1
|
Zhang H, Li S, Ma X. Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Des Devel Ther 2024; 18:3499-3521. [PMID: 39132625 PMCID: PMC11314449 DOI: 10.2147/dddt.s470210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Suping Li
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, 610039, People’s Republic of China
| |
Collapse
|
2
|
Victoir B, Croix C, Gouilleux F, Prié G. Targeted Therapeutic Strategies for the Treatment of Cancer. Cancers (Basel) 2024; 16:461. [PMID: 38275901 PMCID: PMC10814619 DOI: 10.3390/cancers16020461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Extensive research is underway to develop new therapeutic strategies to counteract therapy resistance in cancers. This review presents various strategies to achieve this objective. First, we discuss different vectorization platforms capable of releasing drugs in cancer cells. Second, we delve into multitarget therapies using drug combinations and dual anticancer agents. This section will describe examples of multitarget therapies that have been used to treat solid tumors.
Collapse
Affiliation(s)
- Benjamin Victoir
- INSERM UMR 1100 CEPR, Equipe “Mécanismes Protéolytiques Dans L’inflammation”, Faculté de Médecine, 10 Boulevard Tonnellé, BP 3223, 37032 Tours Cedex 01, France; (B.V.); (C.C.); (G.P.)
| | - Cécile Croix
- INSERM UMR 1100 CEPR, Equipe “Mécanismes Protéolytiques Dans L’inflammation”, Faculté de Médecine, 10 Boulevard Tonnellé, BP 3223, 37032 Tours Cedex 01, France; (B.V.); (C.C.); (G.P.)
| | - Fabrice Gouilleux
- INSERM UMR 1100 CEPR, Equipe “Infection Respiratoire et Immunité”, Faculté de Médecine, 10 Boulevard Tonnellé, BP 3223, 37032 Tours Cedex 01, France
| | - Gildas Prié
- INSERM UMR 1100 CEPR, Equipe “Mécanismes Protéolytiques Dans L’inflammation”, Faculté de Médecine, 10 Boulevard Tonnellé, BP 3223, 37032 Tours Cedex 01, France; (B.V.); (C.C.); (G.P.)
| |
Collapse
|
3
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
4
|
Foudah AI, Alqarni MH, Ross SA, Alam A, Salkini MA, Kumar P. Site-Specific Evaluation of Bioactive Coumarin-Loaded Dendrimer G4 Nanoparticles against Methicillin Resistant Staphylococcus aureus. ACS OMEGA 2022; 7:34990-34996. [PMID: 36211083 PMCID: PMC9535722 DOI: 10.1021/acsomega.2c03659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost treatment challenge in today's clinical practice. Natural coumarins contain a variety of bioactivities and have the ability to alter resistance in several ways. In developing effective drug delivery methods, the goal is to maximize biocompatibility while minimizing toxicity. With this in mind, this work investigated the site-specific potential of dendrimer G4 poloxamer nanoparticles loaded with bioactive coumarin. The goal of the current work is to deliver a complete evaluation of dendrimer G4 poloxamer nanoparticles against MRSA. Coumarin-loaded dendrimer G4 poloxamer nanoparticles were thoroughly investigated and characterized using various techniques, including particle size, shape, entrapment efficiency, in vitro drug release, hemolysis assay, cytotoxicity, antibacterial activity, and bactericidal kinetics. Studies showed that the newly developed dendrimer G4 poloxamer nanoparticles exhibited significantly lower levels of hemolysis and cytotoxicity. The results showed that the in vitro drug release of coumarin from dendrimer G4 poloxamer nanoparticles was slower compared to coumarin in its free form. This innovative therapeutic delivery technology may enhance the defense of coumarin against MRSA.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Samir A. Ross
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi 38677, United States
- Department
of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi 38677, United States
| | - Aftab Alam
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Piyush Kumar
- Department
of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India
| |
Collapse
|
5
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
6
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Analysis of Bismuth (III) Iodide and Dendrimers in Drug Applications. J CHEM-NY 2022. [DOI: 10.1155/2022/3163294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dendrimers are spherical three-dimensional molecules with a repetitively branching core. They are normally symmetric around the core. Bismuth (III) iodide has the formula
and is an inorganic chemical. The reaction between bismuth and iodine produces this gray-black solid, which was of great interest in qualitative inorganic analysis. Mathematical chemistry is an area of mathematics that employs mathematical methods to tackle chemical-related problems. One of these tools is a graphical representation of chemical molecules, known as the molecular graph of a chemical substance. A topological index (TI) is a mathematical function that assigns a numerical value to a (molecular) graph and predicts many physical, chemical, biological, thermodynamical, and structural features of that network. In this work, we will calculate a new topological index, namely, Sombor index, multiplicative Sombor index, and its reduced version for bismuth (III) iodide and dendrimers. We also plot our computed results of Sombor index, multiplicative Sombor index, and reduced Sombor index to examine how they were affected by the parameters involved.
