1
|
Yang S, Wang Y, Sheng L, Cui W, Ma C. The effect of fecal bile acids on the incidence and risk-stratification of colorectal cancer: an updated systematic review and meta-analysis. Sci Rep 2025; 15:740. [PMID: 39753873 PMCID: PMC11698987 DOI: 10.1038/s41598-024-84801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Recent studies suggest the role of gut microbes in bile acid metabolism in the development and progression of colorectal cancer. However, the surveys of the association between fecal bile acid concentrations and colorectal cancer (CRC) have been inconsistent. We searched online to identify relevant cross-sectional and case-control studies published online in the major English language databases (Medline, Embase, Web of Science, AMED, and CINAHL) up to January 1, 2024. We selected studies according to inclusion and exclusion criteria and extracted data from them. RevMan 5.3 was used to perform the meta-analyses. In CRC risk meta-analysis, the effect size of CA (cholic acid), CDCA (chenodeoxycholic acid), DCA (deoxycholic acid), and UDCA (ursodeoxycholic acid) were significantly higher (CA: standardized mean difference [SMD] = 0.41, 95% confidence interval [CI]: 0.5-0.76, P = 0.02; CDCA: SMD = 0.35, 95% CI: 0.09-0.62, P = 0.009; DCA: SMD = 0.33,95% CI: 0.03-0.64, P = 0.03; UDCA: SMD = 0.46, 95% CI: 0.14-0.78, P = 0.005), and the combined effect size was significantly higher in the high-risk than the low-risk CRC group (SMD = 0.36, 95% CI: 0.21-0.51, P < 0.00001). In the CRC incidence meta-analysis, the effect sizes of CA and CDCA were significantly higher (CA: SMD = 0.42, 95% CI: 0.04-0.80, P = 0.03; CDCA: SMD = 0.61, 95% CI: 0.26-0.96, P = 0.00079), and their combined effect size was also significantly higher in the high-risk compared to low-risk CRC group (SMD = 0.39, 95% CI: 0.09-0.68, P = 0.01). Only one cross-sectional study suggested a higher concentration of CDCA, DCA, and UDCA in the stool of the CRC high-risk group than the low-risk group. These findings indicate that higher fecal concentrations of bile acid may be associated with a higher risk/incidence of CRC.
Collapse
Affiliation(s)
- Shaohui Yang
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Yu Wang
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Lijuan Sheng
- Gulou Street Community Health Service Center, Ningbo, 315000, China
| | - Wei Cui
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Chenyang Ma
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China.
| |
Collapse
|
2
|
Mudhluli TE, Kujawska M, Mueller J, Felsl A, Truppel BA, Hall LJ, Chitsike I, Gomo E, Zhou DT. Exploring the genomic traits of infant-associated microbiota members from a Zimbabwean cohort. BMC Genomics 2024; 25:718. [PMID: 39054474 PMCID: PMC11271062 DOI: 10.1186/s12864-024-10618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Our understanding of particular gut microbiota members such as Bifidobacterium and Enterococcus in low-middle-income countries remains very limited, particularly early life strain-level beneficial traits. This study addresses this gap by exploring a collection of bacterial strains isolated from the gut of Zimbabwean infants; comparing their genomic characteristics with strains isolated from infants across North America, Europe, and other regions of Africa. MATERIALS AND METHOD From 110 infant stool samples collected in Harare, Zimbabwe, 20 randomly selected samples were used to isolate dominant early-life gut microbiota members Bifidobacterium and Enterococcus. Isolated strains were subjected to whole genome sequencing and bioinformatics analysis including functional annotation of carbohydrates, human milk oligosaccharide (HMO) and protein degradation genes and clusters, and the presence of antibiotic resistance genes (ARGs). RESULTS The study observed some location-based clustering within the main five identified taxonomic groups. Furthermore, there were varying and overall species-specific numbers of genes belonging to different GH families encoded within the analysed dataset. Additionally, distinct strain- and species-specific variances were identified in the potential of Bifidobacterium for metabolizing HMOs. Analysis of putative protease activity indicated a consistent presence of gamma-glutamyl hydrolases in Bifidobacterium, while Enterococcus genomes exhibited a high abundance of aspartyl peptidases. Both genera harboured resistance genes against multiple classes of antimicrobial drugs, with Enterococcus genomes containing a higher number of ARGs compared to Bifidobacterium, on average. CONCLUSION This study identified promising probiotic strains within Zimbabwean isolates, offering the potential for early-life diet and microbial therapies. However, the presence of antibiotic resistance genes in infant-associated microbes raises concerns for infection risk and next-stage probiotic development. Further investigation in larger cohorts, particularly in regions with limited existing data on antibiotic and probiotic use, is crucial to validate these initial insights. IMPACT STATEMENT This research represents the first investigation of its kind in the Zimbabwean context, focusing on potential probiotic strains within the early-life gut microbiota. By identifying local probiotic strains, this research can contribute to the development of probiotic interventions that are tailored to the Zimbabwean population, which can help address local health challenges and promote better health outcomes for infants. Another essential aspect of the study is the investigation of antimicrobial resistance genes present in Zimbabwean bacterial strains. Antimicrobial resistance is a significant global health concern, and understanding the prevalence and distribution of resistance genes in different regions can help inform public health policies and interventions.
Collapse
Affiliation(s)
- Taona Emmah Mudhluli
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe.
