1
|
Carey KJ, Smith I, Barr J, Caruso S, Au GG, Hartley CA, Bailey KE, Perriam W, Broder CC, Gilkerson JR. Foals of mares vaccinated for Hendra virus have a suboptimal response to HeV vaccination. Vet Microbiol 2024; 295:110167. [PMID: 38954881 DOI: 10.1016/j.vetmic.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Hendra virus (HeV) is lethal to horses and a zoonotic threat to humans in Australia, causing severe neurological and/or respiratory disease with high mortality. An equine vaccine has been available since 2012. Foals acquire antibodies from their dams by ingesting colostrum after parturition, therefore it is assumed that foals of mares vaccinated against HeV will have passive HeV antibodies circulating during the first several months of life until they are actively vaccinated. However, no studies have yet examined passive or active immunity against HeV in foals. Here, we investigated anti-HeV antibody levels in vaccinated mares and their foals. Testing for HeV neutralising antibodies is cumbersome due to the requirement for Biosafety level 4 (BSL-4) containment to conduct virus neutralisation tests (VNT). For this study, a subset of samples was tested for HeV G-specific antibodies by both an authentic VNT with infectious HeV and a microsphere-based immunoassay (MIA), revealing a strong correlation. An indicative neutralising level was then applied to the results of a larger sample set tested using the MIA. Mares had high levels of HeV-specific neutralising antibodies at the time of parturition. Foals acquired high levels of maternal antibodies which then waned to below predictive protective levels in most foals by 6 months old when vaccination commenced. Foals showed a suboptimal response to vaccination, suggesting maternal antibodies may interfere with active vaccination. The correlation analysis between the authentic HeV VNT and HeV MIA will enable further high throughput serological studies to inform optimal vaccination protocols for both broodmares and foals.
Collapse
Affiliation(s)
- Kimberley J Carey
- Centre for Equine Infectious Disease, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Corner Park Drive and Flemington Road, Building 400, Parkville, VIC 3010, Australia
| | - Ina Smith
- CSIRO Health and Biosecurity, Black Mountain Laboratories, Clunies Ross Street,Black Mountain, ACT 2601, Australia
| | - Jennifer Barr
- CSIRO Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC 3220, Australia
| | - Sarah Caruso
- CSIRO Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC 3220, Australia
| | - Gough G Au
- CSIRO Australian Centre for Disease Preparedness (ACDP), 5 Portarlington Road, East Geelong, VIC 3220, Australia
| | - Carol A Hartley
- Centre for Equine Infectious Disease, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Corner Park Drive and Flemington Road, Building 400, Parkville, VIC 3010, Australia
| | - Kirsten E Bailey
- Centre for Equine Infectious Disease, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Corner Park Drive and Flemington Road, Building 400, Parkville, VIC 3010, Australia
| | - Wendy Perriam
- Gundy Veterinary Services, 898 Gundy Road, Scone, NSW 2337, Australia
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - James R Gilkerson
- Centre for Equine Infectious Disease, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Corner Park Drive and Flemington Road, Building 400, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Ahearne MM, Pentzke-Lemus LL, Romano AM, Larsen ED, Watson AM, O'Fallon EA, Landolt GA. Disease progression, pathologic, and virologic findings of an equine influenza outbreak in rescue donkeys. J Vet Intern Med 2022; 36:2230-2237. [PMID: 36205917 DOI: 10.1111/jvim.16563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Equine influenza virus is a common cause of respiratory disease in equids. Few reports describe clinical presentation and disease progression in donkeys. HYPOTHESIS/OBJECTIVES Describe the clinical and diagnostic findings, outcome, and pathologic lesions associated with influenza pneumonia in donkeys. ANIMALS Thirteen unvaccinated donkeys ranging from 1 week to 12 years of age and sharing clinical signs and exposure history. METHODS Retrospective case series. Medical records from June to July 2020 at the Colorado State Veterinary Teaching Hospital and collaborating referring veterinary practices were reviewed. The diagnosis was confirmed by molecular testing, virus isolation, and partial genetic and phylogenetic analysis of the virus. RESULTS Survival in donkeys <1 year old was 16.6% (1/6) whereas survival in animals >1 year of age was 85.7% (6/7). Hemagglutinin gene sequencing and phylogenetic analysis confirmed a contemporary clade 1 Florida sublineage H3 virus as the causative agent. CONCLUSIONS AND CLINICAL IMPORTANCE Clinical signs of equine influenza virus infection in donkeys are similar to those observed in horses. Prognosis for survival generally is good, but deaths have been observed especially in foals born to seronegative dams. This finding emphasizes the importance of prenatal vaccination protocols in all equids, including donkeys.
Collapse
Affiliation(s)
- Megan M Ahearne
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ligia L Pentzke-Lemus
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ashley M Romano
- Department of of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Eileen D Larsen
- Department of of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Allison M Watson
- Department of of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elsbeth A O'Fallon
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gabriele A Landolt
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
4
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
5
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
6
|
Allkofer A, Garvey M, Ryan E, Lyons R, Ryan M, Lukaseviciute G, Walsh C, Venner M, Cullinane A. Primary vaccination in foals: a comparison of the serological response to equine influenza and equine herpesvirus vaccines administered concurrently or 2 weeks apart. Arch Virol 2021; 166:571-579. [PMID: 33410993 DOI: 10.1007/s00705-020-04846-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/09/2020] [Indexed: 10/22/2022]
Abstract
This study compared concurrent and separate primary vaccination against equid alphaherpesviruses 1 and 4, genus Varicellovirus, subfamily Alphaherpesvirinae, family Herpesviridae, and equine influenza A virus, genus Alphainfluenzavirus, family Orthomyxoviridae. Their vernacular names are equine herpesvirus 1 and 4 (EHV1/4) and equine influenza virus (EIV). Infection with these respiratory pathogens is associated with loss of performance, interruption of training schedules, and on occasion, cancellation of equestrian events. Vaccination is highly recommended, and for some activities it is a mandatory requirement of the relevant authority. As there is a dearth of information relating to the impact of concurrent vaccination on the antibody response to EHV and EIV vaccines, they are usually administered separately, often 2 weeks apart. In a previous study of booster vaccination in Thoroughbred racehorses, concurrent vaccination with whole-virus inactivated carbopol-adjuvanted EHV and EIV vaccines did not impact negatively on the antibody response. In this study, investigations were extended to concurrent versus separate primary vaccination of warmblood foals. A field study was conducted to compare the immune response to a carbopol-adjuvanted EHV vaccine and an immune stimulating complex (ISCOM)-adjuvanted EI vaccine administered concurrently and 2 weeks apart. No adverse clinical reactions were observed, the pattern of EI and EHV antibody response was similar for both groups, and there was no evidence that concurrent primary vaccination compromised the humoral response. The results are of relevance to horse owners who wish to decrease veterinary costs, limit handling of young animals, and simplify record keeping by vaccinating concurrently.
Collapse
Affiliation(s)
- Alexandra Allkofer
- Clinic for Horses, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Marie Garvey
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Evelyn Ryan
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Rachel Lyons
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Megan Ryan
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Gabija Lukaseviciute
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Monica Venner
- Equine Clinic Destedt, Trift 4, 38162, Destedt, Germany.
