1
|
Hernandez D, Nam T, Lee E, Lee JJ, Kim K, Kim KN. Design of multi-modal antenna arrays for microwave hyperthermia and 1H/1⁹F MRI monitoring of drug release. PLoS One 2024; 19:e0312343. [PMID: 39446902 PMCID: PMC11501028 DOI: 10.1371/journal.pone.0312343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
This simulation-based study presented a novel hybrid RF antenna array designed for neck cancer treatment within a 7T MRI system. The proposed design aimed to provide microwave hyperthermia to release 19F-labeled anticancer drugs from thermosensitive liposomes, facilitating drug concentration monitoring through 19F imaging and enabling 1H anatomical imaging and MR thermometry for temperature control. The design featured a bidirectional microstrip for generating the magnetic |B1|-fields required for 1H and 19F MR imaging, along with a patch antenna for localized RF heating. The bidirectional microstrip was operated at 300 MHz and 280 MHz through the placement of excitation ports at the ends of the antenna and an asymmetric structure along the antenna. Additionally, a patch antenna was positioned at the center. Based on this setup, an array of six antennas was designed. Simulation results using a tissue-mimicking simulation model confirmed the intensity and uniformity of |B1|-fields for both 19F and 1H nuclei, demonstrating the suitability of the design for clinical imaging. RF heating from the patch antennas was effectively localized at the center of the cancer model. In simulations with a human model, average |B1|-fields were 0.21 μT for 19F and 0.12 μT for 1H, with normalized-absolute-average-deviation values of 81.75% and 87.74%, respectively. Hyperthermia treatment was applied at 120 W for 600 s, achieving an average temperature of 40.22°C in the cancer model with a perfusion rate of 1 ml/min/kg. This study demonstrated the potential of a hybrid antenna array for integrating 1H MR, 19F drug monitoring, and hyperthermia.
Collapse
Affiliation(s)
| | - Taewoo Nam
- Department of Health Sciences and Technology, GAIHST, Gachon University, South Korea
| | - Eunwoo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, South Korea
| | - Jae Jun Lee
- Non-Clinical Center, KBIO Osong Medical Innovation Foundation, Cheongju-si, Chungbuk, Korea
| | - Kisoo Kim
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Kyoung Nam Kim
- Department of Biomedical Engineering, Gachon University, Seongnam, South Korea
| |
Collapse
|
2
|
Prokhorova A, Helbig M. Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5902. [PMID: 39338647 PMCID: PMC11435978 DOI: 10.3390/s24185902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Hyperthermia induces slight temperature increase of 4-8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy tissue, methods for non-invasive temperature monitoring are needed. Temperature estimation by means of microwave imaging is of great interest among the scientific community. In this paper, we present the results of experiments based on ultra-wideband (UWB) M-sequence technology. Our temperature estimation approach uses temperature dependency of tissue dielectric properties and relation of UWB images to the reflection coefficient on the boundary between tissue types. The realistic measurement setup for neck cancer hyperthermia considers three antenna arrangements. Data are processed with Delay and Sum beamforming and Truncated Singular Value Decomposition. Two types of experiments are presented in this paper. In the first experiment, relative permittivity of subsequently replaced tumor mimicking material is estimated, and in the second experiment, real temperature change in the tumor imitate is monitored. The results showed that the presented approach allows for qualitative as well as quantitative permittivity and temperature estimation. The frequency range for temperature estimation, preferable antenna configurations, and limitations of the method are indicated.
Collapse
Affiliation(s)
- Alexandra Prokhorova
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Marko Helbig
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
3
|
Roohani S, Ehret F, Beck M, Veltsista DP, Nadobny J, Zschaeck S, Abdel-Rahman S, Eckert F, Flörcken A, Issels RD, Klöck S, Krempien R, Lindner LH, Notter M, Ott OJ, Pink D, Potkrajcic V, Reichardt P, Riesterer O, Spałek MJ, Stutz E, Wessalowski R, Zilli T, Zips D, Ghadjar P, Kaul D. Regional hyperthermia for soft tissue sarcoma - a survey on current practice, controversies and consensus among 12 European centers. Int J Hyperthermia 2024; 41:2342348. [PMID: 38653548 DOI: 10.1080/02656736.2024.2342348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE To analyze the current practice of regional hyperthermia (RHT) for soft tissue sarcoma (STS) at 12 European centers to provide an overview, find consensuses and identify controversies necessary for future guidelines and clinical trials. METHODS In this cross-sectional survey study, a 27-item questionnaire assessing clinical subjects and procedural details on RHT for STS was distributed to 12 European cancer centers for RHT. RESULTS We have identified seven controversies and five consensus points. Of 12 centers, 6 offer both, RHT with chemotherapy (CTX) or with radiotherapy (RT). Two centers only offer RHT with CTX and four centers only offer RHT with RT. All 12 centers apply RHT for localized, high-risk STS of the extremities, trunk wall and retroperitoneum. However, eight centers also use RHT in metastatic STS, five in palliative STS, eight for superficial STS and six for low-grade STS. Pretherapeutic imaging for RHT treatment planning is used by 10 centers, 9 centers set 40-43 °C as the intratumoral target temperature, and all centers use skin detectors or probes in body orifices for thermometry. DISCUSSION There is disagreement regarding the integration of RHT in contemporary interdisciplinary care of STS patients. Many clinical controversies exist that require a standardized consensus guideline and innovative study ideas. At the same time, our data has shown that existing guidelines and decades of experience with the technique of RHT have mostly standardized procedural aspects. CONCLUSIONS The provided results may serve as a basis for future guidelines and inform future clinical trials for RHT in STS patients.
