, with the most significant region, on LG3 at ~ 35 cM, explaining more than 60% of the variation in the coumaroylated metabolites, Cyanidin-coumaroyl-glucose, Delphinidin-coumaroyl-glucose, Kaempferol-coumaroyl-glucose and Myricetin-coumaroyl-glucose. CONCLUSION The identification of robust QTLs for key polyphenol classes and individual polyphenols in blackcurrant provides great potential for marker-assisted breeding for improved levels of key components.
Collapse
Affiliation(s)
- Ilka N Abreu
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
- Forestry and Genetic Department, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Rex M Brennan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Eapen N Kanichukattu
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
| | - Derek Stewart
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
| | - Robert D Hancock
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK.
| | | |
Collapse
|
31
|
Barrajón-Catalán E. Natural Compounds as New Cancer Treatments. MEDICINES 2019; 6:medicines6030078. [PMID: 31340520 PMCID: PMC6789864 DOI: 10.3390/medicines6030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Cancer is still a global challenge worldwide with a high impact not only on human health, causing morbidity and mortality, but also on economics [...].
Collapse
Affiliation(s)
- Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
32
|
Li Q, Sun M, Wan Z, Liang J, Betti M, Hrynets Y, Xue X, Wu L, Wang K. Bee Pollen Extracts Modulate Serum Metabolism in Lipopolysaccharide-Induced Acute Lung Injury Mice with Anti-Inflammatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7855-7868. [PMID: 31274310 DOI: 10.1021/acs.jafc.9b03082] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bee pollen (BP) collected from different floras possesses various potential bioactivities, but the mechanism-related research on anti-inflammatory effects is limited. Here, three types of BP originating from Camellia sinensis L. (BP-Cs), Nelumbo nucifera Gaertn. (BP-Nn), and Brassica campestris L. (BP-Bc) were assessed using molecular and metabolomics methods to determine their anti-inflammatory effects. The differences in polyphenolic abundance of three types of BP extracts were determined by HPLC-DAD/Q-TOF-MS. In vitro anti-inflammatory effects of three BP extracts were evaluated in a lipopolysaccharide (LPS)-induced RAW 264.7 cells model. BP-Cs extract with the most abundant polyphenols was found to be the most effective in reducing inflammation by downregulating inflammatory-related genes expression and blocking the activation of MAPK and NF-κB signaling pathways. Polyphenol-rich BP-Cs was further evaluated for their in vivo anti-inflammatory effect in a LPS-induced acute lung injury mouse model. An UPLC-Q-TOF/MS-based metabolomics approach was applied to analyze metabolite changes in mouse serum. Weshowed that the pretreated BP-Cs extract alleviated inflammation and regulated glycerophospholipid metabolism significantly. Our findings provide a foundation for developing and justifying BP as a potential anti-inflammatory ingredient in functional foods or nutraceutical formulations.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Minghui Sun
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Zhengrui Wan
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Junshi Liang
- Beijing Laboratory Animal Research Center , Beijing 100012 , China
| | - Mirko Betti
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences , University of Alberta , Edmonton , Alberta T6G 2P5 , Canada
| | - Yuliya Hrynets
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences , University of Alberta , Edmonton , Alberta T6G 2P5 , Canada
| | - Xiaofeng Xue
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Liming Wu
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Kai Wang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| |
Collapse
|
33
|
Gamel TH, Wright AJ, Pickard M, Abdel‐Aal EM. Characterization of anthocyanin‐containing purple wheat prototype products as functional foods with potential health benefits. Cereal Chem 2019. [DOI: 10.1002/cche.10190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tamer H. Gamel
- Guelph Research and Development Centre Agriculture and Agri‐Food Canada Guelph Ontario Canada
- Department of Human Health & Nutritional Sciences, College of Biological Sciences University of Guelph Guelph Ontario Canada
| | - Amanda J. Wright
- Department of Human Health & Nutritional Sciences, College of Biological Sciences University of Guelph Guelph Ontario Canada
| | - Mark Pickard
- Infra‐Ready Products Ltd Saskatoon Saskatchewan Canada
| | - El‐Sayed M. Abdel‐Aal
- Guelph Research and Development Centre Agriculture and Agri‐Food Canada Guelph Ontario Canada
| |
Collapse
|
34
|
Manzoor MF, Ahmad N, Ahmed Z, Siddique R, Zeng XA, Rahaman A, Muhammad Aadil R, Wahab A. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. J Food Biochem 2019; 43:e12974. [PMID: 31489656 DOI: 10.1111/jfbc.12974] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/26/2022]
Abstract