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland.
| |
Collapse
|
7
|
Kinsley R, Pronost S, De Bock M, Temperton N, Daly JM, Paillot R, Scott S. Evaluation of a Pseudotyped Virus Neutralisation Test for the Measurement of Equine Influenza Virus-Neutralising Antibody Responses Induced by Vaccination and Infection. Vaccines (Basel) 2020; 8:vaccines8030466. [PMID: 32825702 PMCID: PMC7565038 DOI: 10.3390/vaccines8030466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023] Open
Abstract
Equine influenza is a major respiratory disease of horses that is largely controlled by vaccination in some equine populations. Virus-neutralising antibodies, the mainstay of the protective immune response, are problematic in assaying for equine influenza virus, as most strains do not replicate efficiently in cell culture. Surrogate measures of protective antibody responses include the haemagglutination inhibition (HI) test and single radial haemolysis (SRH) assay. For this study, a pseudotyped virus, bearing an envelope containing the haemagglutinin (HA) from the Florida clade 2 equine influenza virus strain A/equine/Richmond/1/07 (H3N8), was generated to measure HA-specific neutralising antibodies in serum samples (n = 134) from vaccinated or experimentally-infected ponies using a pseudotyped virus neutralization test (PVNT). Overall, the results of PVNT were in good agreement with results from the SRH assay (100% sensitivity, 68.53% specificity) and HI test (99.2% sensitivity, 49.03% specificity). The PVNT was apparently more sensitive than either the SRH assay or the HI test, which could be advantageous for studying the antibody kinetics, particularly when antibody levels are low. Nevertheless, further studies are required to determine whether a protective antibody level can be defined for the SRH assay and to ascertain the inter-laboratory reproducibility. In conclusion, the PVNT efficiently measures neutralising antibodies after immunization and/or experimental infection in the natural host, and may complement existing antibody assays.
Collapse
Affiliation(s)
- Rebecca Kinsley
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 1 route de Rosel, 14053 Caen CEDEX 4, France;
- Normandie University, UNICAEN, BIOTARGEN EA7450, 14280 Saint-Contest, France
| | - Manuelle De Bock
- Elanco Animal Health, Plantin en Moretuslei, B-2018 Antwerpen, Belgium;
| | - Nigel Temperton
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Romain Paillot
- LABÉO Frank Duncombe, 1 route de Rosel, 14053 Caen CEDEX 4, France;
- Normandie University, UNICAEN, BIOTARGEN EA7450, 14280 Saint-Contest, France
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Kentford Newmarket CB8 7UU, UK
- Correspondence: (R.P.); (S.S.); Tel.: +33-231-471-926 (R.P.); +44-1634-202957 (S.S.)
| | - Simon Scott
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
- Correspondence: (R.P.); (S.S.); Tel.: +33-231-471-926 (R.P.); +44-1634-202957 (S.S.)
| |
Collapse
|
8
|
Prkno A, Hoffmann D, Kaiser M, Goerigk D, Pfeffer M, Winter K, Vahlenkamp TW, Beer M, Starke A. Field Trial Vaccination against Cowpox in Two Alpaca Herds. Viruses 2020; 12:v12020234. [PMID: 32093320 PMCID: PMC7077317 DOI: 10.3390/v12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
In Europe, cowpox virus (CPXV) infection in South American camelids occurs as a so-called spill-over infection. Although infected animals generally have a mild form of the disease and survive, cases of fatal generalised CPXV infection have also been described. Prevention by prophylactic vaccination is the only way to protect animals from disease. In the present study, modified vaccinia virus Ankara (MVA) vaccine, which has been successfully used in many animal species, was used in a prime-boost vaccination regimen in two alpaca herds with a history of CPXV infection. The focus of the study was the prevention of further clinical cases, and to determine the safety and immunogenicity of the MVA vaccine in alpacas. The MVA vaccine was well tolerated and safe in the 94 animals vaccinated. An indirect immunofluorescence assay (IFA) using MVA as an antigen showed that the seroprevalence of antibody after booster vaccination was 81.3% in herd I and 91.7% in herd II. Detectable antibody titres declined to 15.6% in herd I and 45.8% in herd II over a 12-month period after booster vaccination. Animals could be divided into four groups based on individual antibody titres determined over one year: Group 1 consisted of 19.3% of animals that were seropositive until the end of the trial period; Group 2 consisted of 58.0% of animals that were seropositive after booster vaccination, but seronegative one year later; Group 3 consisted of 14.7% of animals that were not seropositive at any time point; and Group 4 consisted of 7.9% of animals that were seropositive after initial immunisation, seronegative six months later, but seropositive or intermediate in IFA one year after immunisation, likely because of natural exposure. In new-born crias born to MVA-vaccinated mares, specific maternal antibodies were detected in 50.0% of animals up to 14 weeks of age. Our results confirm that MVA vaccination is a feasible tool for the prevention of CPXV disease in alpacas. Long-term studies are needed to verify future vaccination regimen in CPXV affected herds.
Collapse
Affiliation(s)
- Almut Prkno
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
- Correspondence: ; Tel.: +49-341-9738331
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Matthias Kaiser
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
| | - Daniela Goerigk
- Veterinary practice Dr. Daniela Goerigk, Naundorfer Str. 9, 04668 Schkortitz, Germany;
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Centre for Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany;
| | - Karsten Winter
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
| |
Collapse
|
9
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
10
|
Gildea S, Garvey M, Lyons P, Lyons R, Gahan J, Walsh C, Cullinane A. Multifocal Equine Influenza Outbreak with Vaccination Breakdown in Thoroughbred Racehorses. Pathogens 2018; 7:pathogens7020043. [PMID: 29673169 PMCID: PMC6027538 DOI: 10.3390/pathogens7020043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/24/2023] Open
Abstract
Equine influenza (EI) outbreaks occurred on 19 premises in Ireland during 2014. Disease affected thoroughbred (TB) and non-TB horses/ponies on a variety of premises including four racing yards. Initial clinical signs presented on 16 premises within a two-month period. Extensive field investigations were undertaken, and the diagnostic effectiveness of a TaqMan RT-PCR assay was demonstrated in regularly-vaccinated and sub-clinically-affected horses. Epidemiological data and repeat clinical samples were collected from 305 horses, of which 40% were reported as clinically affected, 39% were identified as confirmed cases and 11% were sub-clinically affected. Multivariable analysis demonstrated a significant association between clinical signs and age, vaccination status and number of vaccine doses received. Vaccine breakdown was identified in 31% of horses with up to date vaccination records. This included 27 horses in four different racing yards. Genetic and antigenic analysis identified causal viruses as belonging to Clade 2 of the Florida sublineage (FCL2). At the time of this study, no commercially available EI vaccine in Ireland had been updated in line with World Organisation for Animal Health (OIE) recommendations to include a FCL2 virus. The findings of this study highlight the potential ease with which EI can spread among partially immune equine populations.
Collapse
Affiliation(s)
- Sarah Gildea
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| | - Marie Garvey
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| | - Pamela Lyons
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| | - Rachel Lyons
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| | - Jacinta Gahan
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland.
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| |
Collapse
|
11
|
Tallmadge RL, Miller SC, Parry SA, Felippe MJB. Antigen-specific immunoglobulin variable region sequencing measures humoral immune response to vaccination in the equine neonate. PLoS One 2017; 12:e0177831. [PMID: 28520789 PMCID: PMC5433778 DOI: 10.1371/journal.pone.0177831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Steven C. Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Stephen A. Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Maria Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Fougerolle S, Legrand L, Garrett D, Birand I, Foursin M, D'Ablon X, Bayssat P, Newton RJ, Pronost S, Paillot R. Influential factors inducing suboptimal humoral response to vector-based influenza immunisation in Thoroughbred foals. Vaccine 2016; 34:3787-95. [PMID: 27269055 DOI: 10.1016/j.vaccine.2016.05.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 01/07/2023]
Abstract
CONTEXT Numerous equine influenza (EI) epizooties are reported worldwide. EI vaccination is the most efficient methods of prevention. However, not all horses develop protective immunity after immunisation, increasing the risk of infection and transmission. OBJECTIVES This field study aimed to understand the poor response to primary EI vaccination. STUDY DESIGN The EI antibody response was measured in 174 Thoroughbred foals set in 3 stud farms (SF#1 to SF#3) over a 2years period. All foals were immunised with a commercial recombinant canarypox-based EI vaccine. Sera were tested by single radial haemolysis against the A/equine/Jouars/4/06 EIV strain (H3N8) at the time of the first vaccination (V1), 2weeks and 3months after the second immunisation (V2), 2days and 3months after the third immunisation (V3). RESULTS The frequency of poor-responders (no detectable antibody titres) was surprisingly elevated after V2 (56.8%), increased to 81.7% at V2+3months and reached 98.6% at V3. The frequency of poor-responder was still 19.2%, 3months after V3. Two independent influential factors were identified. The short (V2+2weeks) and mid-term (V2+3months, V3+3months) antibody levels were positively correlated to the age at V1 (p-value=0.003, 0.031 and 0.0038, respectively). Presence of maternally-derived antibodies (MDA) at V1 was negatively correlated with antibody levels after V3 only (p-value=0.0056). Given that SF#1 antibody response was below clinical protective levels at all-time points studied, the annual boost immunisation (V4) was brought forward by 7.0±1.1months. V1 was delayed by 7weeks the following year, which significantly increased short- and mid-term antibody titres (p-value=9.9e-07 and 2.31e-07, respectively). CONCLUSION The age and MDA at first immunisation with the canarypox-based IE vaccine play an independent role in the establishment of antibody levels. This study also highlights the benefit provided by serological surveillance to evaluate herd immunity and to implement corrective management/vaccination measures.