Collapse
Affiliation(s)
- Siyer Roohani
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danai P Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Berlin, Germany
| | - Sultan Abdel-Rahman
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, AKH, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Anne Flörcken
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf D Issels
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stephan Klöck
- Department of Radiation Oncology, Lindenhofspital Bern, Bern, Switzerland
| | - Robert Krempien
- Clinic for Radiotherapy, HELIOS Klinikum Berlin-Buch, Berlin, Germany
- MSB Medical School Berlin, Fakultät für Medizin, Berlin, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Notter
- Department of Radiation Oncology, Lindenhofspital Bern, Bern, Switzerland
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Daniel Pink
- Department of Medical Oncology, Helios Klinikum Bad Saarow, Bad Saarow, Germany
- Cinic for Internal Medicine C - Haematology and Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Peter Reichardt
- Department of Medical Oncology, Helios Klinikum Berlin-Buch, and Medical School Berlin, Berlin, Germany
| | - Oliver Riesterer
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Mateusz Jacek Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Radiotherapy I, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Emanuel Stutz
- Department of Radiation Oncology, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rüdiger Wessalowski
- Department of Paediatric Haematology and Oncology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland
- Facoltà di Scienze Biomediche, Università Della Svizzera Italiana (USI), Lugano, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
VilasBoas-Ribeiro I, Sumser K, Nouwens S, Feddersen T, Heemels W, van Rhoon GC, Paulides MM. Adapting Temperature Predictions to MR Imaging in Treatment Position to Improve Simulation-Guided Hyperthermia for Cervical Cancer. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:99-106. [PMID: 38445240 PMCID: PMC10914156 DOI: 10.1109/ojemb.2023.3321990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/13/2023] [Accepted: 09/21/2023] [Indexed: 03/07/2024] Open
Abstract
Hyperthermia treatment consists of elevating the temperature of the tumor to increase the effectiveness of radiotherapy and chemotherapy. Hyperthermia treatment planning (HTP) is an important tool to optimize treatment quality using pre-treatment temperature predictions. The accuracy of these predictions depends on modeling uncertainties such as tissue properties and positioning. In this study, we evaluated if HTP accuracy improves when the patient is imaged inside the applicator at the start of treatment. Because perfusion is a major uncertainty source, the importance of accurate treatment position and anatomy was evaluated using different perfusion values. Volunteers were scanned using MR imaging without ("planning setup") and with the MR-compatible hyperthermia device ("treatment setup"). Temperature-based quality indicators were used to assess the differences between the standard, apparent and the optimized hyperthermia dose. We conclude that pre-treatment imaging can improve HTP predictions accuracy but also, that tissue perfusion modelling is crucial if temperature-based optimization is applied.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam3015GDRotterdamThe Netherlands
| | - Kemal Sumser
- Care and Cure research lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical EngineeringEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Sven Nouwens
- Control System Technology Group, Department of Mechanical EngineeringEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Theresa Feddersen
- Department of Radiology & Nuclear Medicine, Erasmus MCUniversity Medical Center Rotterdam3015GDRotterdamThe Netherlands
| | - W.P.M.H. Heemels
- Control System Technology Group, Department of Mechanical EngineeringEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam3015GDRotterdamThe Netherlands
- Department of Applied Radiation and Isotopes, Reactor Institute DelftDelft University of Technology2629JBDelftThe Netherlands
| | - Margarethus M. Paulides
- Care and Cure research lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical EngineeringEindhoven University of Technology5600 MBEindhovenThe Netherlands
| |
Collapse
|
5
|
Bevacqua MT, Gaffoglio R, Bellizzi GG, Righero M, Giordanengo G, Crocco L, Vecchi G, Isernia T. Field and Temperature Shaping for Microwave Hyperthermia: Recent Treatment Planning Tools to Enhance SAR-Based Procedures. Cancers (Basel) 2023; 15:cancers15051560. [PMID: 36900351 PMCID: PMC10000666 DOI: 10.3390/cancers15051560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of the article is to provide a summary of the work carried out in the framework of a research project funded by the Italian Ministry of Research. The main goal of the activity was to introduce multiple tools for reliable, affordable, and high-performance microwave hyperthermia for cancer therapy. The proposed methodologies and approaches target microwave diagnostics, accurate in vivo electromagnetic parameters estimation, and improvement in treatment planning using a single device. This article provides an overview of the proposed and tested techniques and shows their complementarity and interconnection. To highlight the approach, we also present a novel combination of specific absorption rate optimization via convex programming with a temperature-based refinement method implemented to mitigate the effect of thermal boundary conditions on the final temperature map. To this purpose, numerical tests were carried out for both simple and anatomically detailed 3D scenarios for the head and neck region. These preliminary results show the potential of the combined technique and improvements in the temperature coverage of the tumor target with respect to the case wherein no refinement is adopted.