- Faculty of Medicine and Health Science, Department of Biochemistry, Midlands State University, P. Bag 9055, Senga Road, Gweru, Zimbabwe.
| | - Magdalena Kujawska
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Julia Mueller
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Bastian-Alexander Truppel
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- BioSciences Building, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Lindsay J Hall
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 42TT, UK
| | - Inam Chitsike
- Faculty of Medicine and Health Sciences, Department of Family Health, Paediatrics Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| | - Exnevia Gomo
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| | - Danai Tavonga Zhou
- Faculty of Medicine and Health Sciences, Department of Laboratory Diagnostic and Investigative Sciences, Medical Laboratory Sciences Unit, University of Zimbabwe, Box A 178, Avondale, Harare, Zimbabwe
| |
Collapse
|
3
|
Ramaboli MC, Ocvirk S, Khan Mirzaei M, Eberhart BL, Valdivia-Garcia M, Metwaly A, Neuhaus K, Barker G, Ru J, Nesengani LT, Mahdi-Joest D, Wilson AS, Joni SK, Layman DC, Zheng J, Mandal R, Chen Q, Perez MR, Fortuin S, Gaunt B, Wishart D, Methé B, Haller D, Li JV, Deng L, Swart R, O'Keefe SJD. Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer. Nat Commun 2024; 15:3379. [PMID: 38643180 PMCID: PMC11032404 DOI: 10.1038/s41467-024-46265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/15/2024] [Indexed: 04/22/2024] Open
Abstract
Transition from traditional high-fiber to Western diets in urbanizing communities of Sub-Saharan Africa is associated with increased risk of non-communicable diseases (NCD), exemplified by colorectal cancer (CRC) risk. To investigate how urbanization gives rise to microbial patterns that may be amenable by dietary intervention, we analyzed diet intake, fecal 16 S bacteriome, virome, and metabolome in a cross-sectional study in healthy rural and urban Xhosa people (South Africa). Urban Xhosa individuals had higher intakes of energy (urban: 3,578 ± 455; rural: 2,185 ± 179 kcal/d), fat and animal protein. This was associated with lower fecal bacteriome diversity and a shift from genera favoring degradation of complex carbohydrates (e.g., Prevotella) to taxa previously shown to be associated with bile acid metabolism and CRC. Urban Xhosa individuals had higher fecal levels of deoxycholic acid, shown to be associated with higher CRC risk, but similar short-chain fatty acid concentrations compared with rural individuals. Fecal virome composition was associated with distinct gut bacterial communities across urbanization, characterized by different dominant host bacteria (urban: Bacteriodota; rural: unassigned taxa) and variable correlation with fecal metabolites and dietary nutrients. Food and skin microbiota samples showed compositional differences along the urbanization gradient. Rural-urban dietary transition in South Africa is linked to major changes in the gut microbiome and metabolome. Further studies are needed to prove cause and identify whether restoration of specific components of the traditional diet will arrest the accelerating rise in NCDs in Sub-Saharan Africa.
Collapse
Affiliation(s)
- M C Ramaboli
- African Microbiome Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Intestinal Microbiology Research Group, German Institute of Human Nutrition, Potsdam, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - M Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg, Germany
- Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - B L Eberhart
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Valdivia-Garcia
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - A Metwaly
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - K Neuhaus
- Core Facility Microbiome, ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - G Barker
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - J Ru
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg, Germany
- Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - L T Nesengani
- Department of Agriculture and Animal Health, University of South Africa, Pretoria, South Africa
| | - D Mahdi-Joest
- Intestinal Microbiology Research Group, German Institute of Human Nutrition, Potsdam, Germany
| | - A S Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - S K Joni
- Department of Nutrition and Dietetics, School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - D C Layman
- Department of Nutrition and Dietetics, School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - J Zheng
- The Metabolomics Innovation Centre & Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R Mandal
- The Metabolomics Innovation Centre & Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Chen
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - M R Perez
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Fortuin
- African Microbiome Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - B Gaunt
- Zithulele Hospital, Mqanduli District, Mqanduli, Eastern Cape Province, South Africa
| | - D Wishart
- The Metabolomics Innovation Centre & Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - B Methé
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Haller
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J V Li
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - L Deng
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg, Germany
- Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - R Swart
- Department of Nutrition and Dietetics, School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - S J D O'Keefe
- African Microbiome Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Zhou DT, Mudhluli TE, Hall LJ, Manasa J, Munyati S. A Scoping Review of Gut Microbiome and Bifidobacterium Research in Zimbabwe: Implications for Future Studies. Pediatric Health Med Ther 2023; 14:483-496. [PMID: 38145055 PMCID: PMC10743709 DOI: 10.2147/phmt.s414766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Gut microbiota play a key role in host health, with certain Bifidobacterium strains critical for immune development. The healthy gut of breastfed infants is dominated by these pioneer microbes, especially the strains that feed on human milk oligosaccharides. Objective This is a scoping review of gut microbiome research from Zimbabwe. It focuses on distribution and dynamic changes of bifidobacteria, and milk components that promote growth of microbes in infants, together with the distribution of associated gut microbes in adults. Design Online databases were searched for publications from 2000 to 2023. Results and Analysis Fourteen publications on microbiota of infants and adults were included in this scoping review. Most were cross-sectional, while three were clinical trials/cohort protocols. Publications focused on pediatrics (78.5%), pregnant women (14.3%), and men (7.2%). Zimbabwe has a high burden of HIV; hence 35.7% of study populations were delineated by HIV status. The laboratory methods used included shotgun metagenomics (62%) or 16S rRNA gene amplicon sequencing. Almost 85% of the studies focused on total microbiome profiles and rarely reported the distribution of different Bifidobacterium species and variants. None of the papers studied human breast milk composition. There were reports of reduced abundance of beneficial genera in pregnant women, children, and adolescents living with HIV. Additionally, gut microbiota was reported to be poorly predictive of child growth and vaccine response, though this was not conclusive. Conclusion There are few studies that characterize the gut microbiome by Zimbabwe-based researchers. However, studies on strain level diversity of Bifidobacterium and other key microbes, and their role in health during and beyond infancy, lag behind in Zimbabwe and other low- and middle-income countries. Such cohorts are needed to inform future mechanistic studies and downstream translational work such as next-generation probiotics and prebiotics.
