1
|
Stigliano RV, Danelyan I, Gabriadze G, Shoshiashvili L, Baker I, Hoopes PJ, Jobava R, Shubitidze F. Alternating magnetic field guiding system for MNP hyperthermia treatment of deep-seated cancers. Int J Hyperthermia 2024; 41:2391008. [PMID: 39205623 DOI: 10.1080/02656736.2024.2391008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Demonstrate the potential application of a novel, endoscope-like device to guide and focus an alternating magnetic field (AMF) for treating deep-seated cancers via magnetic nanoparticle hyperthermia (MNPH). METHODS AMF delivery, MNP activation, and eddy current distribution characteristics are investigated through experimental studies in phantoms and computational simulations using a full 3-dimensional human model. The 3D simulations compare the novel device to traditional AMF designs, including a MagForce-like, two-coil system (used clinically) and a single surface-coil system. RESULTS The results demonstrate that this approach can deliver the same magnetic field strength at the prostate's centroid as traditional AMF designs, while reducing eddy current heating by 2 to 6 times. At the same level of normal tissue heating, this method provides 5.0 times, 1.5 times, and 0.92 times the magnetic field strength to the nearest, centroid, and farthest regions of the prostate, respectively. CONCLUSIONS These results demonstrate proof-of-concept for an endoscopic magnetic field guiding and focusing system capable of delivering clinically relevant AMF from a distance. This innovative approach offers a promising alternative to conventional field delivery methods by directing AMF through the body, concentrating it in the tumor region, reducing eddy currents in surrounding healthy tissue, and avoiding exposure of nearby metallic implants.
Collapse
Affiliation(s)
| | | | | | - Levan Shoshiashvili
- Department of Electrical and Electronics Engineering, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Ian Baker
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | | | | |
Collapse
|
2
|
Rocha JVR, Krause RF, Ribeiro CE, Oliveira NCDA, Ribeiro de Sousa L, Leandro Santos J, Castro SDM, Valadares MC, Cunha Xavier Pinto M, Pavam MV, Lima EM, Antônio Mendanha S, Bakuzis AF. Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38973727 DOI: 10.1021/acsami.4c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261). Hybrid nanocarriers containing synthetic lipids and a cell membrane are designed. The biomedical applications of several systems are compared. The inorganic nanoparticle consisted of Mn-ferrite nanoparticles with a core diameter of 15 ± 4 nm. TEM images show many multicore nanostructures (∼40 nm), which correlate with the hydrodynamic size. Ultrahigh transverse relaxivity values are reported for the magnetic NPs, 746 mM-1s-1, decreasing respectively to 445 mM-1s-1 and 278 mM-1s-1 for the B16F10 and GL261 hybrid vesicles. The ratio of relaxivities r2/r1 decreased with the higher encapsulation of NPs and increased for the biomimetic liposomes. Therapeutic temperatures are achieved by both, magnetic nanoparticle hyperthermia and photothermal therapy. Photothermal conversion efficiency ∼25-30% are reported. Cell culture revealed lower wrapping times for the biomimetic vesicles. In vivo experiments with distinct routes of nanoparticle administration were investigated. Intratumoral injection proved the nanoparticle-mediated PTT efficiency. MRI and near-infrared images showed that the nanoparticles accumulate in the tumor after intravenous or intraperitoneal administration. Both routes benefit from MRI-guided PTT and demonstrate the multimodal theranostic applications for cancer therapy.
Collapse
Affiliation(s)
| | - Rafael Freire Krause
- Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
| | | | | | | | | | | | - Marize Campos Valadares
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Mauro Cunha Xavier Pinto
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
| | - Marcilia Viana Pavam
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Eliana Martins Lima
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Sebastião Antônio Mendanha
- Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| |
Collapse
|
3
|
Slayden O, Luo F, Park Y, Moses AS, Demessie AA, Singh P, Korzun T, Taratula O, Taratula O. Targeted nanoparticles for imaging and therapy of endometriosis†. Biol Reprod 2024; 110:1191-1200. [PMID: 38738758 PMCID: PMC11180615 DOI: 10.1093/biolre/ioae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.