Collapse
Affiliation(s)
- Martina T. Bevacqua
- Department of Information Engineering, Infrastructures and Sustainable Energy, Università Mediterranea di Reggio Calabria, Via Graziella, 89124 Reggio di Calabria, Italy
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Viale G.P. Usberti, 181/A Pal.3, 43124 Parma, Italy
| | - Rossella Gaffoglio
- Advanced Computing, Photonics & Electromagnetics (CPE), Fondazione LINKS, 10138 Turin, Italy
| | - Gennaro G. Bellizzi
- Department of Information Engineering, Infrastructures and Sustainable Energy, Università Mediterranea di Reggio Calabria, Via Graziella, 89124 Reggio di Calabria, Italy
- Correspondence: (G.G.B.); (T.I.)
| | - Marco Righero
- Advanced Computing, Photonics & Electromagnetics (CPE), Fondazione LINKS, 10138 Turin, Italy
| | - Giorgio Giordanengo
- Advanced Computing, Photonics & Electromagnetics (CPE), Fondazione LINKS, 10138 Turin, Italy
| | - Lorenzo Crocco
- National Research Council of Italy (CNR), Istituto per il Rilevamento Elettromagnetico dell’ Ambiente, CNR-IREA, Via Diocleziano 308, 80100 Napoli, Italy
| | - Giuseppe Vecchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Tommaso Isernia
- Department of Information Engineering, Infrastructures and Sustainable Energy, Università Mediterranea di Reggio Calabria, Via Graziella, 89124 Reggio di Calabria, Italy
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Viale G.P. Usberti, 181/A Pal.3, 43124 Parma, Italy
- National Research Council of Italy (CNR), Istituto per il Rilevamento Elettromagnetico dell’ Ambiente, CNR-IREA, Via Diocleziano 308, 80100 Napoli, Italy
- Correspondence: (G.G.B.); (T.I.)
| |
Collapse
|
6
|
Fiorito M, Yushchenko M, Cicolari D, Sarracanie M, Salameh N. Fast, interleaved, Look-Locker-based T 1 mapping with a variable averaging approach: Towards temperature mapping at low magnetic field. NMR IN BIOMEDICINE 2023; 36:e4826. [PMID: 36057925 PMCID: PMC10078420 DOI: 10.1002/nbm.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Proton resonance frequency shift (PRFS) is currently the gold standard method for magnetic resonance thermometry. However, the linearity between the temperature-dependent phase accumulation and the static magnetic field B0 confines its use to rather high-field scanners. Applications such as thermal therapies could naturally benefit from lower field MRI settings through leveraging increased accessibility, a lower physical and economical footprint, and further consideration of the technical challenges associated with the integration of heating systems into conventional clinical scanners. T 1 -based thermometry has been proposed as an alternative to the gold standard; however, because of longer acquisition times, it has found clinical use solely with adipose tissue where PRFS fails. At low field, the enhanced T 1 dispersion, combined with reduced relaxation times, make T 1 mapping an appealing candidate. Here, an interleaved Look-Locker-based T 1 mapping sequence was proposed for temperature quantification at 0.1 T. A variable averaging scheme was introduced, to maximize the signal-to-noise ratio throughout T 1 recovery. In calibrated samples, an average T 1 accuracy of 85% ± 4% was achieved in 10 min, compared with the 77% ± 7% obtained using a standard averaging scheme. Temperature maps between 29.0 and 41.7°C were eventually reconstructed, with a precision of 3.0 ± 1.1°C and an accuracy of 1.5 ± 1.0°C. Accounting for longer thermal treatments and less strict temperature constraints, applications such as MR-guided mild hyperthermia treatments at low field could be envisioned.
Collapse
Affiliation(s)
- Marco Fiorito
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| | - Maksym Yushchenko
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| | | | - Mathieu Sarracanie
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| | - Najat Salameh
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| |
Collapse
|
7
|
Feddersen TV, Poot DHJ, Paulides MM, Salim G, van Rhoon GC, Hernandez-Tamames JA. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Int J Hyperthermia 2023; 40:2184399. [PMID: 36907223 DOI: 10.1080/02656736.2023.2184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
PURPOSE MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure Research Lab, Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ghassan Salim
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Imaging Physics, Applied Physics Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
VilasBoas-Ribeiro I, Franckena M, van Rhoon GC, Hernández-Tamames JA, Paulides MM. Using MRI to measure position and anatomy changes and assess their impact on the accuracy of hyperthermia treatment planning for cervical cancer. Int J Hyperthermia 2022; 40:2151648. [PMID: 36535922 DOI: 10.1080/02656736.2022.2151648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We studied the differences between planning and treatment position, their impact on the accuracy of hyperthermia treatment planning (HTP) predictions, and the relevance of including true treatment anatomy and position in HTP based on magnetic resonance (MR) images. MATERIALS AND METHODS All volunteers were scanned with an MR-compatible hyperthermia device, including a filled waterbolus, to replicate the treatment setup. In the planning setup, the volunteers were scanned without the device to reproduce the imaging in the current HTP. First, we used rigid registration to investigate the patient position displacements between the planning and treatment setup. Second, we performed HTP for the planning anatomy at both positions and the treatment mimicking anatomy to study the effects of positioning and anatomy on the quality of the simulated hyperthermia treatment. Treatment quality was evaluated using SAR-based parameters. RESULTS We found an average displacement of 2 cm between planning and treatment positions. These displacements caused average absolute differences of ∼12% for TC25 and 10.4%-15.9% in THQ. Furthermore, we found that including the accurate treatment position and anatomy in treatment planning led to an improvement of 2% in TC25 and 4.6%-10.6% in THQ. CONCLUSIONS This study showed that precise patient position and anatomy are relevant since these affect the accuracy of HTP predictions. The major part of improved accuracy is related to implementing the correct position of the patient in the applicator. Hence, our study shows a clear incentive to accurately match the patient position in HTP with the actual treatment.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernández-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Care and Cure research lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Drizdal T, Paulides MM, Sumser K, Vrba D, Malena L, Vrba J, Fiser O, van Rhoon GC. Application of photogrammetry reconstruction for hyperthermia quality control measurements. Phys Med 2022; 101:87-94. [PMID: 35987024 DOI: 10.1016/j.ejmp.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Hyperthermia is a cancer treatment in which the target region is heated to temperatures of 40-44 °C usually applying external electromagnetic field sources. The behavior of the hyperthermia applicators (antennas) in clinical practice should be periodically checked with phantom experiments to verify the applicator's performance over time. The purpose of this study was to investigate the application of photogrammetry reconstructions of 3D applicator position in these quality control procedure measurements. METHODS Photogrammetry reconstruction was applied at superficial hyperthermia scenario using the Lucite cone applicator (LCA) and phased-array heating in the head and neck region using the HYPERcollar3D. Wire-frame models of the entire measurement setups were created from multiple-view images and used for recreation of the setup inside 3D electromagnetic field simulation software. We evaluated applicator relation (Ra) between measured and simulated absolute specific absorption rate (SAR) for manually created and photogrammetry reconstructed simulation setups. RESULTS We found a displacement of 7.9 mm for the LCA and 8.2 mm for the HYPERcollar3D setups when comparing manually created and photogrammetry reconstructed applicator models placements. Ra improved from 1.24 to 1.18 for the LCA and from 1.17 to 1.07 for the HYPERcollar3D when using photogrammetry reconstructed simulation setups. CONCLUSION Photogrammetry reconstruction technique holds promise to improve measurement setup reconstruction and agreement between measured and simulated absolute SAR.