Collapse
Affiliation(s)
- Stéphanie Fougerolle
- LABÉO-Frank Duncombe, 1 route de Rosel, 14053 CAEN Cedex 4, France; University of Caen Basse-Normandie, 14000 CAEN, France; Unité de Recherche Risques Microbiens (U2RM), EA 4655, and Chair of Excellence «Equine Immunology», 14032 CAEN, France; Hippolia Foundation, La Maison du cheval, 6 avenue du Maréchal Montgomery, 14000 CAEN, France.
| | - Loïc Legrand
- LABÉO-Frank Duncombe, 1 route de Rosel, 14053 CAEN Cedex 4, France; University of Caen Basse-Normandie, 14000 CAEN, France; Unité de Recherche Risques Microbiens (U2RM), EA 4655, and Chair of Excellence «Equine Immunology», 14032 CAEN, France; Hippolia Foundation, La Maison du cheval, 6 avenue du Maréchal Montgomery, 14000 CAEN, France
| | - Dion Garrett
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, CB8 7UU, Kentford, NEWMARKET, United Kingdom
| | - Ilhan Birand
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, CB8 7UU, Kentford, NEWMARKET, United Kingdom
| | - Marc Foursin
- Clinique Equine de la Boisrie, La Boisrie, 61500 CHAILLOUÉ, France
| | - Xavier D'Ablon
- Clinique Vétérinaire de la Côte Fleurie, Route de Paris - Bonneville sur Touques, 14800 DEAUVILLE, France
| | - Pierre Bayssat
- Clinique Vétérinaire de Bayeux, Route de la Cambette, 14400 BAYEUX, France
| | - Richard J Newton
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, CB8 7UU, Kentford, NEWMARKET, United Kingdom
| | - Stéphane Pronost
- LABÉO-Frank Duncombe, 1 route de Rosel, 14053 CAEN Cedex 4, France; University of Caen Basse-Normandie, 14000 CAEN, France; Unité de Recherche Risques Microbiens (U2RM), EA 4655, and Chair of Excellence «Equine Immunology», 14032 CAEN, France; Hippolia Foundation, La Maison du cheval, 6 avenue du Maréchal Montgomery, 14000 CAEN, France
| | - Romain Paillot
- University of Caen Basse-Normandie, 14000 CAEN, France; Unité de Recherche Risques Microbiens (U2RM), EA 4655, and Chair of Excellence «Equine Immunology», 14032 CAEN, France; Hippolia Foundation, La Maison du cheval, 6 avenue du Maréchal Montgomery, 14000 CAEN, France; Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, CB8 7UU, Kentford, NEWMARKET, United Kingdom
| |
Collapse
|
13
|
Intranasal Immunization of Mice to Avoid Interference of Maternal Antibody against H5N1 Infection. PLoS One 2016; 11:e0157041. [PMID: 27280297 PMCID: PMC4900595 DOI: 10.1371/journal.pone.0157041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/03/2022] Open
Abstract
Maternally-derived antibodies (MDAs) can protect offspring against influenza virus infection but may also inhibit active immune responses. To overcome MDA- mediated inhibition, active immunization of offspring with an inactivated H5N1 whole-virion vaccine under the influence of MDAs was explored in mice. Female mice were vaccinated twice via the intraperitoneal (IP) or intranasal (IN) route with the vaccine prior to mating. One week after birth, the offspring were immunized twice via the IP or IN route with the same vaccine and then challenged with a lethal dose of a highly homologous virus strain. The results showed that, no matter which immunization route (IP or IN) was used for mothers, the presence of MDAs severely interfered with the active immune response of the offspring when the offspring were immunized via the IP route. Only via the IN immunization route did the offspring overcome the MDA interference. These results suggest that intranasal immunization could be a suitable inoculation route for offspring to overcome MDA interference in the defense against highly pathogenic H5N1 virus infection. This study may provide references for human and animal vaccination to overcome MDA-induced inhibition.
Collapse
|
14
|
Perkins GA, Wagner B. The development of equine immunity: Current knowledge on immunology in the young horse. Equine Vet J 2015; 47:267-74. [DOI: 10.1111/evj.12387] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 11/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
- G. A. Perkins
- Department of Clinical Sciences; College of Veterinary Medicine; Cornell University; Ithaca New York USA
| | - B. Wagner
- Department of Population Medicine and Diagnostic Sciences; College of Veterinary Medicine; Cornell University; Ithaca New York USA
| |
Collapse
|
15
|
Abstract
The mammary gland (MG) lacks a mucosa but is part of the mucosal immune system because of its role in passive mucosal immunity. The MG is not an inductive site for mucosal immunity. Rather, synthesis of immunoglobulin (Ig)A by plasma cells stimulated at distal inductive sites dominate in the milk of rodents, humans, and swine whereas IgG1 derived from serum predominates in ruminants. Despite the considerable biodiversity in the role of the MG, IgG passively transfers the maternal systemic immunological experience whereas IgA transfers the mucosal immunological experience. Although passive antibodies are protective, they and other lacteal constituents can be immunoregulatory. Immune protection of the MG largely depends on the innate immune system; the monocytes–macrophages group together with intraepithelial lymphocytes is dominant in the healthy gland. An increase in somatic cells (neutrophils) and various interleukins signal infection (mastitis) and a local immune response in the MG. The major role of the MG to mucosal immunity is the passive immunity supplied to the suckling neonate.
Collapse
|
16
|
Davis EG, Bello NM, Bryan AJ, Hankins K, Wilkerson M. Characterisation of immune responses in healthy foals when a multivalent vaccine protocol was initiated at age 90 or 180 days. Equine Vet J 2014; 47:667-74. [PMID: 25205445 DOI: 10.1111/evj.12350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/31/2014] [Indexed: 11/26/2022]
Abstract
REASONS FOR PERFORMING STUDY Protection from infectious disease requires antigen-specific immunity. In foals, most vaccine protocols are delayed until 6 months to avoid maternal antibody interference. Susceptibility to disease may exist prior to administration of vaccination at age 4-6 months. OBJECTIVES The aim of this investigation was to characterise immune activation among healthy foals in response to a multivalent vaccine protocol and compare immune responses when foals were vaccinated at age either 90 or 180 days. STUDY DESIGN Randomised block design. METHODS Twelve healthy foals with colostral transfer were blocked for age and randomly assigned to vaccination at age 90 days (treatment) or at age 180 days (control). Vaccination protocols included a 3-dose series and booster vaccine administered at age 11 months. RESULTS Immune response following vaccination at age 90 or 180 days was comparable for several measures of cellular immunity. Antigen specific CD4+ and CD8+ expression of interleukin-4, interferon-γ and granzyme B to eastern equine encephalomyelitis, western equine encephalomyelitis, West Nile virus, tetanus toxoid, equine influenza and equine herpesvirus-1/4 antigens were evident for both groups 30 days after initial vaccine and at age 344 days. Both groups showed a significant increase in antigen-specific immunoglobulin G expression following booster vaccine at age 11 months, thereby indicating memory immune responses. CONCLUSIONS The data presented in this report demonstrate that young foals are capable of immune activation following a 3-dose series with a multivalent vaccine, despite presence of maternal antibodies. Although immune activation does not automatically confer protection, several of the immune indicators measured showed comparable expression in foals vaccinated at 3 months relative to control foals vaccinated at age 6 months. In high-risk situations where immunity may be required earlier than following a conventional vaccine series, our data provide evidence that foals respond to immunisation initiated at 3 months in a comparable manner to foals initiated at an older age.