Collapse
|
8
|
Saw WS, Anasamy T, Anh Do TT, Lee HB, Chee CF, Isci U, Misran M, Dumoulin F, Chong WY, Kiew LV, Imae T, Chung LY. Nanoscaled PAMAM Dendrimer Spacer Improved the Photothermal-Photodynamic Treatment Efficiency of Photosensitizer-Decorated Confeito-Like Gold Nanoparticles for Cancer Therapy. Macromol Biosci 2022; 22:e2200130. [PMID: 35579182 DOI: 10.1002/mabi.202200130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Indexed: 11/11/2022]
Abstract
A critical factor in developing an efficient photosensitizer-gold nanoparticle (PS-AuNP) hybrid system with improved plasmonic photosensitization is to allocate a suitable space between AuNPs and PS. Poly(amidoamine) (PAMAM) dendrimer is selected as a spacer between the PS and confeito-like gold nanoparticles (confeito-AuNPs), providing the required distance (≈2.5-22.5 nm) for plasmon-enhanced singlet oxygen generation and heat production upon 638-nm laser irradiation and increase the cellular internalization of the nanoconjugates. The loading of the PS, tetrakis(4-carboxyphenyl) porphyrin (TCPP) and modified zinc phthalocyanine (ZnPc1) onto PAMAM-confeito-AuNPs demonstrate better in vitro cancer cell-killing efficacy, as the combined photothermal-photodynamic therapies (PTT-PDTs) outperforms the single treatment modalities (PTT or PDT alone). These PS-PAMAM-confeito-AuNPs also demonstrate higher phototoxicity than photosensitizers directly conjugated to confeito-AuNPs (TCPP-confeito-AuNPs and ZnPc1-confeito-AuNPs) against all breast cancer cell lines tested (MDA-MB-231, MCF7 and 4T1). In the in vivo studies, TCPP-PAMAM-confeito-AuNPs are biocompatible and exhibit a selective tumor accumulation effect, resulting in higher antitumor efficacy than free TCPP, PAMAM-confeito-AuNPs and TCPP-confeito-AuNPs. In vitro and in vivo evaluations confirm PAMAM effectiveness in facilitating cellular uptake, plasmon-enhanced singlet oxygen and heat generation. In summary, this study highlights the potential of integrating a PAMAM spacer in enhancing the plasmon effect-based photothermal-photodynamic anticancer treatment efficiency of PS-decorated confeito-AuNPs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150, Malaysia
| | - Thu Thi Anh Do
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia.,School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Umit Isci
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Turkey
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Fabienne Dumoulin
- Department of Medical Engineering, Faculty of Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Wu Yi Chong
- Photonics Research Centre, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
9
|
Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments. Adv Colloid Interface Sci 2022; 303:102639. [PMID: 35339862 DOI: 10.1016/j.cis.2022.102639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
Dendritic nanovectors-based drug delivery has gained significant attention in the past couple of decades. Dendrimers play a crucial role in deciding the solubility of sparingly soluble drug molecules and help in improving pharmacokinetics. A few important steps in drug delivery through dendrimers, such as drug encapsulation, formulation, and target-specific delivery, play an important role in deciding the fate of a drug molecule. It is also of prime importance to understand the interactions between a drug molecule and dendrimers at atomistic levels to decode the mechanism of action of drug-dendrimer complexes and their reliability in terms of drug delivery. Colossal progress in current experimental and computational approaches in the field has resulted in a vast amount of data that needs to be curated to be further implemented efficiently. Improved computational power has led to greater accuracy and prompt predictions of properties of drug-dendrimer complexes and their mechanism of action. The current review encapsulates the pioneering work in the field, experimental achievements in terms of drug delivery, and newer computational techniques employed in the advancement of the field.
Collapse
|
10
|
Chokkareddy R, Kanchi S, Inamuddin, Altalhi TA. Smart Nanodevices for Point-of-Care Applications. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999210120180646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
While significant strides have been made to avoid mortality during the treatment of chronic
diseases, it is still one of the biggest health-care challenges that have a profound effect on humanity. The development of
specific, sensitive, accurate, quick, low-cost, and easy-to-use diagnostic tools is therefore still in urgent demand.
Nanodiagnostics is defined as the application of nanotechnology to medical diagnostics that can offer many unique
opportunities for more successful and efficient diagnosis and treatment for infectious diseases.
Methods::
In this review we provide an overview of infectious disease using nanodiagnostics platforms based on
nanoparticles, nanodevices for point-of-care (POC) applications.
Results::
Current state-of-the-art and most promising nanodiagnostics POC technologies, including miniaturized
diagnostic tools, nanorobotics and drug delivery systems have been fully examined for the diagnosis of diseases. It also
addresses the drawbacks, problems and potential developments of nanodiagnostics in POC applications for chronic
diseases.
Conclusions::
While progress is gaining momentum in this field and many researchers have dedicated their time in
developing new smart nanodevices for POC applications for various chronic diseases, the ultimate aim of achieving longterm,
reliable and continuous patient monitoring has not yet been achieved. Moreover, the applicability of the
manufactured nanodevices to rural patients for on-site diagnosis, cost, and usability are the crucial aspects that require
more research, improvements, and potential testing stations. Therefore, more research is needed to develop the
demonstrated smart nanodevices and upgrade their applicability to hospitals away from the laboratories.
