1
|
Daly LS, Catháin CÓ, Kelly DT. Gaelic Games Players' and Practitioners' Perceptions of Recovery Strategies. Int J Sports Physiol Perform 2024; 19:1128-1136. [PMID: 39179221 DOI: 10.1123/ijspp.2023-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE This study both investigated and compared Gaelic games players' and practitioners' perceptions of the importance of postexercise recovery strategies. METHODS Gaelic players (n = 1178 [n = 574 female], age 24.6 [6.6] y) and practitioners (n = 148 [n = 29 female], age 35.9 [8.7] y) completed a questionnaire assessing their perceptions of various postexercise recovery strategies (importance ranked out of 5 [1 "not important at all" to 5 "extremely important"]). Players were further categorized by playing standard into developmental (club/collegiate; n = 869) and national (intercounty; n = 309) levels and by sport: Gaelic football (n = 813), camogie/hurling (n = 342), and Gaelic handball (n = 23). Practitioners were categorized as sport coaches (n = 67), strength and conditioning staff (n = 34), nutrition staff (n = 15), and athletic rehabilitation staff (n = 32). RESULTS Gaelic players prevalently perceived sleep (76.4%), rehydration (72.5%), postexercise meal (48.4%), stretching (47.6%), active cool-down (25.1%), foam rolling (23.1%), and massage by therapist (22.6%) as "extremely important." Practitioners prevalently perceived sleep (90.1%), rehydration (83.6%), postexercise meal (76.6%), daytime naps (36.2%), stretching (25.4%), discussion with teammates (24.6%), and getting into nature (19.4%) as "extremely important." CONCLUSIONS While strategies with well-documented efficacy such as sleep, nutrition, and rehydration were rated as most important, a distinct and possibly problematic disconnect exists between the perceived importance of many strategies and their empirically demonstrated effectiveness. For instance, active cool-downs and stretching were perceived as highly important despite prevailing evidence suggesting that their effects are often small in magnitude. Collectively, work promoting optimal recovery practices and aligning player-practitioner perspectives would be beneficial to maximize time and resource allocation and enhance player buy-in.
Collapse
Affiliation(s)
- Lorcan S Daly
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, Ireland
- SHE Research Group, Technological University of the Shannon, Athlone, Ireland
- Sport and Human Research Centre, University of Limerick, Limerick, Ireland
| | - Ciarán Ó Catháin
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, Ireland
- SHE Research Group, Technological University of the Shannon, Athlone, Ireland
| | - David T Kelly
- Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, Ireland
- SHE Research Group, Technological University of the Shannon, Athlone, Ireland
| |
Collapse
|
2
|
Feng C, Chen P, Zhang W, Luo B, Du G, Liao T, Zheng C. A evidence-based approach to selecting post-exercise cryostimulation techniques for improving exercise performance and fatigue recovery: A systematic review and meta-analysis. Heliyon 2024; 10:e32196. [PMID: 38933969 PMCID: PMC11200300 DOI: 10.1016/j.heliyon.2024.e32196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rationale Cryostimulation involves using water environments and low temperatures as intervention mediums, with main methods including CWI (cold water immersion), CWT (contrast water therapy), and WBC (whole-body cryostimulation). Previous systematic reviews focused on the effect of cryostimulation on muscle fatigue and sports performance. However, studies on the selection of different cryostimulation methods and their intervention effects present inconsistent results. Introduction To systematically review and methodologically appraise the quality and effectiveness of existing intervention studies that the effects of various cryostimulation methods, including CWI, CWT, and WBC, on exercise performance and fatigue recovery. Methods Following PRISMA guidelines, we conducted searches in PubMed, Embase, The Cochrane Library, Web of Science, and EBSCO databases to gather randomized controlled trials or self-controlled trials involving CWI/CWT/WBC and their effects on exercise performance or fatigue recovery. The search period ranged from November 2013 to November 2, 2023. Literature screening was performed using EndNote X9.1, and the quality of included studies was assessed using the Cochrane risk of bias assessment tool. Meta-analysis was conducted using RevMan 5.3 software. Results This study included a total of 18 articles, included a total of 499 healthy participants, comprising 479 males and 20 females. Among them, participants underwent cryostimulation, including 102 using CWT, using CWI, and 58 using WBC. Compared to the control group, cryostimulation can significantly alleviate muscle pain intensity (SMD -0.45, 95% CL -0.82 to 0.09, P = 0.01). Specifically, CWI significantly reduced muscle pain intensity (SMD = -0.45, 95% CI: 0.820.09, P = 0.01), WBC significantly decreased C-reactive protein levels (SMD = -1.36, 95% CI: 2.350.36, P = 0.008). While, CWT showed no significant differences from the control group in exercise performance and fatigue recovery indicators (P > 0.05). Conclusion Cryostimulation can significantly reduce muscle pain intensity and perceived fatigue. Specifically, CWI significantly alleviates muscle pain intensity, WBC significantly lowers markers of inflammation caused by fatigue after exercise, in contrast, CWT does not significantly improve exercise performance and fatigue recovery. After exercise, compared with rest, using cryostimulation may have more noticeable benefits for muscle fatigue and muscle pain, with recommendations prioritizing WBC and CWI particularly for addressing inflammation and muscle pain. However, all cryostimulation may have no significant influence on exercise performance.