Collapse
Affiliation(s)
- Tomas Drizdal
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic; Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - Margarethus M Paulides
- Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Dept. of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, the Netherlands
| | - Kemal Sumser
- Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - David Vrba
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Lukas Malena
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Jan Vrba
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Ondrej Fiser
- Dept. of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Gerard C van Rhoon
- Hyperthermia Unit, Dept. of Radiation Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
10
|
Nouwens SAN, Paulides MM, Fölker J, VilasBoas-Ribeiro I, de Jager B, Heemels WPMH. Integrated thermal and magnetic susceptibility modeling for air-motion artifact correction in proton resonance frequency shift thermometry. Int J Hyperthermia 2022; 39:967-976. [PMID: 35853735 DOI: 10.1080/02656736.2022.2094475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE Hyperthermia treatments are successful adjuvants to conventional cancer therapies in which the tumor is sensitized by heating. To monitor and guide the hyperthermia treatment, measuring the tumor and healthy tissue temperature is important. The typical clinical practice heavily relies on intraluminal probe measurements that are uncomfortable for the patient and only provide spatially sparse temperature information. A solution may be offered through recent advances in magnetic resonance thermometry, which allows for three-dimensional internal temperature measurements. However, these measurements are not widely used in the pelvic region due to a low signal-to-noise ratio and presence of image artifacts. METHODS To advance the clinical integration of magnetic resonance-guided cancer treatments, we consider the problem of removing air-motion-induced image artifacts. Thereto, we propose a new combined thermal and magnetic susceptibility model-based temperature estimation scheme that uses temperature estimates to improve the removal of air-motion-induced image artifacts. The method is experimentally validated using a dedicated phantom that enables the controlled injection of air-motion artifacts and with in vivo thermometry from a clinical hyperthermia treatment. RESULTS We showed, using probe measurements in a heated phantom, that our method reduced the mean absolute error (MAE) by 58% compared to the state-of-the-art near a moving air volume. Moreover, with in vivo thermometry our method obtained a MAE reduction between 17% and 95% compared to the state-of-the-art. CONCLUSION We expect that the combined thermal and magnetic susceptibility modeling used in model-based temperature estimation can significantly improve the monitoring in hyperthermia treatments and enable feedback strategies to further improve MR-guided hyperthermia cancer treatments.
Collapse
Affiliation(s)
- S A N Nouwens
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - M M Paulides
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Fölker
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - I VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - B de Jager
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
11
|
VilasBoas-Ribeiro I, Nouwens SAN, Curto S, Jager BD, Franckena M, van Rhoon GC, Heemels WPMH, Paulides MM. POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia. Med Phys 2022; 49:4955-4970. [PMID: 35717578 PMCID: PMC9545729 DOI: 10.1002/mp.15811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Background During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39–44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance (MR) thermometry is currently the only clinical method to measure temperature noninvasively in a volume during treatment. However, several studies have shown that this approach is not always sufficiently accurate for thermal dosimetry in areas with motion, such as the pelvic region. Model‐based temperature estimation is a promising approach to correct and supplement 3D online temperature estimation in regions where MR thermometry is unreliable or cannot be measured. However, complete 3D temperature modeling of the pelvic region is too complex for online usage. Purpose This study aimed to evaluate the use of proper orthogonal decomposition (POD) model reduction combined with Kalman filtering to improve temperature estimation using MR thermometry. Furthermore, we assessed the benefit of this method using data from hyperthermia treatment where there were limited and unreliable MR thermometry measurements. Methods The performance of POD–Kalman filtering was evaluated in several heating experiments and for data from patients treated for locally advanced cervical cancer. For each method, we evaluated the mean absolute error (MAE) concerning the temperature measurements acquired by the thermal probes, and we assessed the reproducibility and consistency using the standard deviation of error (SDE). Furthermore, three patient groups were defined according to susceptibility artifacts caused by the level of intestinal gas motion to assess if the POD–Kalman filtering could compensate for missing and unreliable MR thermometry measurements. Results First, we showed that this method is beneficial and reproducible in phantom experiments. Second, we demonstrated that the combined method improved the match between temperature prediction and temperature acquired by intraluminal thermometry for patients treated for locally advanced cervical cancer. Considering all patients, the POD–Kalman filter improved MAE by 43% (filtered MR thermometry = 1.29°C, POD–Kalman filtered temperature = 0.74°C). Moreover, the SDE was improved by 47% (filtered MR thermometry = 1.16°C, POD–Kalman filtered temperature = 0.61°C). Specifically, the POD–Kalman filter reduced the MAE by approximately 60% in patients whose MR thermometry was unreliable because of the great amount of susceptibilities caused by the high level of intestinal gas motion. Conclusions We showed that the POD–Kalman filter significantly improved the accuracy of temperature monitoring compared to MR thermometry in heating experiments and hyperthermia treatments. The results demonstrated that POD–Kalman filtering can improve thermal dosimetry during RF hyperthermia treatment, especially when MR thermometry is inaccurate.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sven A N Nouwens