Collapse
Affiliation(s)
- Danai T Zhou
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Taona E Mudhluli
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Intestinal Microbiome, Technical University of Munich, Freising, Germany
| | - Justen Manasa
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Shungu Munyati
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| |
Collapse
|
5
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
6
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Alhhazmi AA, Alhamawi RM, Almisned RM, Almutairi HA, Jan AA, Kurdi SM, Almutawif YA, Mohammed-Saeid W. Gut Microbial and Associated Metabolite Markers for Colorectal Cancer Diagnosis. Microorganisms 2023; 11:2037. [PMID: 37630597 PMCID: PMC10457972 DOI: 10.3390/microorganisms11082037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is a systematic review that aims to assess the clinical association between gut microbial markers and/or gut and circulating metabolites with ADA and CRC. Five electronic databases were searched by four independent reviewers. Only controlled trials that compared ADA and/or CRC with healthy control (HC) using either untargeted (16s rRNA gene or whole genome sequencing) or targeted (gene-based real-time PCR) identification methods for gut microbiome profile, or untargeted or targeted metabolite profiling approaches from the gut or serum/plasma, were eligible. Three independent reviewers evaluated the quality of the studies using the Cochrane Handbook for Systematic Reviews of Interventions. Twenty-four studies were eligible. We identified strong evidence of two microbial markers Fusobacterium and Porphyromonas for ADA vs. CRC, and nine microbial markers Lachnospiraceae-Lachnoclostridium, Ruminococcaceae-Ruminococcus, Parvimonas spp., Parvimonas micra, Enterobacteriaceae, Fusobacterium spp., Bacteroides, Peptostreptococcus-Peptostreptococcus stomatis, Clostridia spp.-Clostridium hylemonae, Clostridium symbiosum, and Porphyromonas-Porphyromonas asaccharolytica for CRC vs. HC. The remaining metabolite marker evidence between the various groups, including ADA vs. HC, ADA vs. HC, and CRC vs. HC, was not of sufficient quality to support additional findings. The identified gut microbial markers can be used in a panel for diagnosing ADA and/or CRC. Further research in the metabolite markers area is needed to evaluate the possibility to use in diagnostic or prognostic markers for colorectal cancer.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Renad M. Alhamawi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Reema M. Almisned
- Seha Polyclinic, P.O. Box 150, Al-Madinah Al-Munawarah 41311, Saudi Arabia;
| | - Hanouf A. Almutairi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), P.O. Box 6900, Thuwal 23955, Saudi Arabia;
| | - Ahdab A. Jan
- Abdulla Fouad Medical Supplies and Services (AFMS), P.O. Box 150, Al-Madinah Al-Munawarah 21414, Saudi Arabia;
| | - Shahad M. Kurdi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Waleed Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| |
Collapse
|
8
|
Wang Y, Uffelman CN, Bergia RE, Clark CM, Reed JB, Cross TWL, Lindemann SR, Tang M, Campbell WW. Meat Consumption and Gut Microbiota: a Scoping Review of Literature and Systematic Review of Randomized Controlled Trials in Adults. Adv Nutr 2023; 14:215-237. [PMID: 36822879 PMCID: PMC10229385 DOI: 10.1016/j.advnut.2022.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging research indicates the importance of gut microbiota in mediating the relationship between meat intake and human health outcomes. We aimed to assess the state of available scientific literature on meat intake and gut microbiota in humans (PROSPERO, International Prospective Register of Systematic Reviews, CRD42020135649). We first conducted a scoping review to identify observational and interventional studies on this topic. Searches were performed for English language articles using PubMed, Cochrane Library, Scopus, and CINAHL (Cumulated Index to Nursing and Allied Health Literature) databases from inception to August 2021 and using keywords related to meat (inclusive of mammalian, avian, and aquatic subtypes) and gut microbiota. Of 14,680 records, 85 eligible articles were included in the scoping review, comprising 57 observational and 28 interventional studies. One prospective observational study and 13 randomized controlled trials (RCTs) were identified in adults without diagnosed disease. We included the 13 RCTs, comprising 18 comparisons, in the systematic review to assess the effects of higher and lower intakes of total meat and meat subtypes on the gut microbiota composition. The bacterial composition was differentially affected by consuming diets with and without meat or with varied meat subtypes. For example, higher meat intake tended to decrease population sizes of genera Anerostipes and Faecalibacterium, but it increased the population size of Roseburia across studies. However, the magnitude and directionality of most microbial responses varied, with inconsistent patterns of responses across studies. The data were insufficient for comparison within or between meat subtypes. The paucity of research, especially among meat subtypes, and heterogeneity of findings underscore the need for more well-designed prospective studies and full-feeding RCTs to address the relationships between and effects of consuming total meat and meat subtypes on gut microbiota, respectively.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Cassi N Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Robert E Bergia