Collapse
Affiliation(s)
- Chen Feng
- Aquatic Therapy and Fitness Center, Wuhan Sports University, Wuhan, Hubei, China
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei, China
| | - Peng Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Zhang
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei, China
| | - Bingting Luo
- Aquatic Therapy and Fitness Center, Wuhan Sports University, Wuhan, Hubei, China
| | - Geng Du
- Aquatic Therapy and Fitness Center, Wuhan Sports University, Wuhan, Hubei, China
| | - Ting Liao
- Aquatic Therapy and Fitness Center, Wuhan Sports University, Wuhan, Hubei, China
| | - Chanjuan Zheng
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
4
|
Pernigoni M, Calleja-González J, Lukonaitienė I, Tessitore A, Stanislovaitienė J, Kamarauskas P, Conte D. Comparative Effectiveness of Active Recovery and Static Stretching During Post-Exercise Recovery in Elite Youth Basketball. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:272-280. [PMID: 37039750 DOI: 10.1080/02701367.2023.2195457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Purpose: To compare the effectiveness of active recovery (AR) versus static stretching (SS) during post-exercise recovery in basketball. Methods: Using a counterbalanced crossover design, 17 elite youth male players completed two 90-min training sessions, followed by either AR or SS. Differences in jump height (CMJ), heart rate variability (Ln-rMSSD), muscle soreness (VAS), perceived recovery (TQR) and hormonal biomarkers (cortisol, testosterone, testosterone:cortisol ratio) between interventions were assessed at pre-session, post-session (except hormonal biomarkers), post-recovery and 24 h post-session. Differences in Ln-rMSSD were additionally assessed upon awakening on training day, and the following morning. Results: No significant differences were found between interventions at corresponding time points (p > .05). However, the within-intervention time course of recovery differed, as CMJ values were lower at post-recovery, compared with all other time points, in SS only (p < .05, effect size [ES] moderate-to-very large). Additionally, Ln-rMSSD values failed to return to baseline at post-recovery in AR only (p < .05, ES large-to-very large). Similarly, TQR scores were impaired at post-session and post-recovery in AR only (p < .05, ES moderate-to-large). No differences were reported for the remaining variables (p > .05). Conclusion: Differences between AR and SS were probably due to short-term phenomena, indicating that neither strategy was likely superior for improving recovery in the longer term. Overall, neither strategy seemed to significantly improve post-exercise recovery.
Collapse
|
5
|
Mihajlovic M, Cabarkapa D, Cabarkapa DV, Philipp NM, Fry AC. Recovery Methods in Basketball: A Systematic Review. Sports (Basel) 2023; 11:230. [PMID: 37999447 PMCID: PMC10675622 DOI: 10.3390/sports11110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Although different strategies have been implemented to manage recovery-fatigue status in athletes, there is still a lack of consensus on which recovery protocols have the greatest impact and effectiveness when implemented with basketball players, including both physiological and psychological recovery methods. Thus, the purpose of this systematic review is to: (a) determine which recovery methods attain the greatest benefit in restoring the process of attenuating fatigue and (b) provide sports practitioners with guidelines on how some of the most effective recovery strategies can be used to optimize athletes' recovery and ultimately enhance their performance. Using the PRISMA guidelines, a total of 3931 research reports were obtained through four database searches (i.e., PubMed, Scopus, Cochrane, and Web of Science), from which only 25 met the inclusion and exclusion criteria. The recovery protocols analyzed in this systematic review were: sleep, nutrition, hydration, ergogenic aids, cold-water immersion, compression garments, massage, acupuncture, tapering, mindfulness, and red-light irradiation. The results revealed that all recovery strategies are capable of attenuating fatigue and enhancing recovery in basketball players to a certain degree. However, an individualized approach should be promoted, where a combination of proactive recovery modalities appears to result in the most rapid rates of recovery and athletes' ability to maintain high-level performance. Recovery should be programmed as an integral component of training regimens. Also, cooperation and communication between coaches, players, and the rest of the team staff members are essential in minimizing the risk of non-functional overreaching or injury and optimizing basketball players' on-court performance.