Collapse
Affiliation(s)
- Rajasekhar Chokkareddy
- Department of Chemistry, Durban University of Technology, Durban 4000, ,South Africa
- Department of Chemistry,
Aditya Engineering College, Surampalem 533437, Andhra Pradesh, India
| | - Suvardhan Kanchi
- Department of Chemistry, Sambhram Institute of Technology, M.S. Palya, Jalahalli East, Bengaluru 560097,,India
- Department of Chemistry, Sambhram
Institute of Technology, M.S. Palya, Jalahalli East, Bengaluru 560097, India
| | - Inamuddin
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh- 202 002, ,India
| | - Tariq A Altalhi
- Department of Chemistry, College of Science, Talf
University, P.O. Box 11099, Taif 21944, Saudi Arábia
| |
Collapse
|
11
|
Rawding PA, Bu J, Wang J, Kim D, Drelich AJ, Kim Y, Hong S. Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1752. [PMID: 34414690 PMCID: PMC9485970 DOI: 10.1002/wnan.1752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy, or the utilization of a patient's own immune system to treat cancer, has shifted the paradigm of cancer treatment. Despite meaningful responses being observed in multiple studies, currently available immunotherapy platforms have only proven effective to a small subset of patients. To address this, nanoparticles have been utilized as a novel carrier for immunotherapeutic drugs, achieving robust anti-tumor effects with increased adaptive and durable responses. Specifically, dendrimer nanoparticles have attracted a great deal of scientific interest due to their versatility in various therapeutic applications, resulting from their unique physicochemical properties and chemically well-defined architecture. This review offers a comprehensive overview of dendrimer-based immunotherapy technologies, including their formulations, biological functionalities, and therapeutic applications. Common formulations include: (1) modulators of cytokine secretion of immune cells (adjuvants); (2) facilitators of the recognition of tumorous antigens (vaccines); (3) stimulators of immune effectors to selectively attack cells expressing specific antigens (antibodies); and (4) inhibitors of immune-suppressive responses (immune checkpoint inhibitors). On-going works and prospects of dendrimer-based immunotherapies are also discussed. Overall, this review provides a critical overview on rapidly growing dendrimer-based immunotherapy technologies and serves as a guideline for researchers and clinicians who are interested in this field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Piper A Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adam J Drelich
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Youngsoo Kim
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Patel V, Rajani C, Tambe V, Kalyane D, Anup N, Deb PK, Kalia K, Tekade RK. Nanomaterials assisted chemo-photothermal therapy for combating cancer drug resistance. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Membrane pH responsibility as a remote control for pore size arrangement and surface charge adjustment in order to efficient separation of doxorubicin antitumor drug. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|
15
|
Pashaei-Sarnaghi R, Najafi F, Taghavi-Kahagh A, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis, photocrosslinking, and self-assembly of coumarin-anchored poly(amidoamine) dendrimer for smart drug delivery system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Abstract
Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. Topological indices are numerical numbers that help us to understand the topology of different dendrimers and can be used to predict the properties without performing experiments in the wet lab. In the present paper, we computed the Sombor index and the reduced version of the Sombor index for the molecular graphs of phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored dendrimers, triazine-based dendrimers, and aliphatic polyamide dendrimers. We also plotted our results by using Maple 2015 which help us to see the dependence of the Sombor index and reduced Sombor index on the involved parameters. Our results may help to develop better understanding about phosphorus-containing dendrimers, porphyrin-cored dendrimers, PDI-cored dendrimers, triazine-based dendrimers, and aliphatic polyamide dendrimers. Our results are also useful in the pharmaceutical industry and drug delivery.
Collapse
|
17
|
Levit SL, Tang C. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1048. [PMID: 33923947 PMCID: PMC8072532 DOI: 10.3390/nano11041048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. We review polymer nanoparticle (e.g., micelles, dendrimers, and lipid nanoparticles) carriers of drug combinations formulated to treat ovarian cancer. In particular, the focus on this review is combinations of platinum and taxane agents (commonly used first line treatments for ovarian cancer) combined with other small molecule therapeutic agents. In vitro and in vivo drug potency are discussed with a focus on quantifiable synergistic effects. The effect of drug sequence and dosing schedule is examined. Computational approaches as a tool to predict synergistic drug combinations and dosing schedules as a tool for future nanoparticle design are also briefly discussed.