Luteolin is a 3', 4', 5, 7 tetra hydroxyl flavonoid that exits in many plants, fruits, and vegetable. Many methods of extraction, isolation, and purification are being used, and therapeutic properties are being under discussion due to its valuable role in nutrition and human health. In this review, we have summarized conventional and novel extraction techniques from most recent research on luteolin, its derivatives, and its biological activities. Maceration, soxhlet, reflux, hydrodistillation, ultrasound-assisted extraction, microwave-assisted extraction, ultrasound microwave-assisted extraction, enzyme-assisted extraction, supercritical fluid extraction, and high-speed counter-current chromatography extraction techniques are being used for isolation and purification of these phytochemicals. The anti-inflammatory, anti-cancer, antioxidant, antiviral, heart protective, neurological impairments protection, anti-aging, and whiting properties have been discussed in this review. The literature suggests luteolin and its derivative has many promising health benefits and its therapeutic activity is strongly associated with isolating and purifying solvents and extraction techniques. PRACTICAL APPLICATIONS: This review aims to highlight the sources, novel extraction techniques, and pharmaceutical properties of luteolin. This review provides enough knowledge about how to get maximum extraction yield of luteolin using the novel extraction techniques. Because its therapeutic activity is strongly associated with isolating and purifying solvents and techniques.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Nazir Ahmad
- Department of Food Science and Nutrition, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rabia Siddique
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Abdul Wahab
- Department of Food Science and Nutrition, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
35
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
36
|
Sadeghi A, Shab-Bidar S, Parohan M, Djafarian K. Dietary Fat Intake and Risk of Ovarian Cancer: A Systematic Review and Dose–Response Meta-Analysis of Observational Studies. Nutr Cancer 2019; 71:939-953. [DOI: 10.1080/01635581.2019.1595049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alireza Sadeghi
- Students’ Scientific Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Parohan
- Students’ Scientific Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
37
|
Varricchio E, Coccia E, Orso G, Lombardi V, Imperatore R, Vito P, Paolucci M. Influence of polyphenols from olive mill wastewater on the gastrointestinal tract, alveolar macrophages and blood leukocytes of pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ettore Varricchio
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
| | - Elena Coccia
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
| | - Graziella Orso
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
| | - Vittoria Lombardi
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
| | - Roberta Imperatore
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
- Biogem, Ariano Irpino, Italy
| | - Marina Paolucci
- Dipartimento di Scienze e Tecnologie, University of Sannio, Benevento, Italy
| |
Collapse
|
38
|
Gamel TH, Wright AJ, Tucker AJ, Pickard M, Rabalski I, Podgorski M, Di Ilio N, O'Brien C, Abdel-Aal ESM. Absorption and metabolites of anthocyanins and phenolic acids after consumption of purple wheat crackers and bars by healthy adults. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Jiang J, Zhang Z, Zhao J, Liu Y. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chem 2018; 268:334-341. [DOI: 10.1016/j.foodchem.2018.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
|
40
|
Mohseni R, Abbasi S, Mohseni F, Rahimi F, Alizadeh S. Association between Dietary Inflammatory Index and the Risk of Prostate Cancer: A Meta-Analysis. Nutr Cancer 2018; 71:359-366. [PMID: 30273060 DOI: 10.1080/01635581.2018.1516787] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Diet is a known source of pro- and anti-inflammatory mediators, and inflammatory markers have been associated with mechanisms involved in prostate cancer initiation and progression. The Dietary Inflammatory Index (DII®) is a tool to assist researchers in determining the inflammatory potential of diet. The aim of this study was to conduct a meta-analysis to assess the association between DII and prostate cancer. METHODS EMBASE and MEDLINE were searched from inception to February 2018, for relevant observational studies. The random effects model was used to calculate the overall relative risks (RRs) with 95% confidence intervals (CIs). RESULTS Data from five case-control and one cohort study were eligible for inclusion. The adjusted pooled RR of prostate cancer for the highest (the most pro-inflammatory diet) versus lowest (the most anti-inflammatory diet) DII categories was 1.74 (95% CI: 1.24-2.43). The analysis in the DII score as a continuous variable was also performed and the results showed that the risk of prostate cancer was 9% higher for each one-point increase in the score. CONCLUSION This meta-analysis suggests that promoting diets rich in anti-inflammatory food components (i.e., whole grains, fish, green vegetables, and fruits) should help in reducing preventing prostate cancer.