Collapse
Affiliation(s)
- E G Davis
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - N M Bello
- Department of Statistics, Kansas State University, Manhattan, USA
| | - A J Bryan
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - K Hankins
- Zoetis Animal Health, Florham Park, New Jersey, USA
| | - M Wilkerson
- Diagnostic Medicine Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| |
Collapse
|
17
|
|
18
|
Ryan M, Gildea S, Walsh C, Cullinane A. The impact of different equine influenza vaccine products and other factors on equine influenza antibody levels in Thoroughbred racehorses. Equine Vet J 2014; 47:662-6. [DOI: 10.1111/evj.12353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/01/2014] [Indexed: 11/27/2022]
Affiliation(s)
- M. Ryan
- Virology Unit; The Irish Equine Centre; Johnstown, Naas, Co. Kildare Ireland
| | - S. Gildea
- Virology Unit; The Irish Equine Centre; Johnstown, Naas, Co. Kildare Ireland
| | - C. Walsh
- Department of Statistics; Trinity College; Dublin Ireland
| | - A. Cullinane
- Virology Unit; The Irish Equine Centre; Johnstown, Naas, Co. Kildare Ireland
| |
Collapse
|
19
|
Suguitan AL, Zengel JR, Jacobson S, Gee S, Cetz J, Cha P, Chen Z, Broome R, Jin H. Influenza H1N1pdm-specific maternal antibodies offer limited protection against wild-type virus replication and influence influenza vaccination in ferrets. Influenza Other Respir Viruses 2014; 8:169-76. [PMID: 24734293 PMCID: PMC4186464 DOI: 10.1111/irv.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The objective was to study passively acquired influenza H1N1 pandemic (H1N1pdm) maternal antibody kinetics and its impact on subsequent influenza infection and vaccination in ferrets during an outbreak of the H1N1pdm. DESIGN AND MAIN OUTCOME MEASURES Infectivity of the H1N1pdm in the respiratory tract of ferrets was compared with the previous seasonal A/South Dakota/6/2007 (SD07, H1N1). Influenza-specific antibodies were quantitated and antibody-mediated protection against the homologous and heterologous H1N1 virus challenge infection was determined. RESULTS H1N1pdm virus was approximately 10 times more infectious than SD07 in ferrets, replicated to higher viral titers in the upper respiratory tract and shed for a longer duration. Influenza-specific antibodies after natural infection persisted much longer in the circulation than passively acquired maternal antibodies. The protection conferred by the maternal antibodies was limited to the homologous virus strain and was ineffective against SD07 and H3N2 virus. Serum antibodies from maternal transmission or passive transfer interfered with homologous vaccine strain-mediated antibody responses in the ferret. A booster immunization was required to elicit a high level of antibody. CONCLUSIONS The findings support the rationale for a prime and boost immunization strategy in young children in whom maternal antibodies are present.
Collapse
|
20
|
Efficacy of a Parapoxvirus ovis-based immunomodulator against equine herpesvirus type 1 and Streptococcus equi equi infections in horses. Vet Microbiol 2014; 173:232-40. [DOI: 10.1016/j.vetmic.2014.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022]
|
21
|
Slater J, Borchers K, Chambers T, Cullinane A, Duggan V, Elton D, Legrand L, Paillot R, Fortier G. Report of the International Equine Influenza Roundtable Expert Meeting at Le Touquet, Normandy, February 2013. Equine Vet J 2014; 46:645-50. [PMID: 25146166 DOI: 10.1111/evj.12302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Slater
- Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Laabassi F, Lecouturier F, Amelot G, Gaudaire D, Mamache B, Laugier C, Legrand L, Zientara S, Hans A. Epidemiology and Genetic Characterization of H3N8 Equine Influenza Virus Responsible for Clinical Disease in Algeria in 2011. Transbound Emerg Dis 2014; 62:623-31. [PMID: 24472362 DOI: 10.1111/tbed.12209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 11/28/2022]
Abstract
An outbreak of equine influenza (EI) was reported in Algeria between May and July, 2011. The outbreak started in Tiaret, in west province of Algeria, and spread to the other parts of the country affecting almost 900 horses in many provinces. The population studied was composed of 325 horses from different groups of age. Clinical sign expression was age dependent. Indeed, a morbidity rate of 14.9% was observed in horses under 15 months old and a rate of 4.95% in horses over 8 years old. Interestingly, the morbidity rate raised sharply to reach 100% in horses aged between 18 months and 7 years. The virus (H3N8) was detected in nasopharyngeal swabs (n = 11) from non-vaccinated horses using a qRT-PCR targeting a portion of the gene encoding the matrix protein (M). The virus isolates were identified as H3N8 by sequencing the haemagglutinin (HA) and neuraminidase (NA) genes and were named from A/equine/Tiaret/1/2011 to A/equine/Tiaret/10/2011. Alignment of HA1 amino acid sequence confirmed that viruses belong to Clade 2 of the Florida sublineage in the American lineage. Moreover, they are closely related to A/equine/Yokohama/aq13/2010, A/equine/Eyragues/1/2010, A/equine/Bokel/2011 and A/equine/Lichtenfeld/2012. Our data indicate that this strain was also circulating in the European horse population in 2010, 2011 and 2012.
Collapse
Affiliation(s)
- F Laabassi
- Department of Veterinary Sciences, Institute of Agronomics Sciences and Veterinary Sciences, University of Mohamed Chérif Messaadia, Souk Ahras, Algeria.,ESPA Laboratory, Department of Veterinary, Institute of Veterinary Sciences and Agronomics Sciences, University of El-Hadj Lakhdar, Batna, Algeria
| | - F Lecouturier
- Equine Pathology Laboratory, Virology Unit, Anses - Dozulé, Goustranville, France
| | - G Amelot
- Equine Pathology Laboratory, Virology Unit, Anses - Dozulé, Goustranville, France
| | - D Gaudaire
- Equine Pathology Laboratory, Virology Unit, Anses - Dozulé, Goustranville, France
| | - B Mamache
- ESPA Laboratory, Department of Veterinary, Institute of Veterinary Sciences and Agronomics Sciences, University of El-Hadj Lakhdar, Batna, Algeria
| | - C Laugier
- Equine Pathology Laboratory, Virology Unit, Anses - Dozulé, Goustranville, France
| | - L Legrand
- Laboratoire Frank Duncombe, Caen, France
| | - S Zientara
- Laboratory for Animal Health, UMR1161 Anses/INRA/ENVA-UPEC, Maisons-Alfort, France
| | - A Hans
- Equine Pathology Laboratory, Virology Unit, Anses - Dozulé, Goustranville, France
| |
Collapse
|
23
|
Cullinane A, Newton JR. Equine influenza--a global perspective. Vet Microbiol 2013; 167:205-14. [PMID: 23680107 DOI: 10.1016/j.vetmic.2013.03.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
To date, equine influenza outbreaks have been reported all over the world with the exception of a small number of island nations including New Zealand and Iceland. Influenza is endemic in Europe and North America and is considered to be of potentially major economic significance to the equine industry worldwide. The importation of subclinically infected vaccinated horses, and inadequate quarantine procedures have resulted in several major outbreaks in susceptible populations for example, in Australia (2007) when more than 76,000 horses on over 10,000 properties were reported as infected. This review summarises the current understanding of, and recent research on, equine influenza, including epidemiology, pathogenesis, clinical characteristics, laboratory diagnosis, management and prevention. Recent advances in diagnostic techniques are discussed as are the merits of different vaccination regimes.