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline M Clark
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Jason B Reed
- Libraries and School of Information Studies, Purdue University, West Lafayette, IN, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Minghua Tang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
10
|
Shoji F, Yamaguchi M, Okamoto M, Takamori S, Yamazaki K, Okamoto T, Maehara Y. Gut microbiota diversity and specific composition during immunotherapy in responders with non-small cell lung cancer. Front Mol Biosci 2022; 9:1040424. [PMID: 36353732 PMCID: PMC9638091 DOI: 10.3389/fmolb.2022.1040424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy including immune checkpoint inhibitors (ICI) has revolutionized non-small cell lung cancer (NSCLC) therapy. Recently, the microbiota status “before” initiation of ICI therapy has been emphasized as a predictive biomarker in patients undergoing ICI therapy. However, the microbiota diversity and composition “during” ICI therapy is unknown. This multicenter, prospective observational study analyzed both saliva and feces from 28 patients with NSCLC. We performed 16S ribosomal RNA gene sequencing, then analyzed associations of oral and gut microbiota diversity or composition with ICI response. At the genus level, the alpha diversity of the gut microbiota was significantly greater in responders (n = 17) than in non-responders (n = 11) (Chao 1, p = 0.0174; PD whole tree, p = 0.0219; observed species, p = 0.0238; Shannon, p = 0.0362), while the beta diversity of the gut microbiota was significantly different (principal coordinates analysis, p = 0.035). Compositional differences in the gut microbiota were observed between the two groups; in particular, g_Blautia was enriched in responders, whereas o_RF32 order unclassified was enriched in non-responders. The progression-free survival (PFS) of patients enriched gut microbiota of g_Blautia was significantly longer [median survival time (MST): not reached vs. 549 days, p = 0.0480] and the PFS of patients with gut microbiota of o_RF32 unclassified was significantly shorter (MST: 49 vs. 757 days, p = 0.0205). There were no significant differences between groups in the oral microbiota. This study revealed a strong association between gut microbiota diversity and ICI response in NSCLC patients. Moreover, specific gut microbiota compositions may influence the ICI response. These findings might be useful in identifying biomarkers to predict ICI response.
Collapse
Affiliation(s)
- Fumihiro Shoji
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
- *Correspondence: Fumihiro Shoji,
| | - Masafumi Yamaguchi
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Masaki Okamoto
- Department of Respiratory Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | | |
Collapse
|
11
|
Alvandi E, Wong WKM, Joglekar MV, Spring KJ, Hardikar AA. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: a systematic review and meta-analysis. BMC Med 2022; 20:323. [PMID: 36184594 PMCID: PMC9528142 DOI: 10.1186/s12916-022-02529-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The beneficial role of gut microbiota and bacterial metabolites, including short-chain fatty acids (SCFAs), is well recognized, although the available literature around their role in colorectal cancer (CRC) has been inconsistent. METHODS We performed a systematic review and meta-analysis to examine the associations of fecal SCFA concentrations to the incidence and risk of CRC. Data extraction through Medline, Embase, and Web of Science was carried out from database conception to June 29, 2022. Predefined inclusion/exclusion criteria led to the selection of 17 case-control and six cross-sectional studies for quality assessment and analyses. Studies were categorized for CRC risk or incidence, and RevMan 5.4 was used to perform the meta-analyses. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated using a random-effects model. Studies lacking quantitation were included in qualitative analyses. RESULTS Combined analysis of acetic, propionic, and butyric acid revealed significantly lower concentrations of these SCFAs in individuals with a high-risk of CRC (SMD = 2.02, 95% CI 0.31 to 3.74, P = 0.02). Additionally, CRC incidence was higher in individuals with lower levels of SCFAs (SMD = 0.45, 95% CI 0.19 to 0.72, P = 0.0009), compared to healthy individuals. Qualitative analyses identified 70.4% of studies reporting significantly lower concentrations of fecal acetic, propionic, butyric acid, or total SCFAs in those at higher risk of CRC, while 66.7% reported significantly lower concentrations of fecal acetic and butyric acid in CRC patients compared to healthy controls. CONCLUSIONS Overall, lower fecal concentrations of the three major SCFAs are associated with higher risk of CRC and incidence of CRC.
Collapse
Affiliation(s)
- Ehsan Alvandi
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Kevin J Spring
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- South-West Sydney Clinical Campuses, UNSW Medicine & Health, Sydney, NSW, Australia.
- Liverpool Clinical School, School of Medicine, Western Sydney University, Liverpool, NSW, Australia.
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia.