Collapse
Affiliation(s)
- Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
18
|
Trujillo-Nolasco M, Cruz-Nova P, Ferro-Flores G, Gibbens-Bandala B, Morales-Avila E, Aranda-Lara L, Vargas M, Ocampo-García B. Development of 177Lu-DN(C19)-CXCR4 Ligand Nanosystem for Combinatorial Therapy in Pancreatic Cancer. J Biomed Nanotechnol 2021; 17:263-278. [PMID: 33785097 DOI: 10.1166/jbn.2021.3016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer is highly lethal and has a poor prognosis. The most common alteration during the formation of pancreatic tumors is the activation of KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) oncogene. As a new therapeutic strategy, the C19 molecule ((2S)-N-(2,5-dichlorophenyl)-2-[(3,4-dimethoxyphenyl)-methylamine]propanamide) blocks the KRAS-membrane association in cancer cells. In addition, the chemokine receptor CXCR4 is overexpressed in pancreatic cancer. In this research, a new dendrimer-based nanoradiopharmaceutical (177Lu-DN(C19)-CXCR4L) encapsulating C19 and functionalized to target CXCR4 receptors is proposed as both, a targeted radiotherapy system (lutetium-177) and an oncotherapeutic approach by the stabilization of KRAS4b-PDESδ complex to produce dual-specific therapy in pancreatic cancer. 177The Lu-DN(C19)-CXCR4L was synthesized and characterized, C19 was encapsulated with 81% efficiency, the final nanosystem rendered a particle size of 67 nm and the specific uptake in pancreatic cell lines was demonstrated. The major cytotoxic effect was observed in the KRAS-dependent and radioresistant cell line Mia PaCa-2, which expresses a high density of CXCR4 receptors. The radiation dose of 3 Gy/Bq decreased viability to 7%, and this effect was attributed to the presence of C19. A synergistic effect (radio and chemotherapy) capable of reducing viability in pancreatic cancer cells through apoptotic mechanisms was demonstrated. Thus, 177Lu-DN(C19)-CXCR4L nanoradiopharmaceutical is efficacious in pancreatic cancer cell lines overexpressing the CXCR4 receptor.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Pedro Cruz-Nova
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Guillermina Ferro-Flores
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Brenda Gibbens-Bandala
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México, 50180, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, Mexico
| | - Miguel Vargas
- Departamento de Biomedicina Molecular. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. I.P.N., 07360, Ciudad de México
| | - Blanca Ocampo-García
- Departamento de Materials Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México, 52750, Mexico
| |
Collapse
|
19
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
20
|
Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, Babazadeh A, Soltanfam T, Santos AC, Hamishehkar H, Hamblin MR. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today 2020; 25:1416-1430. [DOI: 10.1016/j.drudis.2020.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
|
21
|
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10:26777-26791. [PMID: 35515778 PMCID: PMC9055574 DOI: 10.1039/d0ra03491f] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Drug delivery technology has a wide spectrum, which is continuously being upgraded at a stupendous speed. Different fabricated nanoparticles and drugs possessing low solubility and poor pharmacokinetic profiles are the two major substances extensively delivered to target sites. Among the colloidal carriers, nanolipid dispersions (liposomes, deformable liposomes, virosomes, ethosomes, and solid lipid nanoparticles) are ideal delivery systems with the advantages of biodegradation and nontoxicity. Among them, nano-structured lipid carriers and solid lipid nanoparticles (SLNs) are dominant, which can be modified to exhibit various advantages, compared to liposomes and polymeric nanoparticles. Nano-structured lipid carriers and SLNs are non-biotoxic since they are biodegradable. Besides, they are highly stable. Their (nano-structured lipid carriers and SLNs) morphology, structural characteristics, ingredients used for preparation, techniques for their production, and characterization using various methods are discussed in this review. Also, although nano-structured lipid carriers and SLNs are based on lipids and surfactants, the effect of these two matrixes to build excipients is also discussed together with their pharmacological significance with novel theranostic approaches, stability and storage.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University Henan 450018 China
| | - Abhishek Dhar
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Chetan Patel
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Mehul Khimani
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Swarnali Neogi
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Prolay Sharma
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Rohit L Vekariya
- Department for Management of Science and Technology Development, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
22
|
PEGylated Dendrimer Mediated Delivery of Bortezomib: Drug Conjugation versus Encapsulation. Int J Pharm 2020; 584:119389. [DOI: 10.1016/j.ijpharm.2020.119389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023]
|
23
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
24
|
Raval N, Jogi H, Gondaliya P, Kalia K, Tekade RK. Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model. Mol Pharm 2020; 18:641-666. [PMID: 32453574 DOI: 10.1021/acs.molpharmaceut.0c00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), a chronic progressive kidney disease, is a significant complication of diabetes mellitus. Dysregulation of the histone deacetylases (HDACs) gene has been implicated in the pathogenesis of DN. Hence, the HDAC-inhibitors have emerged as a critical class of therapeutic agents in DN; however, the currently available HDAC4-inhibitors are mostly nonselective in nature as well as inhibit multiple HDACs. RNA interference of HDAC4 (HDAC4 siRNA) has shown immense promise, but the clinical translation has been impeded due to lack of a targeted, specific, and in vivo applicable delivery modality. In the present investigation, we examined Cyclo(RGDfC) (cRGD) truncated polymeric nanoplex with dendrimeric templates for targeted HDAC4 Gene Silencing. The developed nanoplex exhibited enhanced encapsulation of siRNA and offered superior protection against serum RNase nucleases degradation. The nanoplex was tested on podocytes (in vitro), wherein it showed selective binding to the αvβ3 integrin receptor, active cellular uptake, and significant in vitro gene silencing. The in vivo experiments showed remarkable suppression of the HDAC4 and inhibition in the progression of renal fibrosis in the Streptozotocin (STZ) induced DN C57BL/6 mice model. Histopathological and toxicological studies revealed nonsignificant abnormality/toxicity with the nanoplex. Conclusively, nanoplex was found as a promising tactic for targeted therapy of podocytes and could be extended for other kidney-related ailments.