Collapse
Affiliation(s)
- Reza Mohseni
- a Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Soheil Abbasi
- b Faculty of Public Health , Kermanshah University of Medical Science (KUMS) , Kermanshah , Iran
| | - Fatemeh Mohseni
- c School of Medicine , Arak University of Medical Sciences , Arak , Iran
| | - Fateme Rahimi
- b Faculty of Public Health , Kermanshah University of Medical Science (KUMS) , Kermanshah , Iran
| | - Shahab Alizadeh
- d Department of Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
41
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
42
|
Zhu W, Lin K, Li K, Deng X, Li C. Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food Funct 2018; 9:541-551. [PMID: 29260181 DOI: 10.1039/c7fo00995j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been proposed that the gut microbiome may be related to obesity, and diet-induced obesity may induce changes in the gut microbiota composition. Our previous studies suggested that persimmon tannin (PT), which is highly polymerized and non-absorbable in the intestine, showed anti-hyperlipidemic and cholesterol-lowering effects in animal models. Considering that the possible composition modification effects of PT on intestinal bacteria might contribute to its anti-hyperlipidemic and cholesterol-lowering effects in vivo, in this study, we determined whether the PT administration could modify the gut microbiota in both normal diet-fed and high-cholesterol (HC) diet-fed rats, and how PT altered the bacterial composition in both normal and HC fed rats. Sprague-Dawley rats were randomly divided into eight groups, and fed with either a normal or an HC diet supplemented with or without a low/medium/high dose of PT (50 (LPT), 100 (MPT), 200 (HPT) mg per kg body weight (BW) per day, respectively) for 4 weeks. On days 0, 7, 14, 21 and 28, feces were collected and prepared for the microbiota and physicochemical analysis. The results showed that LPT and MPT supplementation significantly altered the gut microbiota composition by increasing the Bacteroidetes/Proteobacteria ratio in both normal diet-fed and HC diet-fed rats. LPT also decreased the Firmicutes/Bacteroidetes ratio in normal diet-fed rats and MPT decreased the Firmicutes/Bacteroidetes ratio in HC diet-fed rats. Both LPT and MPT supplementation induced a significant alteration in specific bacterial species after 14 days of treatment. The relative abundance of Bifidobacterium sp. and Lactobacillus sp. was increased by both LPT and MPT treatment, and that of Escherichia coli and Enterococcus was reduced. Our data also indicate that there is a correlation between the changes in bacterial composition and the changes in short-chain fatty acid (SCFA) metabolism. However, HPT supplementation altered the gut microbiota at the phylum and species levels in an adverse way.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | | | | | | | | |
Collapse
|
43
|
Zhang XX, Zhang G, Jin M, Niu LX, Zhang YL. Variation in Phenolic Content, Profile, and Antioxidant Activity of Seeds among Different Paeonia ostii Cultivated Populations in China. Chem Biodivers 2018; 15:e1800093. [PMID: 29603905 DOI: 10.1002/cbdv.201800093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to analyze the phenolic profiles of seeds from fifteen Paeonia ostii cultivated populations in China and identify their relationship with antioxidant activities and associated environmental factors. Thirteen individual phenolic compounds were quantitatively determined by HPLC, and (+)-catechin was the most abundant phenolic compound in the seeds. Correlation analysis showed that phenolics were the most effective antioxidant compound class by evaluating DPPH, ABTS, and hydroxyl radical scavenging activities as well as ferric reducing antioxidant power. Latitude and annual rainfall had significant effects on the contents of many phenolic compounds, and elevation was only significantly correlated with gallic acid content. Within fifteen P. ostii cultivated populations, the seeds of Tongling population exhibited the highest phenolic contents and strongest antioxidant activities. These results suggest that Tongling population has a relatively high utilization value and a potential for sources of natural antioxidants.