- Department of Science and Environment, Roskilde University Copenhagen, Roskilde, Denmark.
| |
Collapse
|
12
|
Bayrak T, Çetin Z, Saygılı Eİ, Ogul H. Identifying the tumor location-associated candidate genes in development of new drugs for colorectal cancer using machine-learning-based approach. Med Biol Eng Comput 2022; 60:2877-2897. [DOI: 10.1007/s11517-022-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
13
|
Li X, Wang X, Wang Z, Zhang M, Wang S, Xiang Z, Pan H, Li M. The Relationship Between Gut Microbiome and Bile Acids in Primates With Diverse Diets. Front Microbiol 2022; 13:899102. [PMID: 35633689 PMCID: PMC9130754 DOI: 10.3389/fmicb.2022.899102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Primates have evolved a variety of feeding habits and intestinal physiological structure. Gut microbiome act as metabolic organs in many biological processes and play a vital role in adaptation to dietary niches. Gut microbiome also convert primary bile acids (BAs) to secondary. BAs profile and gut microbiome are together influenced by diets and play a significant role in nutrient absorption. The regulation between gut microbiome and BAs metabolism is bidirectional although the relationship in primates consuming diverse diets is still unclear. Here, we investigated gut microbiome structures, fecal BAs profile, and their relationship in primates preferring three distinct diets. We found that gut microbiome communities are well differentiated among dietary groups. Folivorous primates had higher Firmicutes abundance and lower Prevotella to Bacaeroides ratios, possibly related to fiber consumption. Frugivorous primates are colonized predominantly by Prevotella and Bacteroides, pointing to an increased adaptation to high-sugar and simple carbohydrate diets. Likewise, BA profiles differ according to diet in a manner predictable from the known effects of BAs on metabolism. Folivorous primates have high conjugated bile acid levels and low unconjugated to conjugated BA ratios, consistent with their fiber-rich leaf-eating diet. Much of the differentiation in secondary and unconjugated BAs is associated with microbiome composition shifts and individual bile acid concentrations are correlated with the abundance of distinct bacterial taxonomic groups. Omnivores have higher concentrations of secondary BAs, mainly lithocholic acid (LCA). These levels are significantly positively correlated with the presence of Clostrida species, showing that the digestion requirements of omnivores are different from plant-eating primates. In conclusion, gut microbiome and BAs can respond to changes in diet and are associated with nutrient component consumption in each diet primate group. Our study is the first to demonstrate BA profile differentiation among primates preferring diverse diets. BAs thus appear to work with gut microbiome to help primates adapt to their diet.
Collapse
Affiliation(s)
- Xinyue Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziming Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | | | - Zuofu Xiang
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Watermeyer G, Katsidzira L, Setshedi M, Devani S, Mudombi W, Kassianides C. Inflammatory bowel disease in sub-Saharan Africa: epidemiology, risk factors, and challenges in diagnosis. Lancet Gastroenterol Hepatol 2022; 7:952-961. [DOI: 10.1016/s2468-1253(22)00047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023]
|
15
|
Ramaboli M, Nesengani L, Katsidzira L, Haller D, Kinross J, Ocvirk S, O'Keefe SJD. Interactions between the environmental and human microbiota in the preservation of health and genesis of disease: symposium report. Curr Opin Gastroenterol 2022; 38:146-155. [PMID: 35098936 DOI: 10.1097/mog.0000000000000817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW The purpose of this symposium was to bring thought leaders in the microbiome from the west to Africa to share their unique experiences with African investigators in order to build the foundations for scientifically rigorous explorations into the African human and environmental microbiome that may explain why disease patterns are different in Africa where the chief killers are infectious diseases, whereas noncommunicable diseases (NCDs) are the major threat to healthcare resources in the developed world. RECENT FINDINGS The application of new high throughput technologies to the investigation of the microbiome and its metabolome has revealed mechanisms whereby a traditional African high fiber diet can suppress NCDs which include colon cancer, inflammatory bowel diseases, obesity, type 2 diabetes and atherosclosis. There is concern that with migration and westernization, NCDs are becoming more common in Africa and that food security is becoming impaired by unbalanced obesogenic foods rather than inadequate food intake. SUMMARY There is an urgent need for the formation of combined African-Western research programs to identify what is good and bad in the African diet-microbiome axis to develop strategies to prevent the incidence of NCDs rising to western levels in Africa, at the same time offering novel prevention strategies against the #1 healthcare threat in the developed world.
Collapse
Affiliation(s)
- Matsepo Ramaboli
- African Microbiome Institute, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lucky Nesengani
- African Microbiome Institute, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leolin Katsidzira
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - James Kinross
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Soeren Ocvirk
- Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephen J D O'Keefe
- African Microbiome Institute, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
16
|
de Zawadzki A, Thiele M, Suvitaival T, Wretlind A, Kim M, Ali M, Bjerre AF, Stahr K, Mattila I, Hansen T, Krag A, Legido-Quigley C. High-Throughput UHPLC-MS to Screen Metabolites in Feces for Gut Metabolic Health. Metabolites 2022; 12:metabo12030211. [PMID: 35323654 PMCID: PMC8950041 DOI: 10.3390/metabo12030211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Feces are the product of our diets and have been linked to diseases of the gut, including Chron’s disease and metabolic diseases such as diabetes. For screening metabolites in heterogeneous samples such as feces, it is necessary to use fast and reproducible analytical methods that maximize metabolite detection. As sample preparation is crucial to obtain high quality data in MS-based clinical metabolomics, we developed a novel, efficient and robust method for preparing fecal samples for analysis with a focus in reducing aliquoting and detecting both polar and non-polar metabolites. Fecal samples (n = 475) from patients with alcohol-related liver disease and healthy controls were prepared according to the proposed method and analyzed in an UHPLC-QQQ targeted platform in order to obtain a quantitative profile of compounds that impact liver-gut axis metabolism. MS analyses of the prepared fecal samples have shown reproducibility and coverage of n = 28 metabolites, mostly comprising bile acids and amino acids. We report metabolite-wise relative standard deviation (RSD) in quality control samples, inter-day repeatability, LOD (limit of detection), LOQ (limit of quantification), range of linearity and method recovery. The average concentrations for 135 healthy participants are reported here for clinical applications. Our high-throughput method provides a novel tool for investigating gut-liver axis metabolism in liver-related diseases using a noninvasive collected sample.