Collapse
Affiliation(s)
- Ov Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| |
Collapse
|
4
|
Zahn D, Diegel M, Valitova A, Dellith J, Dutz S. Magnetic Barium Hexaferrite Nanoparticles with Tunable Coercivity as Potential Magnetic Heating Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:992. [PMID: 38921868 PMCID: PMC11206813 DOI: 10.3390/nano14120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Using magnetic nanoparticles (MNPs) for extracorporeal heating applications results in higher field strength and, therefore, particles of higher coercivity can be used, compared to intracorporeal applications. In this study, we report the synthesis and characterization of barium hexa-ferrite (BaFe12O19) nanoparticles as potential particles for magnetic heating. Using a precipitation method followed by high-temperature calcination, we first studied the influence of varied synthesis parameters on the particles' properties. Second, the iron-to-barium ratio (Fe/Ba = r) was varied between 2 and 12. Vibrating sample magnetometry, scanning electron microscopy and X-ray diffraction were used for characterization. A considerable influence of the calcination temperature (Tcal) was found on the resulting magnetic properties, with a decrease in coercivity (HC) from values above 370 kA/m for Tcal = 800-1000 °C to HC = 45-70 kA/m for Tcal = 1200 °C. We attribute this drop in HC mainly to the formation of entirely multi-domain particles at high Tcal. For the varying Fe/Ba ratios, increasing amounts of BaFe2O4 as an additional phase were detected by XRD in the small r (barium surplus) samples, lowering the particles' magnetization. A decrease in HC was found in the increased r samples. Crystal size ranged from 47 nm to 240 nm and large agglomerates were seen in SEM images. The reported particles, due to their controllable coercivity, can be a candidate for extracorporeal heating applications in the biomedical or biotechnological field.
Collapse
Affiliation(s)
- Diana Zahn
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, 98693 Ilmenau, Germany; (D.Z.); (A.V.)
| | - Marco Diegel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (M.D.); (J.D.)
| | - Alina Valitova
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, 98693 Ilmenau, Germany; (D.Z.); (A.V.)
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (M.D.); (J.D.)
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, 98693 Ilmenau, Germany; (D.Z.); (A.V.)
- Faculty of Physical Engineering/Computer Sciences, Leupold Institute for Applied Natural Science (LIAN), Westsächsische Hochschule Zwickau, 08056 Zwickau, Germany
| |
Collapse
|
5
|
Koshev N, Kapralov P, Evstigneeva S, Leontyev A, Lutsenko O, Zharkov M, Pyataev N, Darwish A, Timin A, Ostras M, Radchenko I, Sukhorukov G, Vetoshko P. YIG-Based Sensor System for Millisecond Time Range Magnetorelaxometry. IEEE Trans Biomed Eng 2024; 71:1640-1650. [PMID: 38133972 DOI: 10.1109/tbme.2023.3346203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In the current study we propose a magneto-optical system for registration and analysis of magnetic nano- and microparticles magnetic relaxation. The core of our system is the novel compact magnetometer based on an yttrium-iron garnet film and working at room temperature. The sensor demonstrates sensitivity of 35 pT/√{Hz} at 79 Hz and recovery time less than 100 µs, which allows to register quite fast magnetic relaxations of a low amplitude. All these facts make the system feasible for usage in biological magnetorelaxometry and theranostics. Statistical processing of the relaxation curves allowed us to estimate both amplitudes and relaxation times for various biocompatible magnetic particles at the amount of 100 µg in the test tubes experiments. The system has a great potential of further development for usage in the areas of targeted drug delivery, hyperthermia, magnetic imaging. Being comparatively cheap, the system potentially is of a great interest in the fields of biomedicine and nanomedicine.
Collapse
|
6
|
van Oossanen R, Maier A, Godart J, Pignol JP, Denkova AG, van Rhoon GC, Djanashvili K. Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative thermo-brachytherapy. Int J Hyperthermia 2024; 41:2299480. [PMID: 38189281 DOI: 10.1080/02656736.2023.2299480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE To investigate the potential of hybrid Pd/Fe-oxide magnetic nanoparticles designed for thermo-brachytherapy of breast cancer, considering their specific loss power (SLP) and clinical constraints in the applied magnetic field. METHODS Hybrid nanoparticles consisting of palladium-core and iron oxide shell of increasing thickness, were suspended in water and their SLPs were measured at varying magnetic fields (12-26 mT peak) and frequencies (50-730 kHz) with a commercial alternating magnetic field generator (magneTherm™ Digital, nanoTherics Ltd.). RESULTS Validation of the heating device used in this study with commercial HyperMag-C nanoparticles showed a small deviation (±4%) over a period of 1 year, confirming the reliability of the method. The integration of dual thermometers, one in the center and one at the bottom of the sample vial, allowed monitoring of homogeneity of the sample suspensions. SLPs measurements on a series of nanoparticles of increasing sizes showed the highest heating for the diameter of 21 nm (SLP = 225 W/g) at the applied frequencies of 346 and 730 kHz. No heating was observed for the nanoparticles with the size <14 nm, confirming the importance of the size-parameter. The heating ability of the best performing Pd/Fe-oxide-21 was calculated to be sufficient to ablate tumors with a radius ±4 and 12 mm using 10 and 1 mg/mL nanoparticle concentration, respectively. CONCLUSIONS Nanoparticles consisting of non-magnetic palladium-core and magnetic iron oxide shell are suitable for magnetic hyperthermia/thermal ablation under clinically safe conditions of 346 kHz and 19.1 mT, with minimal eddy current effects in combination with maximum SLP.