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bram de Jager
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - W P M H Heemels
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Care and Cure Research Lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers (Basel) 2022; 14:cancers14030625. [PMID: 35158893 PMCID: PMC8833668 DOI: 10.3390/cancers14030625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Hyperthermia (HT) is a cancer treatment modality which targets malignant tissues by heating to 40-43 °C. In addition to its direct antitumor effects, HT potently sensitizes the tumor to radiotherapy (RT) and chemotherapy (CT), thereby enabling complete eradication of some tumor entities as shown in randomized clinical trials. Despite the proven efficacy of HT in combination with classic cancer treatments, there are limited international standards for the delivery of HT in the clinical setting. Consequently, there is a large variability in reported data on thermometric parameters, including the temperature obtained from multiple reference points, heating duration, thermal dose, time interval, and sequence between HT and other treatment modalities. Evidence from some clinical trials indicates that thermal dose, which correlates with heating time and temperature achieved, could be used as a predictive marker for treatment efficacy in future studies. Similarly, other thermometric parameters when chosen optimally are associated with increased antitumor efficacy. This review summarizes the existing clinical evidence for the prognostic and predictive role of the most important thermometric parameters to guide the combined treatment of RT and CT with HT. In conclusion, we call for the standardization of thermometric parameters and stress the importance for their validation in future prospective clinical studies.
Collapse
|
13
|
Sumser K, Drizdal T, Bellizzi GG, Hernandez-Tamames JA, van Rhoon GC, Paulides MM. Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region. Cancers (Basel) 2021; 13:5617. [PMID: 34830773 PMCID: PMC8615935 DOI: 10.3390/cancers13225617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40-44 °C for 60-90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<-15 dB) and the intended low interaction between the individual antenna modules (<-32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR-hyperthermia in the H&N and is ready for in vivo investigation.
Collapse
Affiliation(s)
- Kemal Sumser
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Tomas Drizdal
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
- Department of Biomedical Technology, Czech Technical University in Prague, nam. Sítna 3105, 272 01 Kladno, Czech Republic
| | - Gennaro G. Bellizzi
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Juan A. Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Margarethus Marius Paulides
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
14
|
VilasBoas-Ribeiro I, Curto S, van Rhoon GC, Franckena M, Paulides MM. MR Thermometry Accuracy and Prospective Imaging-Based Patient Selection in MR-Guided Hyperthermia Treatment for Locally Advanced Cervical Cancer. Cancers (Basel) 2021; 13:3503. [PMID: 34298716 PMCID: PMC8303939 DOI: 10.3390/cancers13143503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The efficacy of a hyperthermia treatment depends on the delivery of well-controlled heating; hence, accurate temperature monitoring is essential for ensuring effective treatment. For deep pelvic hyperthermia, there are no comprehensive and systematic reports on MR thermometry. Moreover, data inclusion generally lacks objective selection criteria leading to a high probability of bias when comparing results. Herein, we studied whether imaging-based data inclusion predicts accuracy and could serve as a tool for prospective patient selection. The accuracy of the MR thermometry in patients with locally advanced cervical cancer was benchmarked against intraluminal temperature. We found that gastrointestinal air motion at the start of the treatment, quantified by the Jaccard similarity coefficient, was a good predictor for MR thermometry accuracy. The results for the group that was selected for low gastrointestinal air motion improved compared to the results for all patients by 50% (accuracy), 26% (precision), and 80% (bias). We found an average MR thermometry accuracy of 2.0 °C when all patients were considered and 1.0 °C for the selected group. These results serve as the basis for comprehensive benchmarking of novel technologies. The Jaccard similarity coefficient also has good potential to prospectively determine in which patients the MR thermometry will be valuable.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
| | - Margarethus M. Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.); (M.F.); (M.M.P.)
- Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Ayaş AO, Seçilmiş E, Ekicibil A. New application area for magnetocaloric materials: Hyperthermia method. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Prokhorova A, Ley S, Helbig M. Quantitative Interpretation of UWB Radar Images for Non-Invasive Tissue Temperature Estimation during Hyperthermia. Diagnostics (Basel) 2021; 11:diagnostics11050818. [PMID: 33946581 PMCID: PMC8147219 DOI: 10.3390/diagnostics11050818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
The knowledge of temperature distribution inside the tissue to be treated is essential for patient safety, workflow and clinical outcomes of thermal therapies. Microwave imaging represents a promising approach for non-invasive tissue temperature monitoring during hyperthermia treatment. In the present paper, a methodology for quantitative non-invasive tissue temperature estimation based on ultra-wideband (UWB) radar imaging in the microwave frequency range is described. The capabilities of the proposed method are demonstrated by experiments with liquid phantoms and three-dimensional (3D) Delay-and-Sum beamforming algorithms. The results of our investigation show that the methodology can be applied for detection and estimation of the temperature induced dielectric properties change.