Collapse
Affiliation(s)
- A Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland.
| | | |
Collapse
|
24
|
Kim D, Niewiesk S. Synergistic induction of interferon α through TLR-3 and TLR-9 agonists identifies CD21 as interferon α receptor for the B cell response. PLoS Pathog 2013; 9:e1003233. [PMID: 23516365 PMCID: PMC3597509 DOI: 10.1371/journal.ppat.1003233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/21/2013] [Indexed: 12/13/2022] Open
Abstract
Maternal antibodies inhibit seroconversion and the generation of measles virus (MeV)-specific antibodies (both neutralizing and non-neutralizing antibodies) after vaccination whereas T cell responses are usually unaffected. The lack of seroconversion leaves individuals susceptible to vaccine-preventable infections. Inhibition of antibody secretion is due to the inhibition of B cells through a cross-link of the B cell receptor with the inhibitory FcγIIB receptor (CD32) by maternal antibody/vaccine complexes. Here, we demonstrate that a combination of TLR-3 and TLR-9 agonists induces synergistically higher levels of type I interferon in vitro and in vivo than either agonist alone. The synergistic action of TLR-3 and TLR-9 agonists is based on a feedback loop through the interferon receptor. Finally, we have identified CD21 as a potential receptor for interferon α on B cells which contributes to interferon α-mediated activation of B cells in the presence of maternal antibodies. The combination leads to complete restoration of B cell and antibody responses after immunization in the presence of inhibitory MeV-specific IgG. The strong stimulatory action of type I interferon is due to the fact that type I interferon uses not only the interferon receptor but also CD21 as a functional receptor for B cell activation. Maternal antibodies provide protection against infection with pathogens early in life but also interfere with vaccination. This interference is caused by a vaccine/maternal antibody complex which links the B cell receptor to the inhibitory CD32 molecule. Here, we show that this cross-link results in impaired B cell activation and proliferation which is correlated with diminished antibody responses. We also found that induction of large amounts of type I interferon restores the neutralizing antibody response in the presence of maternal antibodies. The best induction of type I interferon was accomplished by a combination of known activators of interferon secretion (a combination of TLR-3 and TLR-9 agonists). The strong stimulation by interferon is due to the previously unappreciated role of CD21 as functional receptor for interferon alpha. Our findings demonstrate that the dual receptor usage of type I interferon receptor and CD21 is crucial for B cell activation in the presence of maternal antibodies. This study suggests that measles vaccine, and potentially other vaccines, may induce optimal antibody responses when they are reconstituted with TLR-3 and TLR-9 agonists and thus these agonists may have great potential for clinical use.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- B-Lymphocytes/immunology
- Chlorocebus aethiops
- Dendritic Cells/immunology
- Female
- Humans
- Immunization
- Immunologic Factors/genetics
- Immunologic Factors/immunology
- Immunologic Factors/metabolism
- Interferon-alpha/genetics
- Interferon-alpha/immunology
- Interferon-alpha/metabolism
- Lymphocyte Activation
- Measles virus/immunology
- Mice
- Mice, Inbred C57BL
- Oligodeoxyribonucleotides/immunology
- Oligodeoxyribonucleotides/metabolism
- Rabbits
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/immunology
- Receptors, Complement 3d/metabolism
- Sequence Deletion
- Sigmodontinae
- Toll-Like Receptor 3/agonists
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 9/agonists
- Toll-Like Receptor 9/immunology
- Vero Cells
Collapse
Affiliation(s)
- Dhohyung Kim
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ralston S, Stives M. Supplementation of Ascorbic Acid in Weanling Horses Following Prolonged Transportation. Animals (Basel) 2012; 2:184-94. [PMID: 26486916 PMCID: PMC4494327 DOI: 10.3390/ani2020184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Horses normally synthesize adequate amounts of ascorbic acid (vitamin C) in their liver to meet their needs for the vitamin. However, prolonged stress results in low plasma concentrations and reduced immune function. Weanling horses were supplemented with ascorbic acid for 5 or 10 days or no ascorbic acid (4 per group) following 50+ hours of transportation. Supplementation caused increases in plasma concentrations but both supplemented groups had decreased plasma ascorbic acid for 1 to 3 weeks following cessation of supplementation, possibly due to suppressed synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. Abstract Though horses synthesize ascorbic acid in their liver in amounts that meet their needs under normal circumstances, prolonged stress results in low plasma concentrations due to enhanced utilization and renal excretion and can reduce immune function. It was hypothesized that plasma ascorbic acid could be maintained in weanling horses by oral supplementation following prolonged transportation. Weanlings were supplemented with no ascorbic acid (Tx 0: n = 4), 5 grams ascorbic acid twice daily for 5 days (Tx 1: n = 4) or for 10 days (Tx 2: n = 4) following >50 hours of transportation. Supplementation caused slight (P < 0.2) increases in plasma ascorbic acid concentrations. Both supplemented groups had decreased (P < 0.05) plasma concentrations for 1 to 3 weeks following cessation of supplementation, possibly due to increased renal excretion or suppressed hepatic synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided.
Collapse
Affiliation(s)
- Sarah Ralston
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Michelle Stives
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| |
Collapse
|
26
|
Gildea S, Arkins S, Walsh C, Cullinane A. A comparison of antibody responses to commercial equine influenza vaccines following primary vaccination of Thoroughbred weanlings—A randomised blind study. Vaccine 2011; 29:9214-23. [DOI: 10.1016/j.vaccine.2011.09.101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 11/30/2022]
|
27
|
Markowska-Daniel I, Pomorska-Mól M, Pejsak Z. The influence of age and maternal antibodies on the postvaccinal response against swine influenza viruses in pigs. Vet Immunol Immunopathol 2011; 142:81-6. [PMID: 21501880 DOI: 10.1016/j.vetimm.2011.03.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
The influence of age and maternal immunity on the development and duration of postvaccinal humoral response against swine influenza viruses (SIV) were investigated under experimental conditions. Piglets born to immune and non-immune sows were vaccinated twice with bivalent inactivated vaccine. Vaccination was done according to 5 different schedules: 1+4, 1+8, 4+8, 8+10 or 8+12 weeks of age. Antibodies to the haemagglutinin type 1 and 3 were determined using the haemagglutination inhibition (HI) test. Maternally derived antibodies (MDA) against H1N1 and H3N2 in the serum of unvaccinated piglets born to immune sows were above the positive level until about 13-14 and 9-10 weeks of life, respectively. No serological responses were seen in any of the groups after the first vaccination. After the second dose of vaccine production of antibodies was observed even before the complete disappearance of maternal antibodies. MDA, however, were associated with reduced antibody response. In MDA-negative piglets, an active humoral postvaccinal response was developed in all vaccinated pigs. The age at which the vaccine was given was associated with the differences in the magnitude of antibody response to SIV. In general those pigs that were vaccinated for the first time at the age of 1 week, developed lower maximum titres after the second vaccination, and become seronegative earlier than pigs that were vaccinated for the first time at 4 or 8 weeks of age.