Collapse
Affiliation(s)
- Andressa de Zawadzki
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Tommi Suvitaival
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Asger Wretlind
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Min Kim
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Mina Ali
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Annette F. Bjerre
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Karin Stahr
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Ismo Mattila
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Institute of Pharmaceutical Science, King’s College London, London SE19NH, UK
- Correspondence:
| |
Collapse
|
17
|
Ocvirk S, O'Keefe SJD. Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol 2021; 73:347-355. [PMID: 33069873 DOI: 10.1016/j.semcancer.2020.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) risk is predominantly driven by environmental factors, in particular diet. A high intake of dietary fat has been implicated as a risk factor inducing the formation of pre-neoplastic lesions (e.g., adenomatous polyps) and/or exacerbating colonic tumorigenesis. Recent data attributed the tumor-promoting activity of high-fat diets to their effects on gut microbiota composition and metabolism, in particular with regard to bile acids. Bile acids are synthesized in the liver in response to dietary fat and facilitate lipid absorption in the small intestine. The majority of bile acids is re-absorbed during small intestinal transit and subjected to enterohepatic circulation. Bile acids entering the colon undergo complex biotransformation performed by gut bacteria, resulting in secondary bile acids that show tumor-promoting activity. Excessive dietary fat leads to high levels of secondary bile acids in feces and primes the gut microbiota to bile acid metabolism. This promotes an altered overall bile acid pool, which activates or restricts intestinal and hepatic cross-signaling of the bile acid receptor, farnesoid X receptor (FXR). Recent studies provided evidence that FXR is a main regulator of bile acid-mediated effects on intestinal tumorigenesis integrating dietary, microbial and genetic risk factors for CRC. Selective FXR agonist or antagonist activity by specific bile acids depends on additional factors (e.g., bile acid concentration, composition of bile acid pool, genetic instability of cells) and, thus, may differ in healthy and tumorigenic conditions in the intestine. In conclusion, fat-mediated alterations of the gut microbiota link bile acid metabolism to CRC risk and colonic tumorigenesis, exemplifying how gut microbial co-metabolism affects colon health.
Collapse
Affiliation(s)
- Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephen J D O'Keefe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Sulaiman I, Wu BG, Li Y, Tsay JC, Sauthoff M, Scott AS, Ji K, Koralov SB, Weiden M, Clemente JC, Jones D, Huang YJ, Stringer KA, Zhang L, Geber A, Banakis S, Tipton L, Ghedin E, Segal LN. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur Respir J 2021; 58:13993003.03434-2020. [PMID: 33446604 DOI: 10.1183/13993003.03434-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. RESULTS Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jun-Chieh Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Maya Sauthoff
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Adrienne S Scott
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Kun Ji
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sergei B Koralov
- Dept of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael Weiden
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jose C Clemente
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew Jones
- Dept of Biochemistry and Molecular Pharmacology and Dept of Radiation Oncology, New York University School of Medicine, New York, NY, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen A Stringer
- Dept of Clinical Pharmacy, College of Pharmacy, and Division of Pulmonary and Critical Care Medicine, Dept of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lingdi Zhang
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Adam Geber
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Stephanie Banakis
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Laura Tipton
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA.,Dept of Epidemiology, School of Global Public Health, New York University, New York, NY, USA
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
19
|
Matysik S, Krautbauer S, Liebisch G, Schött HF, Kjølbaek L, Astrup A, Blachier F, Beaumont M, Nieuwdorp M, Hartstra A, Rampelli S, Pagotto U, Iozzo P. Short-chain fatty acids and bile acids in human faeces are associated with the intestinal cholesterol conversion status. Br J Pharmacol 2021; 178:3342-3353. [PMID: 33751575 DOI: 10.1111/bph.15440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The analysis of human faecal metabolites can provide an insight into metabolic interactions between gut microbiota and the host organism. The creation of metabolic profiles in faeces has received little attention until now, and reference values, especially in the context of dietary and therapeutic interventions, are missing. Exposure to xenobiotics significantly affects the physiology of the microbiome, and microbiota manipulation and short-chain fatty acid administration have been proposed as treatment targets for several diseases. The aim of the present study is to give concomitant concentration ranges of faecal sterol species, bile acids and short-chain fatty acids, based on a large cohort. EXPERIMENTAL APPROACH Sterol species, bile acids and short-chain fatty acids in human faeces from 165 study participants were quantified by LC-MS/MS. For standardization, we refer all values to dry weight of faeces. Based on the individual intestinal sterol conversion, we classified participants into low and high converters according to their coprostanol/cholesterol ratio. KEY RESULTS Low converters excrete more straight-chain fatty acids and bile acids than high converters; 5th and 95th percentile and median of bile acids and short-chain fatty acids were calculated for both groups. CONCLUSION AND IMPLICATIONS We give concentration ranges for 16 faecal metabolites that can serve as reference values. Patient stratification into high or low sterol converter groups is associated with significant differences in faecal metabolites with biological activities. Such stratification should then allow better assessment of faecal metabolites before therapeutic interventions. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Frieder Schött