Collapse
Affiliation(s)
- Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Hardi Jogi
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
25
|
Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater 2020; 101:43-68. [PMID: 31518706 DOI: 10.1016/j.actbio.2019.09.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that the cellular and extracellular materials surrounding the cancerous cells from an atypical tumor microenvironment (TM) play a pivotal role in the process of tumor initiation and progression. TM comprises an intricate system involving diverse cell types including endothelial cells, pericytes, smooth muscle cells, fibroblasts, various inflammatory cells, dendritic cells, and cancer stem cells (CSCs). The TM-forming cells dynamically interact with the cancerous cells through various signaling mechanisms and pathways. The existence of this dynamic cellular communication is responsible for creating an environment suitable for sustaining a reasonably high cellular proliferation. Presently, researchers are showing interest to use these TM conditions to mediate effective targeting measures for cancer therapy. The use of nanotherapeutics-based combination therapy; stimuli-responsive nanotherapeutics targeting acidic pH, hypoxic environment; and nanoparticle-induced hyperthermia are some of the approaches that are under intense investigation for cancer therapy. This review discusses TM and its role in cancer progression and crosstalk understanding, opportunities, and epigenetic modifications involved therein to materialize the capability of nanotherapeutics to target cancer by availing TM. STATEMENT OF SIGNIFICANCE: This article presents various recent reports, proof-of-concept studies, patents, and clinical trials on the concept of tumor microenvironment for mediating the cancer-specific delivery of nanotechnology-based systems bearing anticancer drug and diagnostics. We highlight the potential of tumor microenvironment; its role in disease progression, opportunities, challenges, and allied treatment strategies for effective cancer therapy by conceptual understanding of tumor microenvironment and epigenetic modifications involved. Specifically, nanoparticle-based approaches to target various processes related to tumor microenvironment (pH responsive, hypoxic environment responsive, targeting of specific cells involved in tumor microenvironment, etc.) are dealt in detail.
Collapse
|
26
|
Shrestha B, Tang L, Romero G. Nanoparticles‐Mediated Combination Therapies for Cancer Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Liang Tang
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Gabriela Romero
- Department of Chemical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
27
|
Pradhan D, Tambe V, Raval N, Gondalia P, Bhattacharya P, Kalia K, Tekade RK. Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study. Colloids Surf B Biointerfaces 2019; 184:110488. [PMID: 31541894 DOI: 10.1016/j.colsurfb.2019.110488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 01/08/2023]
Abstract
Stroke is the second largest disease of mortality. The biggest hurdle in designing effective brain drug delivery systems is offered by the blood-brain barrier (BBB), which is highly impermeable to many drugs. Albumin nanoparticles (NP) have gained attention due to their multiple ligand binding sites and long circulatory half-life. Citicoline (CIT) is reported to enhance the acetylcholine secretion in the brain and also helps in membrane repair and regeneration. However, the poor BBB permeation of CIT results in lower levels of CIT in the brain. This demands the development of a suitable delivery platform to completely realize the therapeutic benefit of CIT in stroke therapy. This investigation reports the synthesis and characterization of second generation (2.0 G) dendrimer Amplified Albumin (dAA) biopolymer by FTIR, MALDI-TOF, and surface charge (mV). Further, the synthesized biopolymer has been utilized to develop a CIT nanoformulation using a commercially translatable one-pot process. Release of CIT from biopolymer was performed within an acetate buffer at pH 5 and Phosphate buffer at pH 7.4. Further, we investigated the ability of biopolymer to permeate BBB by in vitro permeability assay in bEnd.3 cells. MTT assay of CIT-dAA-NP, CIT-ANP, and 2.0 G PAMAM dendrimers was performed in bEnd.3 cells. Therapeutic efficacy of the synthesized biopolymer was determined by VEGF gene expression within an in vitro hypoxia model in PC12 cells. Thus, this investigation resulted in biopolymers that can be used to deliver any therapeutic agent by altering the permeability of the BBB. Also, cationization by dendrimer grafting is one such strategy that may be used to cationize any other negatively charged polymer, such as albumin. The synthesized biopolymer is not limited to deliver molecules to the brain, but can also be used to increase the loading of negatively-charged drug molecules, siRNA, or any other oligonucleotide.
Collapse
Affiliation(s)
- Deepak Pradhan
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Piyush Gondalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
28
|
Saluja V, Mankoo A, Saraogi GK, Tambuwala MM, Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Cheng AV, Wuest WM. Signed, Sealed, Delivered: Conjugate and Prodrug Strategies as Targeted Delivery Vectors for Antibiotics. ACS Infect Dis 2019; 5:816-828. [PMID: 30969100 PMCID: PMC6570538 DOI: 10.1021/acsinfecdis.9b00019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate and developed resistance mechanisms of bacteria to antibiotics are obstacles in the design of novel drugs. However, antibacterial prodrugs and conjugates have shown promise in circumventing resistance and tolerance mechanisms via directed delivery of antibiotics to the site of infection or to specific species or strains of bacteria. The selective targeting and increased permeability and accumulation of these prodrugs not only improves efficacy over unmodified drugs but also reduces off-target effects, toxicity, and development of resistance. Herein, we discuss some of these methods, including sideromycins, antibody-directed prodrugs, cell penetrating peptide conjugates, and codrugs.