Collapse
Affiliation(s)
- Xiao-Xiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Gang Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Min Jin
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
44
|
Navarro M, Moreira I, Arnaez E, Quesada S, Azofeifa G, Vargas F, Alvarado D, Chen P. Flavonoids and Ellagitannins Characterization, Antioxidant and Cytotoxic Activities of Phyllanthus acuminatus Vahl. PLANTS (BASEL, SWITZERLAND) 2017; 6:E62. [PMID: 29244711 PMCID: PMC5750638 DOI: 10.3390/plants6040062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
Abstract
The phenolic composition of leaves from Phyllanthus acuminatus L., a plant commonly used in Costa Rica as traditional medicine, was studied using UPLC-ESI-MS on an enriched phenolic extract. A total of 20 phenolic compounds were identified, comprising eight flavonoids (two flavanones-pinocembrin isomers and six derivatives from apigenin, chrysin, quercetin, and kaempferol); seven ellagitannins, two flavan-3-ols (prodelphinidin B dimer and (epi)gallocatechin); and three phenolic acids (ellagic acid, trimethylellagic acid, and ferulic acid). All of these compounds are reported for the first time in P. acuminatus, while previously reported in the genus Phyllanthus. Antioxidant evaluation was performed for P. acuminatus phenolic extract obtaining DPPH results with a remarkably low IC50 value of 0.15 μg/mL. Also, cytotoxicity on gastric AGS and colon SW20 adenocarcinoma cell lines was evaluated, and highly promising results were obtained, with IC50 values of 11.3 μg/mL and 10.5 μg/mL, respectively. Furthermore, selectivity index values obtained when comparing cytotoxicity on normal Vero cells was SI > 20 for both cancer cell lines, indicating a particularly high selectivity. Additionally, Justicidin B, a metabolite extensively studied for its antitumoral activity, was isolated from a non-polar extract of P. acuminatus, and comparatively evaluated for both bioactivities. The DPPH value obtained for Justicidin B was moderate (IC50 = 14.28 μg/mL), while cytotoxicity values for both AGS (IC50 = 19.5 μg/mL) and SW620 (IC50 = 24.8 μg/mL) cell lines, as well as selectivity when compared with normal Vero cells (SI = 5.4 and 4.2 respectively), was good, but lower than P. acuminatus extract. These preliminary results suggest that P. acuminatus enriched phenolic extract containing flavonoids, ellagitannins, flavan-3-ols, and phenolic acids, reported for the first time in this plant, could be of interest for further cancer cytotoxicity studies to elucidate structure-bioactivity relationships, and the molecular mechanisms and pathways.
Collapse
Affiliation(s)
- Mirtha Navarro
- Department of Chemistry, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Ileana Moreira
- Department of Biology, Technological University of Costa Rica (TEC), Cartago 7050, Costa Rica.
| | - Elizabeth Arnaez
- Department of Biology, Technological University of Costa Rica (TEC), Cartago 7050, Costa Rica.
| | - Silvia Quesada
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Gabriela Azofeifa
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Felipe Vargas
- Department of Chemistry, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Diego Alvarado
- Department of Biology, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Pei Chen
- Food Composition and Methods Development Laboratory, Department of Agriculture, Beltsville Human Nutrition Research Center, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
45
|
Owczarek K, Hrabec E, Fichna J, Sosnowska D, Koziołkiewicz M, Szymański J, Lewandowska U. Inhibition of nuclear factor-kappaB, cyclooxygenase-2, and metalloproteinase-9 expression by flavanols from evening primrose (Oenothera paradoxa) in human colon cancer SW-480 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
46
|
Kinetic features of carbonyl reductase 1 acting on glutathionylated aldehydes. Chem Biol Interact 2017; 276:127-132. [DOI: 10.1016/j.cbi.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/20/2022]
|
47
|
Liu CE, Chen WJ, Chang CK, Li PH, Lu PL, Hsieh CW. Effect of a high voltage electrostatic field (HVEF) on the shelf life of persimmons (Diospyros kaki). Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim GY, Hong SH, Song KS, Choi IW, Cha HJ, Choi YH. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med 2016; 39:399-406. [PMID: 28035409 DOI: 10.3892/ijmm.2016.2837] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
In the present study, we investigated the cytoprotective efficacy of morin, a natural flavonoid, against oxidative stress and elucidated the underlying mechanisms in C2C12 myoblasts. Our results indicated that morin treatment prior to hydrogen peroxide (H2O2) exposure significantly increased cell viability and prevented the generation of reactive oxygen species. H2O2-induced comet-like DNA formation and γH2AX phosphorylation were also markedly suppressed by morin with a parallel inhibition of apoptosis in C2C12 myoblasts, suggesting that morin prevented H2O2-induced cellular DNA damage. Furthermore, morin markedly enhanced the expression of heme oxygenase-1 (HO-1) associated with the induction and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of Kelch-like ECH-associated protein 1 (Keap1) expression. Notably, these events were eliminated by transient transfection with Nrf2‑specific small interfering RNA. Additional experiments demonstrated that the activation of the Nrf2/HO-1 pathway by morin was mediated by the extracellular signal‑regulated kinase (ERK) signaling cascade. This phenomenon was confirmed with suppressed Nrf2 phosphorylation and consequently diminished HO-1 expression in cells treated with a pharmacological inhibitor of ERK. Collectively, these results demonstrated that morin augments the cellular antioxidant defense capacity through the activation of Nrf2/HO‑1 signaling, which involves the activation of the ERK pathway, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.