Collapse
Affiliation(s)
- Iwona Markowska-Daniel
- Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Pulawy, Poland
| | | | | |
Collapse
|
28
|
Gildea S, Arkins S, Cullinane A. A comparative antibody study of the potential susceptibility of Thoroughbred and non-Thoroughbred horse populations in Ireland to equine influenza virus. Influenza Other Respir Viruses 2011; 4:363-72. [PMID: 20958930 PMCID: PMC4634612 DOI: 10.1111/j.1750-2659.2010.00163.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Please cite this paper as: Gildea et al. (2010) A comparative antibody study of the potential susceptibility of Thoroughbred and non‐Thoroughbred horse populations in Ireland to equine influenza virus. Influenza and Other Respiratory Viruses 4(6), 363–372. Background In Ireland, horses may be protected against equine influenza virus (EIV) as a result of natural exposure or vaccination. Current mandatory vaccination programmes are targeted at highly mobile horses. A correlation between antibody levels as measured by single radial haemolysis (SRH) and protective immunity against EIV has been established. Objectives The objective of this study was to determine the susceptibility of selected populations of horses by quantifying their antibodies to EIV. Methods Blood samples were collected from Thoroughbred weanlings, yearlings, racehorses and broodmares, teaser stallions and non‐Thoroughbred horses. Antibodies against EIV H3N8 and H7N7 were measured by SRH. Results The order of susceptibility to Equine Influenza (EI) in the populations examined in Ireland was as follows: Thoroughbred weanlings > teasers > non‐Thoroughbred horses and ponies > Thoroughbred yearlings > Thoroughbred horses in training > Thoroughbred broodmares. The H3N8 antibody levels of the weanlings, yearlings, broodmares and horses in training were similar to their H7N7 antibody levels, suggesting that their antibodies were primarily vaccinal in origin. The teasers and non‐Thoroughbreds had higher H3N8 antibody levels than H7N7 antibody levels, suggesting that the majority of seropositive horses in these populations had been exposed to H3N8 by natural infection. Conclusions Weanlings, teasers and non‐Thoroughbred horses were identified as most susceptible to EIV. The results suggest that it would be advisable that weanlings are vaccinated prior to attendance at public sales, that teaser stallions are vaccinated prior to each breeding season and that mandatory vaccination be implemented for participation in non‐Thoroughbred events.
Collapse
Affiliation(s)
- Sarah Gildea
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | | | | |
Collapse
|
29
|
Sturgill TL, Horohov DW. Vaccination Response of Young Foals to Keyhole Limpet Hemocyanin: Evidence of Effective Priming in the Presence of Maternal Antibodies. J Equine Vet Sci 2010. [DOI: 10.1016/j.jevs.2010.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
The pathology of bronchointerstitial pneumonia in young foals associated with the first outbreak of equine influenza in Australia. Equine Vet J 2010; 40:199-203. [DOI: 10.2746/042516408x292214] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Turner JL, Waggoner JW, Rose SS, Arns MJ, Hankins KG, Tuttle J. West Nile Virus Antibody Titers and Total Immunoglobulin G Concentrations in Foals from Mares Vaccinated in Late Gestation. J Equine Vet Sci 2008. [DOI: 10.1016/j.jevs.2007.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Chen J, Zhang F, Fang F, Chang H, Chen Z. Vaccination with hemagglutinin or neuraminidase DNA protects BALB/c mice against influenza virus infection in presence of maternal antibody. BMC Infect Dis 2007; 7:118. [PMID: 17939857 PMCID: PMC2176060 DOI: 10.1186/1471-2334-7-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/16/2007] [Indexed: 11/18/2022] Open
Abstract
Background Maternal antibody is the major form of protection against disease in early life; however, its presence interferes with active immunization of offspring. In order to overcome the immunosuppression caused by maternal antibody, several immune strategies were explored in this paper using mouse model and influenza vaccines. Results The results showed that: i) when the offspring were immunized with the same vaccine as their mothers, whether inactivated or DNA vaccine, the presence of maternal antibody inhibited offspring immune response and the offspring could not be protected from a lethal influenza virus infection; ii) when the offspring, born to mothers immunized with inactivated vaccine, were immunized with NA DNA vaccine, the interference of maternal antibody were overcome and the offspring could survive a lethal virus challenge; iii) when the offspring were immunized with different DNA vaccine from that for their mothers, the interference of maternal antibody were also overcome. In addition, high-dose inactivated vaccine in maternal immunization caused partial inhibition in offspring when the offspring were immunized with HA DNA vaccine, while lower dose caused no significant immunosuppression. Conclusion To avoid the interference of maternal antibody in influenza vaccination of offspring, mothers and their offspring shall not be immunized with the same vaccine. If mothers are immunized with inactivated vaccine, NA DNA vaccine for the offspring shall be effective; and if mothers are immunized with HA (NA) DNA, NA (HA) DNA for the offspring shall be effective.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| | | | | | | | | |
Collapse
|
33
|
Barquero N, Daly JM, Newton JR. Risk factors for influenza infection in vaccinated racehorses: Lessons from an outbreak in Newmarket, UK in 2003. Vaccine 2007; 25:7520-9. [PMID: 17889409 DOI: 10.1016/j.vaccine.2007.08.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/15/2007] [Accepted: 08/19/2007] [Indexed: 11/21/2022]
Abstract
Between March and May 2003, clinical equine influenza was confirmed among vaccinated racehorses in Newmarket, UK. A particular feature was that 2-year-old horses were apparently less susceptible than older animals. Statistical analyses comparing infected and non-infected animals showed the unusual, apparently counter-intuitive inverse age effect was principally explained by more recent vaccination among younger animals, despite broadly equivalent antibody levels between age groups. There was novel evidence for sexual dimorphism in susceptibility to infection and data supported the hypothesis that vaccination at a young age in the presence of maternally derived antibody has detrimental long-term effects on protective immunity. The practice of blanket vaccination soon after initial diagnosis ('vaccinating in the face of the outbreak') was apparently supported as a method of control. Data suggested that protective immunity conveyed by aluminium hydroxide-only adjuvanted vaccine was sub-optimal compared to other vaccine preparations.
Collapse
Affiliation(s)
- Nuria Barquero
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom
| | | | | |
Collapse
|
34
|
Barquero N, Gilkerson JR, Newton JR. Evidence-Based Immunization in Horses. Vet Clin North Am Equine Pract 2007; 23:481-508. [PMID: 17616324 DOI: 10.1016/j.cveq.2007.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evidence of vaccine efficacy is essential for practitioners when giving advice to clients about the relative merits of different vaccines or when trying to evaluate the economic benefits of instituting a vaccine program. In equine veterinary medicine, this sort of data, which are necessary to make informed decisions about vaccine use and effectiveness, are often not available. Veterinarians need to consider the epidemiology of the disease in question, the type of vaccine that they are administering to the animal, the immunologic constraints of the vaccine technology, and the available evidence of efficacy when they are evaluating which vaccine to use or whether to vaccinate at all.
Collapse
Affiliation(s)
- Nuria Barquero
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | | | | |
Collapse
|
35
|
Minke JM, Toulemonde CE, Dinic S, Cozette V, Cullinane A, Audonnet JC. Effective priming of foals born to immune dams against influenza by a canarypox-vectored recombinant influenza H3N8 vaccine. J Comp Pathol 2007; 137 Suppl 1:S76-80. [PMID: 17559865 DOI: 10.1016/j.jcpa.2007.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A classical limitation of early life immunization is the interference by maternally derived antibodies, which are known to inhibit the immune response to modified-live and killed vaccines. Several studies have convincingly shown that even minute amounts of maternally derived antibodies against equine influenza can strongly interfere with successful vaccination of foals born to immune mares. In this study we evaluated the response of foals born to vaccinated mares to immunization with a canarypox-vectored recombinant vaccine against equine influenza virus H3N8. The recombinant vaccine was able to efficiently prime foals in the presence of maternally derived immunity against influenza as was evidenced by a clear anamnestic antibody response when a secondary vaccination with the same vaccine was performed. The canarypox-vectored recombinant influenza vaccine therefore offers a unique opportunity to overcome the limitations of early life vaccination in the face of maternally derived immunity in foals.