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Annick Hartstra
- Department of Internal and Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Unit of Endocrinology and Prevention and Care of Diabetes, Sant'Orsola Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
20
|
Mohseni AH, Taghinezhad-S S, Fu X. Gut microbiota-derived metabolites and colorectal cancer: New insights and updates. Microb Pathog 2020; 149:104569. [DOI: 10.1016/j.micpath.2020.104569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
|
21
|
Mojsak P, Rey-Stolle F, Parfieniuk E, Kretowski A, Ciborowski M. The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites' derivatization step. J Pharm Biomed Anal 2020; 191:113617. [PMID: 32971497 DOI: 10.1016/j.jpba.2020.113617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Disruption of gut microbiota (GM) composition is increasingly related to the pathogenesis of various metabolic diseases. Additionally, GM is responsible for the production and transformation of metabolites involved in the development of metabolic disorders, such as obesity and type 2 diabetes mellitus (T2DM). The current state of knowledge regarding the composition of GM and GM-related metabolites in relation to the progress and development of obesity and T2DM is presented in this review. To understand the relationships between GM-related metabolites and the development of metabolic disorders, their accurate qualitative and quantitative measurement in biological samples is needed. Feces represent a valuable biological matrix which composition may reflect the health status of the lower gastrointestinal tract and the whole organism. Mass spectrometry (MS), mainly in combination with gas chromatography (GC) or liquid chromatography (LC), is commonly used to measure fecal metabolites. However, profiling metabolites in such a complex matrix as feces is challenging from both analytical chemistry and biochemistry standpoints. Chemical derivatization is one of the most effective methods used to overcome these problems. In this review, we provide a comprehensive summary of the derivatization methods of GM-related metabolites prior to GC-MS or LC-MS analysis, which have been published in the last five years (2015-2020). Additionally, analytical methods used for the analysis of GM-related metabolites without the derivatization step are also presented.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ewa Parfieniuk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
22
|
Guan X, Ma F, Sun X, Li C, Li L, Liang F, Li S, Yi Z, Liu B, Xu B. Gut Microbiota Profiling in Patients With HER2-Negative Metastatic Breast Cancer Receiving Metronomic Chemotherapy of Capecitabine Compared to Those Under Conventional Dosage. Front Oncol 2020; 10:902. [PMID: 32733788 PMCID: PMC7358584 DOI: 10.3389/fonc.2020.00902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose: Low-dose metronomic chemotherapy can achieve disease control with reduced toxicity compared to conventional chemotherapy in maximum tolerated dose. Characterizing the gut microbiota of cancer patients under different dosage regimens may describe a new role of gut microbiota associated with drug efficacy. Therefore, we evaluated the composition and the function of gut microbiome associated with metronomic capecitabine compared to conventional dosage. Methods: The fecal samples of HER2-negative metastatic breast cancer patients treated with capecitabine as maintenance chemotherapy were collected and analyzed by 16S ribosome RNA gene sequencing. Results: A total of 15 patients treated with metronomic capecitabine were compared to 16 patients under a conventional dose. The unweighted-unifrac index of the metronomic group was statistically significantly lower than that of the routine group (P = 0.025). Besides that, the Bray-Curtis distance-based redundancy analysis illustrated that the microbial genera between the two groups can be separated partly. Nine Kyoto Encyclopedia of Genes and Genomes (KEGG) modules were enriched in the metronomic group, while no KEGG modules were significantly enriched in the routine group. Moreover, univariate and multivariate analyses suggested that the median progression-free survival (PFS) was significantly shorter in patients with the gut microbial composition of Slackia (9.2 vs. 32.7 months, P = 0.004), while the patients with Blautia obeum had a significantly prolonged PFS than those without (32.7 vs. 12.9 months, P = 0.013). Conclusions: The proof-of-principle study suggested that the gut microbiota of patients receiving metronomic chemotherapy was different in terms of diversity, composition, and function from those under conventional chemotherapy, and the presence of specific bacterial species may act as microbial markers associated with drug resistance monitoring and prognostic evaluation.
Collapse
Affiliation(s)
- Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoying Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences, Beijing, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Liang
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Shaochuan Li
- Department of Human Microbiome, Promegene Institute, Shenzhen, China
| | - Zongbi Yi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binliang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Chen J, Sali A, Vitetta L. The gallbladder and vermiform appendix influence the assemblage of intestinal microorganisms. Future Microbiol 2020; 15:541-555. [DOI: 10.2217/fmb-2019-0325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Surgical procedures for the symptomatic removal of the gallbladder and the vermiform appendix have been posited to adversely shift the assemblage of the intestinal microbiome increasing the risk of disease. The associated mechanisms have been linked with dysbiosis of the gut microbiota. Cholecystectomy causes changes of bile acid compositions and bile secretion patterns as bile acids interact with the intestinal microbiota in a bidirectional capacity. An appendectomy precludes the further recolonization of the proximal colon with a commensal biofilm that could maintain a stable intestinal microbiome. Epidemiological studies indicate that there is an increased risk of disease rather than causality following a cholecystectomy and appendectomy. This narrative review summarizes studies that report on the role that bile salts and the appendix, contribute to the assemblage of the intestinal microbiome in health and disease.