Collapse
Affiliation(s)
| | - Dimitrije Cabarkapa
- Jayhawk Athletic Performance Laboratory—Wu Tsai Human Performance Alliance, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
6
|
Poignard M, Guilhem G, Jubeau M, Martin E, Giol T, Montalvan B, Bieuzen F. Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. Eur J Appl Physiol 2023; 123:1895-1909. [PMID: 37088821 DOI: 10.1007/s00421-023-05190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE This study aimed to investigate the effect of whole-body cryotherapy (WBC), cold-water immersion (CWI) and passive recovery (PAS) on tennis recovery. METHODS Thirteen competitive male tennis players completed three consecutive match-like tennis protocols, followed by recovery (WBC, CWI, PAS) in a crossover design. Five tennis drills and serves were performed using a ball machine to standardize the fatiguing protocol. Maximal voluntary contraction (MVC) peak torque, creatine kinase activity (CK), muscle soreness, ball accuracy and velocity together with voluntary activation, low- and high-frequency torque and EMG activity were recorded before each protocol and 24 h following the third protocol. RESULTS MVC peak torque (- 7.7 ± 11.3%; p = 0.001) and the high- to low-frequency torque ratio (- 10.0 ± 25.8%; p < 0.05) decreased on Day 1 but returned to baseline on Day 2, Day 3 and Day 4 (p = 0.052, all p > 0.06). The CK activity slightly increased from 161.0 ± 100.2 to 226.0 ± 106.7 UA L-1 on Day 1 (p = 0.001) and stayed at this level (p = 0.016) across days with no differences between recovery interventions. Muscle soreness increased across days with PAS recovery (p = 0.005), while no main effect of time was neither observed with WBC nor CWI (all p > 0.292). The technical performance was maintained across protocols with WBC and PAS, while it increased for CWI on Day 3 vs Day 1 (p = 0.017). CONCLUSION Our 1.5-h tennis protocol led to mild muscle damage, though neither the neuromuscular function nor the tennis performance was altered due to accumulated workload induced by consecutive tennis protocols. The muscle soreness resulting from tennis protocols was similarly alleviated by both CWI and WBC. TRIAL REGISTRATION IRB No. 2017-A02255-48, 12/05/2017.
Collapse
Affiliation(s)
- Mathilde Poignard
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), 11 Avenue du Tremblay, 75012, Paris, France.
- French Tennis Federation, Paris, France.
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), 11 Avenue du Tremblay, 75012, Paris, France
| | - Marc Jubeau
- Nantes University, Movement-Interactions-Performance, MIP, UR 4334, 44000, Nantes, France
| | | | | | | | | |
Collapse
|
7
|
Pérez-Castillo ÍM, Rueda R, Bouzamondo H, López-Chicharro J, Mihic N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front Physiol 2023; 14:1167449. [PMID: 37113691 PMCID: PMC10126523 DOI: 10.3389/fphys.2023.1167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
High-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.
Collapse
Affiliation(s)
| | | | | | - José López-Chicharro
- Real Madrid, Medical Services, Madrid, Spain
- *Correspondence: José López-Chicharro,
| | - Niko Mihic
- Real Madrid, Medical Services, Madrid, Spain
| |
Collapse
|
8
|
Schons P, Preissler A, Reichert T, Costa R, Barroso B, Berriel G, De Vargas G, Kruel L. Effects of cold water immersion on the physical performance of soccer players: A systematic review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
The Recovery Umbrella in the World of Elite Sport: Do Not Forget the Coaching and Performance Staff. Sports (Basel) 2021; 9:sports9120169. [PMID: 34941807 PMCID: PMC8705456 DOI: 10.3390/sports9120169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In the field of sports science, the recovery umbrella is a trending topic, and even more so in the world of elite sports. This is evidenced by the significant increase in scientific publications during the last 10 years as teams look to find a competitive edge. Recovery is recognized to be an integral component to assist athlete preparation in the restoration of physical and psychological function, and subsequently, performance in elite team sports athletes. However, the importance of recovery in team staff members (sports coaches and performance staff) in elite sports appears to be a forgotten element. Given the unrelenting intense nature of daily tasks and responsibilities of team staff members, the elite sports environment can predispose coaches to increased susceptibility to psycho-socio physiological fatigue burden, and negatively affect health, wellbeing, and performance. Therefore, the aim of this opinion was to (1) develop an educational recovery resource for team staff members, (2) identify organizational task-specific fatigue indicators and barriers to recovery and self-care in team staff members, and (3) present recovery implementation strategies to assist team staff members in meeting their organizational functions. It is essential that we do not forget the coaching and performance staff in the recovery process.