Collapse
Affiliation(s)
- Moon Hee Lee
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Min Ho Han
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Kyoung Seob Song
- Department of Physiology, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 608-737, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
49
|
Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR. Natural polyphenols: An overview. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1220393] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Munawar Abbas
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Faqir Muhammad Anjum
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Tabussam Tufail
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shakeel Bashir
- Institute of Agricultural Sciences, Department of Food Science and Nutrition, University of the Punjab, Lahore-Pakistan, King Saud University, Riyadh, SA
| | - Adnan Ishtiaq
- Institute of Agricultural Sciences, Department of Food Science and Nutrition, University of the Punjab, Lahore-Pakistan, King Saud University, Riyadh, SA
| | - Shahzad Hussain
- UQ School of Medicine, The University of Queensland, Australia
| | | |
Collapse
|
50
|
Nishimura M, Okimasu Y, Miyake N, Tada M, Hida R, Negishi T, Arimoto-Kobayashi S. Inhibitory effect of Actinidia arguta on mutagenesis, inflammation and two-stage mouse skin tumorigenesis. Genes Environ 2016; 38:25. [PMID: 27822323 PMCID: PMC5088666 DOI: 10.1186/s41021-016-0053-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Actinidia arguta, known as sarunashi in Japan, is a vine tree native to east-Asia, including Japan, that produces small fruit rich in anthocyanins, catechins, vitamin C, chlorophyll, beta-carotene and other polyphenols. RESULTS Our study revealed the inhibitory effect of the juice of A. arguta (arguta-juice) toward the mutagenicity of food-derived carcinogens and polycyclic aromatic hydrocarbons using the Ames test, and antioxidant activity of arguta-juice as determined using a free radical scavenging assay. The formation of DNA adducts in liver of mice fed 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) decreased significantly following administration of arguta-juice. The preventive effect of arguta-juice on the induction of inflammation of mouse ear by 12-O-tetradecanoylphorbol-13-acetate (TPA) was revealed. The anti-carcinogenic effect of a topically applied partially purified fraction of A. arguta was revealed on skin tumorigenesis in mice induced by treatment with 7,12-dimethylbenz(a)anthracene and TPA. In an effort to reveal the mechanisms for antimutagenicity of arguta-juice, effects on the enzymes that metabolize xenobiotics were examined. Combined effects comprising i) inhibition of the metabolic activation of mutagens with phase I enzymes, but ii) no prevention on the activity of phase II detoxification enzyme, UGT, were observed. We also investigated the characterization and partial purification of the antimutagenic components in A. arguta, which suggested that the components in A. arguta responsible for the antimutagenicity were water-soluble, heat-labile phenolic compounds. CONCLUSIONS These results suggested that components in A. arguta are attractive candidates for potential use as chemopreventive agents.
Collapse
Affiliation(s)
- Mari Nishimura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| | - Yuma Okimasu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| | - Naoko Miyake
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530 Japan
| | - Misako Tada
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530 Japan
| | - Ryoko Hida
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530 Japan
| | - Tomoe Negishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| | - Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| |
Collapse
|