Collapse
Affiliation(s)
- Jiezhong Chen
- Research Department, Medlab Clinical Ltd, Sydney, 2015, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Melbourne, 3022, Australia
| | - Luis Vitetta
- Research Department, Medlab Clinical Ltd, Sydney, 2015, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
24
|
Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, Flanagan CA, Sapp FR, Merritt ZT, Bhatti F, Thomas TK, O’Keefe SJ. Diet and the Human Gut Microbiome: An International Review. Dig Dis Sci 2020; 65:723-740. [PMID: 32060812 PMCID: PMC7117800 DOI: 10.1007/s10620-020-06112-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the key results of recently published studies on the effects of dietary change and nutritional intervention on the human microbiome from around the world, focusing on the USA, Canada, Europe, Asia, and Africa. It first explores mechanisms that might explain the ability of fiber-rich foods to suppress the incidence and mortality from westernized diseases, notably cancers of the colon, breast, liver, cardiovascular, infectious, and respiratory diseases, diabetes, and obesity (O'Keefe in Lancet Gastroenterol Hepatol 4(12):984-996, 2019; Am J Clin Nutr 110:265-266, 2019). It summarizes studies from Africa which suggest that disturbance of the colonic microbiome may exacerbate chronic malnutrition and growth failure in impoverished communities and highlights the importance of breast feeding. The American section discusses the role of the microbiome in the swelling population of patients with obesity and type 2 diabetes and examines the effects of race, ethnicity, geography, and climate on microbial diversity and metabolism. The studies from Europe and Asia extoll the benefits of whole foods and plant-based diets. The Asian studies examine the worrying changes from low-fat, high-carbohydrate diets to high-fat, low-carbohydrate ones and the increasing appearance of westernized diseases as in Africa and documents the ability of high-fiber traditional Chinese diets to reverse type 2 diabetes and control weight loss. In conclusion, most of the studies reviewed demonstrate clear changes in microbe abundances and in the production of fermentation products, such as short-chain fatty acids and phytochemicals following dietary change, but the significance of the microbiota changes to human health, with the possible exception of the stimulation of butyrogenic taxa by fiber-rich foods, is generally implied and not measured. Further studies are needed to determine how these changes in microbiota composition and metabolism can improve our health and be used to prevent and treat disease.
Collapse
Affiliation(s)
- Annette S. Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn R. Koller
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Matsepo C. Ramaboli
- African Microbiome Institute, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Lucky T. Nesengani
- African Microbiome Institute, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Caixia Chen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christie A. Flanagan
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Flora R. Sapp
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Zoe T. Merritt
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Faheem Bhatti
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy K. Thomas
- Clinical & Research Services, Community Health Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Stephen J.D. O’Keefe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,African Microbiome Institute, Stellenbosch University, Cape Town, Western Cape, South Africa
| |
Collapse
|
25
|
Liu X, Liu X, Qiao T, Chen W. Identification of crucial genes and pathways associated with colorectal cancer by bioinformatics analysis. Oncol Lett 2020; 19:1881-1889. [PMID: 32194683 PMCID: PMC7039150 DOI: 10.3892/ol.2020.11278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumour type arising from the colon and rectum. The present study aimed to explore the molecular mechanisms of the development and progression of CRC. Initially, differentially expressed genes (DEGs) between CRC tissues and corresponding non-cancerous tissues were obtained by analysing the GSE15781 microarray dataset. The Database for Annotation, Visualization and Integrated Discovery was then utilized for functional and pathway enrichment analysis of the DEGs. Subsequently, a protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes and Proteins database and visualized by Cytoscape software. Furthermore, CytoNCA, a Cytoscape plugin, was used for centrality analysis of the PPI network to identify crucial genes. Finally, UALCAN was employed to validate the expression of the crucial genes and to estimate their effect on the survival of patients with colon cancer by Kaplan-Meier curves and log-rank tests. A total of 1,085 DEGs, including 496 upregulated and 589 downregulated genes, were screened out. The DEGs identified were enriched in various pathways, including ‘metabolic pathway’, ‘cell cycle’, ‘DNA replication’, ‘nitrogen metabolism’, ‘p53 signalling’ and ‘fatty acid degradation’. PPI network analysis suggested that interleukin-6, MYC, NOTCH1, inhibin subunit βA (INHBA), CDK1, cyclin (CCN)B1 and CCNA2 were crucial genes, and their expression levels were markedly upregulated. Survival analysis suggested that upregulated INHBA significantly decreased the survival probability of patients with CRC. Conversely, upregulation of CCNB1 and CCNA2 expression levels were associated with increased survival probabalities. The identified DEGs, particularly the crucial genes, may enhance the current understanding of the genesis and progression of CRC, and certain genes, including INHBA, CCNB1 and CCNA2, may be candidate diagnostic and prognostic markers, as well as targets for the treatment of CRC.
Collapse
Affiliation(s)
- Xiaoqun Liu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Xiangdong Liu
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Wei Chen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|