Collapse
Affiliation(s)
- J M Minke
- Merial SAS Research and Development, 254 rue Marcel Mérieux, 69007 Lyon, France.
| | | | | | | | | | | |
Collapse
|
36
|
Foote CE, Raidal SL, Pecenpetelovska G, Wellington JE, Whalley JM. Inoculation of mares and very young foals with EHV-1 glycoproteins D and B reduces virus shedding following respiratory challenge with EHV-1. Vet Immunol Immunopathol 2006; 111:97-108. [PMID: 16504306 DOI: 10.1016/j.vetimm.2006.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously demonstrated that intramuscular inoculation of EHV-1 glycoprotein D (gD) and glycoprotein B (gB) produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD- and gB-specific ELISA antibody in adult horses. In this study, 14 mares and their very young foals were inoculated with a combination of baculovirus-expressed EHV-1 gD and EHV-1 gB (EHV-1 gDBr) and challenged with a respiratory strain of EHV-1. Following experimental challenge, inoculated mares and foals shed virus in nasal secretions on significantly fewer occasions compared to uninoculated mares and foals. Uninoculated foals born from inoculated mares were no more protected against experimental challenge than uninoculated foals born from uninoculated mares. The results suggest that it is indeed possible to induce partial protection in very young foals through vaccination, and while the inoculation did not prevent infection, it did reduce the frequency of viral shedding with the potential to thereby reduce the risk and prevalence of infection in a herd situation.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | | | | | | | | |
Collapse
|
37
|
Foote CE, Love DN, Gilkerson JR, Wellington JE, Whalley JM. EHV-1 and EHV-4 infection in vaccinated mares and their foals. Vet Immunol Immunopathol 2006; 111:41-6. [PMID: 16513181 DOI: 10.1016/j.vetimm.2006.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silent cycle of equine herpesvirus 1 infection was described following epidemiological studies of unvaccinated mares and foals on a Hunter Valley stud farm. Following the introduction of routine vaccination with an inactivated whole virus equine herpesvirus 1 (EHV-1) and equine herpesvirus 4 (EHV-4) vaccine in 1997, a subsequent study identified excretion of EHV-1 and EHV-4 in nasal swab samples tested by PCR from vaccinated mares and their unweaned, unvaccinated foals. The current sero-epidemiological investigation of vaccinated mares and their young foals found serological evidence of EHV-1 and EHV-4 infection in mares and foals in the first 5 weeks of life. The results further support that EHV-1 and EHV-4 circulate in vaccinated populations of mares and their unweaned foals and confirms the continuation of the cycle of EHV-1 and EHV-4 infection.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
38
|
Foote CE, Love DN, Gilkerson JR, Rota J, Trevor-Jones P, Ruitenberg KM, Wellington JE, Whalley JM. Serum antibody responses to equine herpesvirus 1 glycoprotein D in horses, pregnant mares and young foals. Vet Immunol Immunopathol 2005; 105:47-57. [PMID: 15797474 DOI: 10.1016/j.vetimm.2004.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/22/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Patel JR, Didlick S, Bateman H. Efficacy of a live equine herpesvirus-1 (EHV-1) strain C147 vaccine in foals with maternally-derived antibody: protection against EHV-1 infection. Equine Vet J 2004; 36:447-51. [PMID: 15253088 DOI: 10.2746/0425164044868332] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Currently, there is no recommended immunoprophylaxis against febrile respiratory diseases due to equine herpesvirus-1 (EHV-1) and -4 (EHV-4) in horses below age 5-6 months. This is because of interference by maternally-derived antibody (MDA) of vaccines. OBJECTIVE Unweaned equine foals are an important reservoir of EHV-1 transmission; therefore, we experimentally assessed the efficacy of a live EHV-1 vaccine in foals age 1.4-3.5 months with MDA. METHODS Following vaccination and challenge, parameters assessed were virus shedding in nasal mucus, leucocyte-associated viraemia, circulating virus neutralising antibody activity and clinical reactions. RESULTS Controlled challenge showed that a single intranasal dose of the vaccine afforded partial but significant protection against febrile respiratory disease, virus shedding and viraemia due to EHV-1 infection, despite virus-neutralising MDA. CONCLUSIONS AND POTENTIAL RELEVANCE The prospective vaccine would be a significant step forward in reducing the incidence of the disease caused by EHV-1 infection.
Collapse
Affiliation(s)
- J R Patel
- Intervet UK Ltd., The Elms, Thicket Road, Houghton, Huntingdon, Cambridgeshire PE28 2BQ, UK
| | | | | |
Collapse
|
41
|
Lai ACK, Rogers KM, Glaser A, Tudor L, Chambers T. Alternate circulation of recent equine-2 influenza viruses (H3N8) from two distinct lineages in the United States. Virus Res 2004; 100:159-64. [PMID: 15019234 DOI: 10.1016/j.virusres.2003.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 11/19/2003] [Accepted: 11/19/2003] [Indexed: 11/29/2022]
Abstract
Phylogenetic and antigenic analyses indicate that recent circulating equine-2 influenza viruses in the United States have been alternating between two genetic and antigenic distinct lineages since 1996. The evolution rates for these two lineages, the Kentucky and the Florida lineage, are very similar. For the earlier isolates in the Kentucky lineage, there are multiple and sequential nonsynonymous substitutions at antigenic sites B and D. However, there are no changes at any of these antigenic sites for KY98 and OK00. In the Florida lineage, except for NY99 with one amino acid substitution at antigenic site B, viruses in this lineage do not have nonsynonymous substitutions at any of the antigenic sites. The lack of amino acid substitutions at these antigenic sites suggests a mechanism other than immune selection is responsible for the maintenance of these viral lineages. Serological analysis indicates that these two lineages are antigenic distinct, and the pattern of reactivity of horse sera towards these two lineages alternates in consecutive years, parallel to the "switching" of virus lineage seen in the phylogenetic tree. This alternate circulation may play a role in the maintenance of these two lineages of equine-2 influenza virus.
Collapse
Affiliation(s)
- Alexander C K Lai
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 306 Life Science East, Stillwater, OK 74078, USA.
| | | | | | | | | |
Collapse
|
42
|
Patel JR, Didlick SA. Evaluation of efficacy of an inactivated vaccine against bovine respiratory syncytial virus in calves with maternal antibodies. Am J Vet Res 2004; 65:417-21. [PMID: 15077682 DOI: 10.2460/ajvr.2004.65.417] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess short- and long-term efficacy of an inactivated bovine respiratory syncytial virus (BRSV) vaccine administered i.m. to calves with maternally derived antibodies. ANIMALS 28 two-week-old calves with neutralizing, maternally derived antibodies against BRSV. PROCEDURE For evaluation of short-term efficacy, 6 calves were vaccinated i.m. at 2 and 6 weeks of age and challenged intranasally and intratracheally along with a matched group of 4 unvaccinated control calves at 10 weeks of age. For evaluation of long-term efficacy, 2 groups of 6 calves each were vaccinated i.m. at 2, 6, and 18 weeks of age or 14 and 18 weeks of age; these calves were challenged intranasally and intratracheally along with 6 matched unvaccinated control calves at 43 weeks of age. Serum virus neutralizing antibody titer, clinical reactions, and virus shedding in nasal mucus and lung washings were assessed. RESULTS None of the vaccination regimens resulted in a significant increase in serum virus neutralizing antibody titer. As judged by virus shedding in nasal mucus and lung washings, vaccinated calves were protected against challenge, compared with unvaccinated control groups. Clinical signs attributable to challenge were coughing (short-term efficacy study) and tachypnea and dyspnea (long-term efficacy study). The severity and incidence of disease were significantly lower in the vaccinated groups, compared with that in the unvaccinated groups. CONCLUSIONS AND CLINICAL RELEVANCE Through vaccination, it is possible to protect vulnerable calves with maternal antibodies against BRSV infection and reduce respiratory tract disease.