Collapse
Affiliation(s)
- Rogier van Oossanen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Alexandra Maier
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jérémy Godart
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jean-Philippe Pignol
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Kristina Djanashvili
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
7
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Nain S, Kumar N, Avti PK. Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia. Med Eng Phys 2023; 121:104065. [PMID: 37985024 DOI: 10.1016/j.medengphy.2023.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The goal of the current investigation is to determine the breast tumor size-dependent MNP (Magnetic nano-particle) dose (mg/cm3) that can induce the required therapeutic effects during magnetic nanoparticle hyperthermia (MNH). The investigation is done through the MNH simulations on the tumor models generated from DCE_MRI DICOM images of breast cancer from TCIA ('The Cancer Imaging Archive'). Five tumor models are created from MRI data using 3D slicer software having size range of 3 cm3 to 15 cm3. The FEM-based solver (COMSOL multi-physics) is used to simulate bioheat transfer physics in all five extracted models. Single and multi-point injection strategies have been adopted to induce MNP in tumor tissues. The required MNP dose that may induce necessary therapeutic effects is evaluated by comparing the therapeutic effects produced by constant dose (CD) (5 mg/cm3) and variable reduced dose (RD) (5.5-2.8 mg/cm3) methodologies. Results show that for the requisite therapeutic effects, injected MNP doses (mg/cm3) should not remain constant as the size of the tumor increases. In fact, MNP dose (mg/cm3) should be reduced as the size of the tumor increases. Results also show that RD works better with a multi-injection strategy than a single injection of MNP. It has been found that the effective MNP dose (mg/cm3) is reduced by 50 % for the biggest tumor size (15 cm3) using multi-injection MNP delivery with respect to the smallest tumor (3 cm3) selected in this study.
Collapse
Affiliation(s)
- Sandeep Nain
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India; TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Neeraj Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India; TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| | - Pramod Kumar Avti
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
9
|
Chen L, Nabil A, Fujisawa N, Oe E, Li K, Ebara M. A facile, flexible, and multifunctional thermo-chemotherapy system for customized treatment of drug-resistant breast cancer. J Control Release 2023; 363:550-561. [PMID: 37804880 DOI: 10.1016/j.jconrel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Anticancer drug resistance invariably emerges and poses a significant barrier to curative therapy for various breast cancers. This results in a lack of satisfactory therapeutic medicine for cancer treatment. Herein, a universal vector system for drug-resistance breast cancer was designed to meet the needs of reversed multidrug resistance, thermo-chemotherapy, and long-term drug release behavior. The vector system comprises polycaprolactone (PCL) nanofiber mesh and magnetic nanoparticles (MNPs). PCL has excellent biocompatibility and electrospinning performance. In this study, MNPs were tailored to be thermogenic in response to an alternating magnetic field (AMF). PCL nanofiber can deliver various chemotherapy drugs, and suitable MNPs encapsulated in the nanofiber can generate hyperthermia and synergistic effect with those chemotherapy drugs. Therefore, a more personalized treatment system can be developed for different breast malignancies. In addition, the PCL nanofiber mesh (NFM) enables sustained release of the drugs for up two months, avoiding the burden on patients caused by repeated administration. Through model drugs doxorubicin (DOX) and chemosensitizers curcumin (CUR), we systematically verified the therapeutic effect of DOX-resistance breast cancer and inhibition of tumor generation in vivo. These findings represent a multifaceted platform of importance for validating strategic reversed MDR in pursuit of promoted thermo-chemotherapeutic outcomes. More importantly, the low cost and excellent safety and efficacy of this nanofiber mesh demonstrate that this can be customized multi-function vector system may be a promising candidate for refractory cancer therapy in clinical.
Collapse
Affiliation(s)
- Lili Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nanami Fujisawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Emiho Oe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kai Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Department of Materials Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan.