Collapse
|
17
|
Simulation Study on Performance Optimization of Magnetic Nanoparticles DC Thermometry Model. SENSORS 2021; 21:s21072404. [PMID: 33807200 PMCID: PMC8037848 DOI: 10.3390/s21072404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles (MNPs) can work as temperature sensors to realize temperature measurement due to the excellent temperature sensitivity of their magnetization. This paper mainly reports on a performance optimization method of MNPs DC thermometry model. Firstly, by exploring the influencing factors of MNPs magnetization temperature sensitivity, it is found that the optimal excitation of the magnetic field to make the temperature sensitivity of MNPs reach their optimal value is, approximately, inversely proportional to the particle size of MNPs. Then, the temperature sensitivity of MNP magnetization is modulated by adding appropriate DC bias magnetic field in the original triangular wave excitation field, to optimize the original DC thermometry model based on MNP magnetization. The simulation results show that the temperature measurement performance of small-size MNPs can be significantly improved. In short, this paper optimizes the temperature measurement performance of the original DC thermometry model based on MNP magnetization and provides a new application idea for temperature measurement of small-size MNPs.
Collapse
|
18
|
Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review. J Neurooncol 2021; 152:419-428. [PMID: 33713248 DOI: 10.1007/s11060-021-03729-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hyperthermia therapy (HT) is a recognized treatment modality, that can sensitize tumors to the effects of radiotherapy (RT) and chemotherapy by heating up tumor cells to 40-45 °C. The advantages of noninvasive inductive magnetic hyperthermia (MH) over RT or chemotherapy in the treatment of recurrent/progressive glioma have been confirmed by several clinical trials. Thus, here we have conducted a systematic review to provide a concise, albeit brief, account of the currently available literature regarding this topic. METHODS Five databases, PubMed/Medline, Embace, Ovid, WOS, and Scopus, were investigated to identify clinical studies comparing overall survival (OS) following RT/chemotherapy versus RT/chemotherapy + MH. RESULTS Eleven articles were selected for this systematic review, including reports on 227 glioma patients who met the study inclusion criteria. The papers included in this review comprised nine pilot clinical trials, one non-randomized clinical trial, and one retrospective investigation. As the clinical trials suggested, MH improved OS in primary glioblastoma (GBM), however, in the case of recurrent glioblastoma, no significant change in OS was reported. All 11 studies ascertained that no major side effects were observed during MH therapy. CONCLUSION Our systematic review indicates that MH therapy as an adjuvant for RT could result in improved survival, compared to the therapeutic outcomes achieved with RT alone in GBM, especially by intratumoral injection of magnetic nanoparticles. However, heterogeneity in the methodology of the most well-known studies, and differences in the study design may significantly limit the extent to which conclusions can be drawn. Thus, further investigations are required to shed more light on the efficacy of MH therapy as an adjuvant treatment modality in GBM.
Collapse
|
19
|
Drizdal T, Sumser K, Bellizzi GG, Fiser O, Vrba J, Rhoon GCV, Yeo DTB, Margarethus M Paulides. Simulation guided design of the MRcollar: a MR compatible applicator for deep heating in the head and neck region. Int J Hyperthermia 2021; 38:382-392. [PMID: 33682594 DOI: 10.1080/02656736.2021.1892836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To develop a head and neck hyperthermia phased array system compatible with a 1.5 T magnetic resonance (MR) scanner for noninvasive thermometry. METHODS We designed a dielectric-parabolic-reflector antenna (DiPRA) based on a printed reflector backed dipole antenna and studied its predicted and measured performance in a flat configuration (30 mm thick water bolus and muscle equivalent layer). Thereafter, we designed a phased array applicator model ('MRcollar') consisting of 12 DiPRA modules placed on a radius of 180 mm. Theoretical heating performance of the MRcollar model was benchmarked against the current clinical applicator (HYPERcollar3D) using specific (3D) head and neck models of 28 treated patients. Lastly, we assessed the influence of the DiPRA modules on MR scanning quality. RESULTS The predicted and measured reflection coefficients (S11) of the DiPRA module are below -20 dB. The maximum specific absorption rate (SAR) in the area under the antenna was 47% higher than for the antenna without encasing. Compared to the HYPERcollar3D, the MRcollar design incorporates 31% less demineralized water (-2.5 L), improves the predicted TC25 (target volume enclosed by 25% iso-SAR contour) by 4.1% and TC50 by 8.5%, while the target-to-hotspot quotient (THQ) is minimally affected (-1.6%). MR experiments showed that the DiPRA modules do not affect MR transmit/receive performance. CONCLUSION Our results suggest that head and neck hyperthermia delivery quality with the MRcollar can be maintained, while facilitating simultaneous noninvasive MR thermometry for treatment monitoring and control.