Collapse
Affiliation(s)
- Jay R Patel
- Intervet UK Ltd, The Elms, Thicket Road, Houghton, Huntingdon, Cambridgeshire, UK, PE28 2BQ
| | | |
Collapse
|
43
|
Cullinane AA. Updating equine influenza strains in a combined equine influenza and herpesvirus vaccine. Vet J 2004; 167:118-20. [PMID: 14975382 DOI: 10.1016/s1090-0233(03)00034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Grindstaff JL, Brodie ED, Ketterson ED. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc Biol Sci 2004; 270:2309-19. [PMID: 14667346 PMCID: PMC1691520 DOI: 10.1098/rspb.2003.2485] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The past 30 years of immunological research have revealed much about the proximate mechanisms of maternal antibody transmission and utilization, but have not adequately addressed how these issues are related to evolutionary and ecological theory. Much remains to be learned about individual differences within a species in maternal antibody transmission as well as differences among species in transmission or utilization of antibodies. Similarly, maternal-effects theory has generally neglected the mechanisms by which mothers influence offspring phenotype. Although the environmental cues that generate maternal effects and the consequent effects for offspring phenotype are often well characterized, the intermediary physiological and developmental steps through which the maternal effect is transmitted are generally unknown. Integration of the proximate mechanisms of maternal antibody transmission with evolutionary theory on maternal effects affords an important opportunity to unite mechanism and process by focusing on the links between genetics, environment and physiology, with the ultimate goal of explaining differences among individuals and species in the transfer of immune function from one generation to the next.
Collapse
Affiliation(s)
- Jennifer L Grindstaff
- Department of Biology and Center for the Integrative Study of Animal Behavior, 1001 E. Third Street, Indiana University-Bloomington, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
45
|
|
46
|
Foote CE, Love DN, Gilkerson JR, Whalley JM. Serological responses of mares and weanlings following vaccination with an inactivated whole virus equine herpesvirus 1 and equine herpesvirus 4 vaccine. Vet Microbiol 2002; 88:13-25. [PMID: 12119135 DOI: 10.1016/s0378-1135(02)00100-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Equine herpesvirus 1 (EHV-1) is a major cause of respiratory disease and abortion in horses worldwide. Although some vaccines have been shown experimentally to reduce disease, there are few reports of the responses to vaccination in the field. This study measured antibody responses to vaccination of 159 mares (aged 4-17 years) and 101 foals (aged 3-6 months) on a large stud farm with a killed whole virus EHV-1/4 vaccine used as per the manufacturer's recommendations. Using an EHV glycoprotein D (gD)-specific ELISA and a type-specific glycoprotein G (gG) ELISA, respectively 13.8 and 28.9% of mares, and 42.6 and 46.6% of foals were classed as responding to vaccination. Additionally, 16.4 and 17.6% of mares were classified as persistently seropositive mares. Using both assays, responder mares and foals had lower week 0 mean ELISA absorbances than non-responder mares and foals. Responder mares were ten times more likely to have responder foals, and non-responder mares were six times more likely to have non-responder foals than other mares using the gG ELISA. Mares aged 7 years or less and foals aged 4 months or more were more likely to respond to vaccination than animals in other age groups. There was no association between response of mares and the number of previous vaccinations received and persistently seropositive mares did not respond to vaccination. This study documents the responses of mares and foals to vaccination in a large scale commercial environment in 2000, and suggests that knowledge of antibody status may allow a more selective vaccination strategy, representing considerable savings to industry.
Collapse
Affiliation(s)
- C E Foote
- Faculty of Veterinary Science, University of Sydney, 2006, New South Wales, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
Equine influenza is one of the most economically important contagious respiratory diseases of horses. In this paper the current state of knowledge of equine influenza virus and the most important aspects of these virus infections, e.g. epidemiology, clinical aspects, pathogenesis and pathology, immunity, diagnosis, treatment, management and vaccination, are reviewed with an emphasis on epidemiology, diagnosis and vaccinology. Many questions have remained and with the advent of improved technology new questions have arisen. Consequently, research priorities should be set in an attempt to answer them. Therefore, this review ends with some personal recommendations for important priorities for future research.
Collapse
Affiliation(s)
- C van Maanen
- Animal Health Service, Deventer, The Netherlands.
| | | |
Collapse
|
48
|
Abstract
The vaccination of neonates is generally difficult due to immaturity of the immune system, higher susceptibility to tolerance and potential negative interference of maternal antibodies. Studies carried out in rodents and non-human primates showed that plasmid vaccines expressing microbial antigens, rather than inducing tolerance, triggered significant humoral and cellular immunity with a Th1 component. The ability of bacterial CpG motifs to activate immature antigen-presenting cells is critical for the neonatal immunogenicity of DNA vaccines. In addition, the endogenous production of antigen subsequent to transfection of antigen-presenting cells may explain the lack of inhibition by maternal antibodies of cellular responses. Together, these features make the plasmid vaccines an appealing strategy to prime immune responses against foreign pathogens, during early life. In combination with subsequent boosting using conventional vaccines, DNA vaccine-based regimens may provide a qualitatively superior immunity against microbes. Thorough understanding of immunomodulatory properties of plasmid-vectors may extend their use for early prophylaxis of inflammatory disorders.
Collapse
Affiliation(s)
- Adrian Bot
- Department of Immunology, Alliance Pharmaceutical Corp., 6175 Lusk Blvd, San Diego, CA 92121, USA.
| | | |
Collapse
|
49
|
Wilson WD, Mihalyi JE, Hussey S, Lunn DP. Passive transfer of maternal immunoglobulin isotype antibodies against tetanus and influenza and their effect on the response of foals to vaccination. Equine Vet J 2001; 33:644-50. [PMID: 11770984 DOI: 10.2746/042516401776249435] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza and tetanus-specific antibodies of the IgG sub-isotypes are posively transferred to foals via colostrum and inhibit their response to inactivated influenza vaccines and tetanus toxoid. High titres of influenza antibodies of IgGa and IgGb subisotypes and tetanus antibodies of the IgGa, IgGb and IgG(T) subisotypes were detected in postsucking serum samples collected from foals born to mares that had received booster doses of multicomponent vaccines during the last 2 months of gestation. Thereafter, titres declined in an exponential manner but were still detectable in all foals at age 26 weeks, regardless of whether they had been vaccinated prior to age 26 weeks. Mean +/- s.e. half-life of decline of influenza IgGa antibodies (27.0 +/- 2.3 days) was significantly shorter than that of influenza IgGb antibodies (39.1 +/- 2.7 days; P<0.005). Tetanus IgGa and IgGb antibodies declined with half-lives of 28.8 +/- 3.0 and 34.8 +/- 5.1 days, respectively. Titres of tetanus IgG(T) antibodies were substantially higher than those of influenza IgG(T) antibodies in postsucking samples and remained so through age 26 weeks, declining with a half-life of approximately 35 days. Postsucking titres of tetanus and influenza antibodies of the IgA isotype were low and declined rapidly to undetectable levels. Yearlings showed significant increases in titre of influenza IgGa, IgGb and IgG(T) subisotype antibodies but no increase in influenza IgA antibodies in response to 2 doses of multicomponent vaccines containing tetanus toxoid and inactivated influenza A-1 and A-2 antigens. Yearlings also showed strong tetanus IgGa, IgGb and IgG(T) subisotype responses to one dose of vaccine and a substantial further rise in titre in response to administration of a second dose 3 weeks later, but failed to show an increase in titre of tetanus IgA antibodies. The influenza and tetanus IgGa, IgGb and IgG(T) subisotype responses of 6-month-old foals to vaccination followed the same pattern as those shown by yearlings but titres were generally lower. In contrast, 3-month-old foals failed to show increases in titre of either influenza or tetanus IgG subisotypes in response to 2 doses of vaccine and generally needed 1-3 additional booster doses of vaccine to achieve titres similar to those achieved by yearlings after 2 doses. Based on the finding that maternal antibodies exert a significant inhibitory effect on the response of foals to tetanus toxoid and inactivated influenza antigens, it is recommended that primary immunisation of foals born to vaccinated mares should not commence before age 6 months.
Collapse
Affiliation(s)
- W D Wilson
- Department of Medicine and Epidemiology (VM:VME), School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
50
|
|