Collapse
|
10
|
Thorpe RT. Post-exercise Recovery: Cooling and Heating, a Periodized Approach. Front Sports Act Living 2021; 3:707503. [PMID: 34541521 PMCID: PMC8440788 DOI: 10.3389/fspor.2021.707503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
- Robin T Thorpe
- Football Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
11
|
Calleja-González J, Mielgo-Ayuso J, Miguel-Ortega Á, Marqués-Jiménez D, Del Valle M, Ostojic SM, Sampaio J, Terrados N, Refoyo I. Post-exercise Recovery Methods Focus on Young Soccer Players: A Systematic Review. Front Physiol 2021; 12:505149. [PMID: 34093216 PMCID: PMC8173167 DOI: 10.3389/fphys.2021.505149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Prescription of post-match or post-training recovery strategies in young soccer players is a key point to optimize soccer performance. Considering that the effectiveness of recovery strategies may present interindividual variability, scientific evidence-based recovery methods and protocols used in adults are possibly not applicable to young soccer players. Therefore, the current systematic review primarily aimed to present a critical appraisal and summary of the original research articles that have evaluated the effectiveness of recovery strategies in young male soccer players and to provide sufficient knowledge regarding the effectiveness of the recovery methods and strategies. Methodology: A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines until November 31, 2020, using the next data bases: WOS, PubMed, Cochrane Library, Evidence Database (PEDro), Evidence Based Medicine (EBM) Search review, EMBASE, and Scopus. There were no filters applied. Results: A total of 638 articles were obtained in the initial search. After the inclusion and exclusion criteria, the final sample was 10 articles focusing on recovery in young male players. Conclusions: Neuromuscular performance can be recovered using WVB but not with SS, and water immersion protocols may also be useful, but their positive effects are not significant, and it is unable to distinguish the best water immersion method; match running performance maintenance may be achieved using water immersion protocols but no other recovery methods have been investigated; EIMD and inflammatory responses could be positively affected when water immersion and AR are applied, although SS seems to be ineffective; perceptual responses also seem to be better with CWI and WVB, but contradictory results have been found when AR is applied, and SS had no positive impact. Finally, it is important to consider that AR strategies may modify HR response and soccer-specific performance.
Collapse
Affiliation(s)
- Julio Calleja-González
- Department of Physical Education and Sports, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Science, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | | | - Diego Marqués-Jiménez
- Academy Department, Deportivo Alavés SAD, Vitoria-Gasteiz, Spain.,Department of Health Sciences, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Miguel Del Valle
- Department of Cellular Morphology and Biology, Universidad de Oviedo, Oviedo, Spain
| | - Sergej M Ostojic
- Center for Health, Exercise and Sport Sciences, Belgrade, Serbia
| | - Jaime Sampaio
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Nicolás Terrados
- Regional Unit of Sports Medicine, Aviles and Health Research Institute of the Principality of Asturias (ISPA), Aviles, Spain
| | - Ignacio Refoyo
- Department of Sports, Faculty of Physical Activity and Sports Sciences (INEF), Polytechnic University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Afonso J, Clemente FM, Nakamura FY, Morouço P, Sarmento H, Inman RA, Ramirez-Campillo R. The Effectiveness of Post-exercise Stretching in Short-Term and Delayed Recovery of Strength, Range of Motion and Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Physiol 2021; 12:677581. [PMID: 34025459 PMCID: PMC8133317 DOI: 10.3389/fphys.2021.677581] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Post-exercise (i.e., cool-down) stretching is commonly prescribed for improving recovery of strength and range of motion (ROM) and diminishing delayed onset muscular soreness (DOMS) after physical exertion. However, the question remains if post-exercise stretching is better for recovery than other post-exercise modalities. Objective: To provide a systematic review and meta-analysis of supervised randomized-controlled trials (RCTs) on the effects of post-exercise stretching on short-term (≤1 h after exercise) and delayed (e.g., ≥24 h) recovery makers (i.e., DOMS, strength, ROM) in comparison with passive recovery or alternative recovery methods (e.g., low-intensity cycling). Methods: This systematic review followed PRISMA guidelines (PROSPERO CRD42020222091). RCTs published in any language or date were eligible, according to P.I.C.O.S. criteria. Searches were performed in eight databases. Risk of bias was assessed using Cochrane RoB 2. Meta-analyses used the inverse variance random-effects model. GRADE was used to assess the methodological quality of the studies. Results: From 17,050 records retrieved, 11 RCTs were included for qualitative analyses and 10 for meta-analysis (n = 229 participants; 17–38 years, mostly males). The exercise protocols varied between studies (e.g., cycling, strength training). Post-exercise stretching included static stretching, passive stretching, and proprioceptive neuromuscular facilitation. Passive recovery (i.e., rest) was used as comparator in eight studies, with additional recovery protocols including low intensity cycling or running, massage, and cold-water immersion. Risk of bias was high in ~70% of the studies. Between-group comparisons showed no effect of post-exercise stretching on strength recovery (ES = −0.08; 95% CI = −0.54–0.39; p = 0.750; I2 = 0.0%; Egger's test p = 0.531) when compared to passive recovery. In addition, no effect of post-exercise stretching on 24, 48, or 72-h post-exercise DOMS was noted when compared to passive recovery (ES = −0.09 to −0.24; 95% CI = −0.70–0.28; p = 0.187–629; I2 = 0.0%; Egger's test p = 0.165–0.880). Conclusion: There wasn't sufficient statistical evidence to reject the null hypothesis that stretching and passive recovery have equivalent influence on recovery. Data is scarce, heterogeneous, and confidence in cumulative evidence is very low. Future research should address the limitations highlighted in our review, to allow for more informed recommendations. For now, evidence-based recommendations on whether post-exercise stretching should be applied for the purposes of recovery should be avoided, as the (insufficient) data that is available does not support related claims. Systematic Review Registration: PROSPERO, identifier: CRD42020222091.
Collapse
Affiliation(s)
- José Afonso
- Centre for Research, Education, Innovation and Intervention in Sport, Faculty of Sport of the University of Porto, Porto, Portugal
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, Viana do Castelo, Portugal.,Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University Institute of Maia (ISMAI), Maia, Portugal.,Associate Graduate Program in Physical Education Universidade de Pernambuco (UPE)/Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Pedro Morouço
- Superior School of Education and Social Sciences, Polytechnic of Leiria, Leiria, Portugal
| | - Hugo Sarmento
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Richard A Inman
- The Psychology for Positive Development Research Center (CIPD), Universidade Lusíada, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Human Performance Laboratory, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
13
|
A Survey on Stretching Practices in Women and Men from Various Sports or Physical Activity Programs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083928. [PMID: 33918033 PMCID: PMC8068839 DOI: 10.3390/ijerph18083928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Recommendations for prescribing stretching exercises are regularly updated. It appears that coaches progressively follow the published guidelines, but the real stretching practices of athletes are unknown. The present study aimed to investigate stretching practices in individuals from various sports or physical activity programs. A survey was completed online to determine some general aspects of stretching practices. The survey consisted of 32 multiple-choice or open-ended questions to illustrate the general practices of stretching, experiences and reasons for stretching. In total, 3546 questionnaires were analyzed (47.3% women and 52.7% men). Respondents practiced at the national/international level (25.2%), regional level (29.8%), or recreationally (44.9%). Most respondents (89.3%) used stretching for recovery (74.9%) or gains of flexibility (57.2%). Stretching was generally performed after training (72.4%). The respondents also indicated they performed stretching as a pre-exercise routine (for warm-up: 49.9%). Static stretching was primarily used (88.2%) but when applied for warm-up reasons, respondents mostly indicated performing dynamic stretching (86.2%). Only 37.1% of the respondents indicated being supervised. Finally, some gender and practice level differences were noticed. The present survey revealed that the stretching practices were only partly in agreement with recent evidence-based recommendations. The present survey also pointed out the need to improve the supervision of stretching exercises.
Collapse
|