Collapse
Affiliation(s)
- Tomas Drizdal
- Hyperthermia Unit, Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic, Kladno, Czech Republic in Prague
| | - Kemal Sumser
- Hyperthermia Unit, Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Gennaro G Bellizzi
- Hyperthermia Unit, Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Information Engineering, Infrastructures and Sustainable Energy, Universita Mediterranea di Reggio Calabria, Reggio di Calabria, Italy
| | - Ondrej Fiser
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic, Kladno, Czech Republic in Prague
| | - Jan Vrba
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic, Kladno, Czech Republic in Prague
| | - Gerard C van Rhoon
- Hyperthermia Unit, Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Desmond T B Yeo
- Imaging and Bioelectronic Technologies, GE Global Research Centre, Niskayuna, NY, USA
| | - Margarethus M Paulides
- Hyperthermia Unit, Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
20
|
van der Horst A, Kok HP, Crezee J. Effect of gastrointestinal gas on the temperature distribution in pancreatic cancer hyperthermia treatment planning. Int J Hyperthermia 2021; 38:229-240. [PMID: 33602033 DOI: 10.1080/02656736.2021.1882709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE In pancreatic cancer treatment, hyperthermia can be added to increase efficacy of chemo- and/or radiotherapy. Gas in stomach, intestines and colon is often in close proximity to the target volume. We investigated the impact of variations in gastrointestinal gas (GG) on temperature distributions during simulated hyperthermia treatment (HT). METHODS We used sets of one CT and eight cone-beam CT (CBCT) scans obtained prior to/during fractionated image-guided radiotherapy in four pancreatic cancer patients. In Plan2Heat, we simulated locoregional heating by an ALBA-4D phased array radiofrequency system and calculated temperature distributions for (i) the segmented CT (sCT), (ii) sCT with GG replaced by muscle (sCT0), (iii) sCT0 with eight different GG distributions as visible on CBCT inserted (sCTCBCT). We calculated cumulative temperature-volume histograms for the clinical target volume (CTV) for all ten temperature distributions for each patient and investigated the relationship between GG volume and change in ΔT50 (temperature increase at 50% of CTV volume). We determined location and volume of normal tissue receiving a high thermal dose. RESULTS GG volume on CBCT varied greatly (9-991 cm3). ΔT50 increased for increasing GG volume; maximum ΔT50 difference per patient was 0.4-0.6 °C. The risk for GG-associated treatment-limiting hot spots appeared low. Normal tissue high-temperature regions mostly occurred anteriorly; their volume and maximum temperature showed moderate positive correlations with GG volume, while fat-muscle interfaces were associated with higher risks for hot spots. CONCLUSIONS Considerable changes in volume and position of gastrointestinal gas can occur and are associated with clinically relevant tumor temperature differences.
Collapse
Affiliation(s)
- Astrid van der Horst
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Sumser K, Bellizzi GG, Forner R, Drizdal T, Tamames JAH, van Rhoon GC, Paulides MM. Dual-Function MR-Guided Hyperthermia: An Innovative Integrated Approach and Experimental Demonstration of Proof of Principle. IEEE Trans Biomed Eng 2020; 68:712-717. [PMID: 32746075 DOI: 10.1109/tbme.2020.3012734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperature monitoring plays a central role in improving clinical effectiveness of adjuvant hyperthermia. The potential of magnetic resonance thermometry for treatment monitoring purposes led to several MR-guided hyperthermia approaches. However, the proposed solutions were sub-optimal due to technological and intrinsic limitations. These hamper achieving target conformal heating possibilities (applicator limitations) and accurate thermometry (inadequate signal-to-noise-ratio (SNR)). In this work, we studied proof of principle of a dual-function hyperthermia approach based on a coil array (64 MHz, 1.5 T) that is integrated in-between a phased array for heating (434 MHz) for maximum signal receive in order to improve thermometry accuracy. Hereto, we designed and fabricated a superficial hyperthermia mimicking planar array setup to study the most challenging interactions of generic phased-array setups in order to validate the integrated approach. Experiments demonstrated that the setup complies with the superficial hyperthermia guidelines for heating and is able to improve SNR at 2-4 cm depth by 17%, as compared to imaging using the body coil. Hence, the results showed the feasibility of our dual-function MR-guided hyperthermia approach as basis for the development of application specific setups.
Collapse
|
22
|
Han H, Eigentler TW, Wang S, Kretov E, Winter L, Hoffmann W, Grass E, Niendorf T. Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers (Basel) 2020; 12:cancers12071720. [PMID: 32605322 PMCID: PMC7408155 DOI: 10.3390/cancers12071720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SGPLL). The SGPLL was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SGPLL. Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SGPLL revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SGPLL and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SGPLL form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment.
Collapse
Affiliation(s)
- Haopeng Han
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (H.H.); (T.W.E.); (E.K.)
- Humboldt-Universität zu Berlin, Institute of Computer Science, 10099 Berlin, Germany;
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (H.H.); (T.W.E.); (E.K.)
- Technische Universität Berlin, Chair of Medical Engineering, 10623 Berlin, Germany
| | - Shuailin Wang
- Beijing Deepvision Technology Co., Ltd., Beijing 100085, China;
| | - Egor Kretov
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (H.H.); (T.W.E.); (E.K.)
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (L.W.); (W.H.)
| | - Werner Hoffmann
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (L.W.); (W.H.)
| | - Eckhard Grass
- Humboldt-Universität zu Berlin, Institute of Computer Science, 10099 Berlin, Germany;
- IHP—Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (H.H.); (T.W.E.); (E.K.)