Collapse
Affiliation(s)
- Ana V. Cheng
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory School of Medicine, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Bayat M, Taherpour AA, Elahi SM. Molecular interactions between PAMAM dendrimer and some medicines that suppress the growth of hepatitis virus (Adefovir, Entecavir, Telbivudine, Lamivudine, Tenofovir): a theoretical study. INTERNATIONAL NANO LETTERS 2019. [DOI: 10.1007/s40089-019-0277-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019; 11:polym11040630. [PMID: 30959799 PMCID: PMC6523645 DOI: 10.3390/polym11040630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022] Open
Abstract
The side-effects associated with chemotherapy necessitates better delivery of chemotherapeutics to the tumor. Nanoparticles can load higher amounts of drug and improve delivery to tumors, increasing the efficacy of treatment. Polymeric nanoparticles, in particular, have been used extensively for chemotherapeutic delivery. This review describes the efforts made to deliver combination chemotherapies and inhibit oncogenic pathways using polymeric drug delivery systems. Combinations of chemotherapeutics with other drugs or small interfering RNA (siRNA) combinations have been summarized. Special attention is given to the delivery of drug combinations that involve either paclitaxel or doxorubicin, two popular chemotherapeutics in clinic. Attempts to inhibit specific pathways for oncotherapy have also been described. These include inhibition of oncogenic pathways (including those involving HER2, EGFR, MAPK, PI3K/Akt, STAT3, and HIF-1α), augmentation of apoptosis by inhibiting anti-apoptosis proteins (Bcl-2, Bcl-xL, and survivin), and targeting dysregulated pathways such as Wnt/β-catenin and Hedgehog.
Collapse
|
32
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
33
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
34
|
Abstract
In this review we summarize several synthetic approaches to the advanced synthesis of star-like polymer-based drug carriers. Moreover, their application as nanomedicines for therapy or the diagnosis of neoplastic diseases and their biodistribution are reviewed in detail. From a broad spectrum of star-like systems, we focus only on fully water-soluble systems, mainly based on poly(ethylene glycol) or N-(2-hydroxypropyl)methacrylamide polymer and copolymer arms and polyamidoamine dendrimers serving as the core of the star-like systems.
Collapse
Affiliation(s)
- L Kotrchová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| | | | | |
Collapse
|
35
|
Kulshrestha S, Khan AU. Nanomedicine for anticancer and antimicrobial treatment: an overview. IET Nanobiotechnol 2018; 12:1009-1017. [PMID: 30964006 PMCID: PMC8676473 DOI: 10.1049/iet-nbt.2018.5112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle-based treatment has become a potential therapeutic approach. The nanosize of these particles provides them with unique physicochemical properties and enhances their interaction with the biological system. Nanomaterials have the potential to overcome some of the major issues in the clinical world which may include cancer treatment and may be utilised to resolve the major problem of drug resistance in infection control. These particles are being used to improve present therapeutics by virtue of their shape, size and diverse intrinsic as well as chemical properties. The authors have discussed the use of nanoparticles in cancer treatment, infections caused by multidrug-resistant microbial strains and biofilm inhibition along with the detailed description of the current status of nanomaterials in the field of medicine.
Collapse
Affiliation(s)
- Shatavari Kulshrestha
- Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
36
|
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2018; 555:77-99. [PMID: 30448308 DOI: 10.1016/j.ijpharm.2018.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Glioblastoma is one of the most rapaciously growing cancer within the brain with an average lifespan of 12-15 months (5-year survival <3-4%). Doxorubicin (DOX) is clinically utilized as a first line drug in the treatment of Glioblastoma, however, its restricted entry into the brain via the blood-brain barrier (BBB), limited blood-tumor barrier (BTB) permeability, hemotoxicity, short mean half-life of 1-3 hr as well as rapid body clearance results in tremendously diminished bioactivity in glioblastoma. Dendrimer-Cationized-Albumin (dCatAlb) was synthesized following the carboxyl activation technique and the synthesized biopolymer was characterized by FTIR, MALDI-TOF and zeta potential. The prepared dCatAlb was encrusted on DOX-loaded PLGA nanoparticle core to develop a novel hybrid DOX nanoformulation (dCatAlb-pDNP; particle size: 156 ± 10.85 nm; ƺ: -10.0 ± 2.1 mV surface charge). The formulated dCatAlb-pDNP showed a unique pH-dependent DOX release profile, diminished hemolytic toxicity, higher drug uptake (<0.001) and cytotoxicity in U87MG glioblastoma cells, increase levels of caspase-3 gene in U87MG cells (approximately 5.35-fold higher) inferred that anticancer activity is primarily taking place through caspase-mediated apoptosis mechanism. The developed novel DOX nanoformulation also showed superior trans-epithelial permeation transport across monolayer bEnd.3 cells as well as notable biocompatibility and stability. The dCatAlb-pDNP showed enhanced BBB permeation efficacy as confirmed permeation assay in bEnd.3 cell-based model. The long-term formulation stability of developed nanoformulations was studied by storing them at 5 ± 2 °C and 30 ± 2 °C/60 ± 5% Relative Humidity (% RH) in the stability chamber for a period of 60 days (ICHQ1A (R2)). The outcomes of this investigation evidently indicate that dCatAlb-pDNP offers superior anticancer activity of DOX in glioblastoma cells while significantly improving its BBB permeation. The developed formulation is a biocompatible, safer and commercially viable approach to delivering DOX selectively in sustained manner glioblastoma while countering its hemolytic toxic effect, which is a major ongoing issue with conventional DOX injectable available in the market today.
Collapse
Affiliation(s)
- Vimalkumar Johnson Muniswamy
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
37
|
Warther D, Xiao Y, Li F, Wang Y, Huffman K, Freeman WR, Sailor M, Cheng L. Porous silicon based intravitreal platform for dual-drug loading and controlled release towards synergistic therapy. Drug Deliv 2018; 25:1537-1545. [PMID: 29996687 PMCID: PMC6058705 DOI: 10.1080/10717544.2018.1486474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023] Open
Abstract
The number of blind and low vision persons in the US is projected to increase to 5.68 million by 2020. The eye diseases causing loss of vision are life-long, chronic, and often need protracted presence of therapeutics at the disease site to keep the disease in remission. In addition, multiple pathologies participate in the disease process and a single therapy seems insufficient to bring the disease under control and prevent vision loss. This study demonstrates the use of porous silicon (pSi) particles sequentially loaded with daunorubicin (DNR) and dexamethasone (DEX) to create a synergistic intravitreally injectable dual-drug delivery system. DEX targets chronic inflammation while DNR inhibits excessive cell proliferation as well as suppresses hypoxia-inducible factor 1 to reduce scarring. This pSi-based delivery system releases therapeutic concentrations of DNR for 100 days and DEX for over 165 days after a single dose. This intravitreal dual-drug delivery system is also well tolerated after injection into the rabbit eye model, attested by ocular biomicroscopy, ocular tonometry, electroretinography, and histology. This novel dual-drug delivery system opens an attractive modality for combination therapy to manage refractory chorioretinal diseases and further preclinical studies are warranted to evaluate its efficacy.
Collapse
Affiliation(s)
- David Warther
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Ying Xiao
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, CA, USA
- Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Fangting Li
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, CA, USA
| | - Yuqin Wang
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, CA, USA
| | - Kristyn Huffman
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, CA, USA
| | - William R. Freeman
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, CA, USA
| | - Michael Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Lingyun Cheng
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, CA, USA
| |
Collapse
|
38
|
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801362. [PMID: 30066406 DOI: 10.1002/adma.201801362] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Indexed: 05/24/2023]
Abstract
Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood-brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial-based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease-targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial-mediated treatment of neurological diseases.
Collapse
Affiliation(s)
- Denzil Furtado
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Materials, Department of Bioengineering, and the Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Cooperative Research Center for Mental Health, Parkville, Victoria, 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
39
|
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548:707-720. [PMID: 30012508 DOI: 10.1016/j.ijpharm.2018.07.030] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Dendrimers are novel polymeric nanoarchitectures characterized by hyper-branched 3D-structure having multiple functional groups on the surface that increases their functionality and make them versatile and biocompatible. Their unique properties like nanoscale uniform size, high degree of branching, polyvalency, water solubility, available internal cavities and convenient synthesis approaches make them promising agent for biological and drug delivery applications. Dendrimers have received an enormous attention from researchers among various nanomaterials. Dendrimers can be used as a carrier for diverse therapeutic agents. They can be used for reducing drug toxicities and enhancement of their efficacies. The present review provide a comprehensive outline of synthesis of dendrimers, interaction of dendrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Atul P Sherje
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Mrunal Jadhav
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Bhushan R Dravyakar
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Darshana Kadam
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
40
|
Mi G, Shi D, Wang M, Webster TJ. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv Healthc Mater 2018; 7:e1800103. [PMID: 29790304 DOI: 10.1002/adhm.201800103] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Indexed: 02/02/2023]
Abstract
With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic-resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles, have been increasingly exploited as both efficient antimicrobials themselves or as delivery platforms to enhance the effectiveness of existing antibiotics. In addition to the emergence of widespread antibiotic resistance, of equal concern are implantable device-associated infections, which result from bacterial adhesion and subsequent biofilm formation at the site of implantation. The ineffectiveness of conventional antibiotics against these biofilms often leads to revision surgery, which is both debilitating to the patient and expensive. Toward this end, micro- and nanotopographies, especially those that resemble natural surfaces, and nonfouling chemistries represent a promising combination for long-term antibacterial activity. Collectively, the use of nanoparticles and nanostructured surfaces to combat bacterial growth and infections is a promising solution to the growing problem of antibiotic resistance and biofilm-related device infections.
Collapse
Affiliation(s)
- Gujie Mi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Di Shi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Mian Wang
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Thomas J. Webster
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| |
Collapse
|
41
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J Biomed Mater Res A 2018; 106:2272-2283. [PMID: 29577607 DOI: 10.1002/jbm.a.36410] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/17/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) is the most common cancer in women that requires special attention due to low response to conventional treatments. The common method for treating cancer (especially BC) is applying a single anticancer agent, however, due to some disadvantages including cytotoxicity, side effects, and multidrug resistance, the efficiency and application of this method are limited. To overcome these challenges, the combinational delivery of anticancer drugs (including chemical agents, genetic materials, etc.) has been introduced. To increase the efficacy of this new method, several nanocarriers including inorganic nanoparticles (such as, magnetic nanoparticles, silica nanoparticles, etc.) and organic ones (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles) have been used. Based on the literature, combinational delivery using nanocarriers showed promising results in the treatment of BC. In this review, combination regimens for the treatment of BC, nanocarriers containing combinations of pharmaceutical agents (including small molecule chemotherapeutic, biological, and gene therapy agents) as an opportunity to overcome chemotherapy challenges and, finally, examples of these formulations have been presented. This review aims to provide a better understanding of these increasingly important new methods of cancer treatment and the main issues and key considerations for a rational design of nanocarriers used in combinational delivery of different synergistic anticancer agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2272-2283, 2018.