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
- Correspondence: ; Tel.: +49-30-9406-4505
| |
Collapse
|
23
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
24
|
Sumser K, Bellizzi GG, van Rhoon GC, Paulides MM. The Potential of Adjusting Water Bolus Liquid Properties for Economic and Precise MR Thermometry Guided Radiofrequency Hyperthermia. SENSORS 2020; 20:s20102946. [PMID: 32456027 PMCID: PMC7288164 DOI: 10.3390/s20102946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/23/2022]
Abstract
The potential of MR thermometry (MRT) fostered the development of MRI compatible radiofrequency (RF) hyperthermia devices. Such device integration creates major technological challenges and a crucial point for image quality is the water bolus (WB). The WB is located between the patient body and external sources to both couple electromagnetic energy and to cool the patient skin. However, the WB causes MRT errors and unnecessarily large field of view. In this work, we studied making the WB MRI transparent by an optimal concentration of compounds capable of modifying T2* relaxation without an impact on the efficiency of RF heating. Three different T2* reducing compounds were investigated, namely CuSO4, MnCl2, and Fe3O4. First, electromagnetic properties and T2* relaxation rates at 1.5 T were measured. Next, through multi-physics simulations, the predicted effect on the RF-power deposition pattern was evaluated and MRT precision was experimentally assessed. Our results identified 5 mM Fe3O4 solution as optimal since it does not alter the RF-power level needed and improved MRT precision from 0.39 °C to 0.09 °C. MnCl2 showed a similar MRT improvement, but caused unacceptable RF-power losses. We conclude that adding Fe3O4 has significant potential to improve RF hyperthermia treatment monitoring under MR guidance.
Collapse
Affiliation(s)
- Kemal Sumser
- Department of Radiation Oncology, Erasmus MC—Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.G.B.); (G.C.v.R.); (M.M.P.)
- Correspondence:
| | - Gennaro G. Bellizzi
- Department of Radiation Oncology, Erasmus MC—Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Gerard C. van Rhoon
- Department of Radiation Oncology, Erasmus MC—Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Margarethus M. Paulides
- Department of Radiation Oncology, Erasmus MC—Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (G.G.B.); (G.C.v.R.); (M.M.P.)
- EM4C&C Laboratory, Center for Care & Cure Technology Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
25
|
A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy. Adv Drug Deliv Rev 2020; 163-164:145-156. [PMID: 32247801 DOI: 10.1016/j.addr.2020.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Hyperthermia, i.e. heating the tumor to a temperature of 40-43 °C is considered by many a valuable treatment to sensitize tumor cells to radiotherapy and chemotherapy. In recent randomized trials the great potential of adding hyperthermia to chemotherapy was demonstrated for treatment of high risk soft tissue sarcoma: +11.4% 5 yrs. overall survival (OS) and for ovarian cancer with peritoneal involvement nearly +12 months OS gain. As a result interest in combining chemotherapy with hyperthermia, i.e. thermochemotherapy, is growing. Extensive biological research has revealed that hyperthermia causes multiple effects, from direct cell kill to improved oxygenation, whereby each effect has a specific temperature range. Thermal sensitization of the tumor cell for chemotherapy occurs for many drugs at temperatures ranging from 40 to 42 °C with little additional increase of sensitization at higher temperatures. Increasing perfusion/oxygenation and increased extravasation are two other important hyperthermia induced mechanisms. The combination of free drug and hyperthermia has not been found to increase tumor drug concentration. Hence, enhanced effectiveness of free drug will depend on the thermal sensitization of the tumor cells for the applied drug. In contrast to free drugs, experimental animal studies combining hyperthermia and thermo-sensitive liposomal (TSL) drugs delivery have demonstrated to result in a substantial increase of the drug concentration in the tumor. For TSL based chemotherapy, hyperthermia is critical to both increase perfusion and extravasation as well as to trigger TSL drug release, whereby the temperature controlled induction of a local high drug concentration in a highly permeable vessel is driving the enhanced drug uptake in the tumor. Increased drug concentrations up to 26 times have been reported in rodents. Good control of the tissue temperature is required to keep temperatures below 43 °C to prevent vascular stasis. Further, careful timing of the drug application relative to the start of heating is required to benefit optimal from the combined treatment. From the available experimental data it follows that irrespective whether chemotherapy is applied as free drug or using a thermal sensitive liposomal carrier, the optimal thermal dose for thermochemotherapy should be 40-42 °C for 30-60 min, i.e. equivalent to a CEM43 of 1-15 min. Timing is critical: most free drug should be applied simultaneous with heating, whereas TSL drugs should be applied 20-30 min after the start of hyperthermia.
Collapse
|
26
|
Paulides M, Dobsicek Trefna H, Curto S, Rodrigues D. Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery. Adv Drug Deliv Rev 2020; 163-164:3-18. [PMID: 32229271 DOI: 10.1016/j.addr.2020.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022]
Abstract
Hyperthermia therapy is a potent enhancer of chemotherapy and radiotherapy. In particular, microwave (MW) and radiofrequency (RF) hyperthermia devices provide a variety of heating approaches that can treat most cancers regardless the size. This review introduces the physics of MW/RF hyperthermia, the current state-of-the-art systems for both localized and regional heating, and recent advancements in hyperthermia treatment guidance using real-time computational simulations and magnetic resonance thermometry. Clinical trials involving RF/MW hyperthermia as adjuvant for chemotherapy are also presented per anatomical site. These studies favor the use of adjuvant hyperthermia since it significantly improves curative and palliative clinical outcomes. The main challenge of hyperthermia is the distribution of state-of-the-art heating systems. Nevertheless, we anticipate that recent technology advances will expand the use of hyperthermia to chemotherapy centers for enhanced drug delivery. These new technologies hold great promise not only for (image-guided) perfusion modulation and sensitization for cytotoxic drugs, but also for local delivery of various compounds using thermosensitive liposomes.
Collapse
|