Collapse
Affiliation(s)
- Nafise Olov
- Polymer and Color Engineering Department, Amirkabir University of Technology, 424 Hafez-Avenue, 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Color Engineering Department, Amirkabir University of Technology, 424 Hafez-Avenue, 15875-4413, Tehran, Iran
| | - Hamid Mirzadeh
- Polymer and Color Engineering Department, Amirkabir University of Technology, 424 Hafez-Avenue, 15875-4413, Tehran, Iran
| |
Collapse
|
42
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
43
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
44
|
Maheshwari R, Tekade M, Gondaliya P, Kalia K, D'Emanuele A, Tekade RK. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine (Lond) 2017; 12:2653-2675. [DOI: 10.2217/nnm-2017-0210] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) therapeutics (siRNA, miRNA, etc.) represent an emerging medicinal remedy for a variety of ailments. However, their low serum stability and low cellular uptake significantly restrict their clinical applications. Exosomes are biologically derived nanodimensional vesicle ranging from a few nanometers to a hundred. In the last few years, several reports have been published demonstrating the emerging applications of these exogenous membrane vesicles, particularly in carrying different RNAi therapeutics to adjacent or distant targeted cells. In this report, we explored the numerous aspects of exosomes from structure to clinical implications with special emphasis on their application in delivering RNAi-based therapeutics. siRNA and miRNA have attracted great interest in recent years due to their specific application in treating many complex diseases including cancer. We highlight strategies to obviate the challenges of their low bioavailability for gene therapy.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology Campus, Anand Nagar, Raisen Road, Bhopal 462021, Madhya Pradesh, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Antony D'Emanuele
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
45
|
Elkin I, Banquy X, Barrett CJ, Hildgen P. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development. J Control Release 2017; 264:288-305. [DOI: 10.1016/j.jconrel.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
|
46
|
Afsharzadeh M, Hashemi M, Mokhtarzadeh A, Abnous K, Ramezani M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1095-1110. [PMID: 28954547 DOI: 10.1080/21691401.2017.1376675] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is a broad term for a class of prevalent diseases as one in three people develop cancer during their lifetime. Although, there are few success stories of cancer therapy, most of the existing medications do not lead to complete recovery. Because of the complexity of cancer, usually a single therapeutic approach is insufficient for the suppression of cancer growth and metastasis. Simultaneous loading and co-delivery of different agents with different physiochemical characteristics to the same tumors have been suggested for minimizing the dose of anticancer drugs and achieving the synergistic therapeutic impacts in cancers treatment. Intense work to develop nanotechnology-based systems as a suitable option for cancer treatment is currently underway. The purpose of this review is to provide an overview of the co-delivery systems based on polymeric nanoparticles including polymeric micelles, dendrimers, poly-d,l-lactide-co-glycolide, polyethylenimine, poly(l-lysine) and chitosan for efficacious cancer therapy.
Collapse
Affiliation(s)
- Maryam Afsharzadeh
- a Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Hashemi
- b Nanotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Ahad Mokhtarzadeh
- c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Biotechnology , Higher Education Institute of Rab-Rashid , Tabriz , Iran
| | - Khalil Abnous
- e Department of Pharmaceutical Biotechnology, Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- e Department of Pharmaceutical Biotechnology, Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
47
|
Yang T, Wu Z, Wang P, Mu T, Qin H, Zhu Z, Wang J, Sui L. A large-inner-diameter multi-walled carbon nanotube-based dual-drug delivery system with pH-sensitive release properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:110. [PMID: 28589526 DOI: 10.1007/s10856-017-5920-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
A novel dual-drug delivery system (DDDS) for cancer chemotherapy has been established by employing highly purified and mildly oxidized large-inner-diameter multi-walled carbon nanotubes (LID-MWCNTs) as the vector. The LID-MWCNTs were modified with the antitumor drugs, cisplatin (CDDP) and doxorubicin (DOX). CDDP was encapsulated inside the nanotube vectors by a wet-chemical approach while DOX was attached to the external surfaces through non-covalently interaction. The loading efficiencies of CDDP and DOX were as high as 84.56 and 192.67%, respectively. Notably, after CDDP was encapsulated inside the nanotubes, a three-level blocking strategy, which included polyethylene glycol, folic acid and DOX, was employed to block the CDDP exits at different levels. The pH-sensitive release profile of CDDP was demonstrated using a modified characterization method, as well as that of DOX. Finally, the anticancer activity of the DDDS on MCF-7 cells was tested and a synergistic effect was recorded. This work is part of our LID-MWCNTs based drug delivery system studies, and provides a basis for developing a novel comprehensive antitumor treatment that combines chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Tao Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, China No.14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, China
| | - Zhenzhen Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China No.14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, China
| | - Pingting Wang
- School of Stomatology, Tianjin Medical University, China No.12, Qixiangtai Rd. Heping District, Tianjin, 300070, China
| | - Tingting Mu
- School of Stomatology, Tianjin Medical University, China No.12, Qixiangtai Rd. Heping District, Tianjin, 300070, China
| | - Han Qin
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, China No.14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, China
| | - Zhimin Zhu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, China No.14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, China
| | - Jian Wang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, China No.14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, China
| | - Lei Sui
- School of Stomatology, Tianjin Medical University, China No.12, Qixiangtai Rd. Heping District, Tianjin, 300070, China.
| |
Collapse
|
48
|
|
49
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
50
|
Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 2017; 253:46-63. [DOI: 10.1016/j.jconrel.2017.02.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
|