| |
Collapse
|
10
|
Van de Walle A, Figuerola A, Espinosa A, Abou-Hassan A, Estrader M, Wilhelm C. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. MATERIALS HORIZONS 2023; 10:4757-4775. [PMID: 37740347 DOI: 10.1039/d3mh00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, UMR CNRS 8234, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), F-75005, Paris, France
- Institut Universitaire de France (IUF), 75231 Cedex 05, Paris, France
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Claire Wilhelm
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| |
Collapse
|
11
|
Lodi MB, Makridis A, Kazeli K, Samaras T, Angelakeris M, Mazzarella G, Fanti A. On the Evaluation of the Hyperthermic Efficiency of Magnetic Scaffolds. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:88-98. [PMID: 38487100 PMCID: PMC10939335 DOI: 10.1109/ojemb.2023.3304812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 03/17/2024] Open
Abstract
Goal: Deep-seated tumors (DST) can be treated using thermoseeds exposed to a radiofrequency magnetic field for performing local interstitial hyperthermia treatment (HT). Several research efforts were oriented to the manufacturing of novel biocompatible magnetic nanostructured thermo-seeds, called magnetic scaffolds (MagS). Several iron-doped bioceramics or magnetic polymers in various formulations are available. However, the crucial evaluation of their heating potential has been carried out with significantly different, lab specific, variable experimental conditions and protocols often ignoring the several error sources and inaccuracies estimation. Methods: This work comments and provides a perspective analysis of an experimental protocol for the estimation methodology of the specific absorption rate (SAR) of MagS for DST HT. Numerical multiphysics simultions have been performed to outline the theoretical framework. After the in silico analysis, an experimental case is considered and tested. Results: From the simulations, we found that large overestimation in the SAR values can be found, due to the axial misplacement in the radiofrequency coil, while the radial misplacement has a lower impact on the estimated SAR value. Conclusions: The averaging of multiple temperature records is needed to reliably and effectively estimate the SAR of MagS for DST HT.
Collapse
Affiliation(s)
- Matteo B. Lodi
- Department of Electrical and Electronic EngineeringUniversity of Cagliari09123CagliariItaly
| | - Antonios Makridis
- Nanostructure Characterization: Technology and ApplicationsCIRI-AUTH57001ThessalonikiGreece
| | - Konstantina Kazeli
- Nanostructure Characterization: Technology and ApplicationsCIRI-AUTH57001ThessalonikiGreece
| | - Theodoros Samaras
- Nanostructure Characterization: Technology and ApplicationsCIRI-AUTH57001ThessalonikiGreece
| | - Makis Angelakeris
- Nanostructure Characterization: Technology and ApplicationsCIRI-AUTH57001ThessalonikiGreece
| | - Giuseppe Mazzarella
- Department of Electrical and Electronic EngineeringUniversity of Cagliari09123CagliariItaly
| | - Alessandro Fanti
- Department of Electrical and Electronic EngineeringUniversity of Cagliari09123CagliariItaly
| |
Collapse
|
12
|
Barrera G, Allia P, Tiberto P. Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia. NANOSCALE ADVANCES 2023; 5:4080-4094. [PMID: 37560417 PMCID: PMC10408592 DOI: 10.1039/d3na00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
An effective combination of magnetic hyperthermia and thermometry is shown to be implementable by using magnetic nanoparticles which behave either as a heat sources or as temperature sensors when excited at two different frequencies. Noninteracting magnetite nanoparticles are modeled as double-well systems and their magnetization is obtained by solving rate equations. Two temperature sensitive properties derived from the cyclic magnetization and exhibiting a linear dependence on temperature are studied and compared for monodisperse and polydisperse nanoparticles. The multifunctional effects enabling the combination of magnetic hyperthermia and thermometry are shown to depend on the interplay among nanoparticle size, intrinsic magnetic properties and driving-field frequency. Magnetic hyperthermia and thermometry can be effectively combined by properly tailoring the magnetic properties of nanoparticles and the driving-field frequencies.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| | - Paolo Allia
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| | - Paola Tiberto
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| |
Collapse
|
13
|
Myrovali E, Papadopoulos K, Charalampous G, Kesapidou P, Vourlias G, Kehagias T, Angelakeris M, Wiedwald U. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia. ACS OMEGA 2023; 8:12955-12967. [PMID: 37065034 PMCID: PMC10099415 DOI: 10.1021/acsomega.2c05962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Magnetic particle hyperthermia (MPH) is a promising method for cancer treatment using magnetic nanoparticles (MNPs), which are subjected to an alternating magnetic field for local heating to the therapeutic range of 41-45 °C. In this window, the malignant regions (i.e., cancer cells) undergo a severe thermal shock while healthy tissues sustain this thermal regime with significantly milder side effects. Since the heating efficiency is directly associated with nanoparticle size, MNPs should acquire the appropriate size to maximize heating together with minimum toxicity. Herein, we report on facile synthetic controls to synthesize MNPs by an aqueous precipitation method, whereby tuning the pH values of the solution (9.0-13.5) results in a wide range of average MNP diameters from 16 to 76 nm. With respect to their size, the structural and magnetic properties of the MNPs are evaluated by adjusting the most important parameters, i.e. the MNP surrounding medium (water/agarose), the MNP concentration (1-4 mg mL-1), and the field amplitude (20-50 mT) and frequency (103, 375, 765 kHz). Consequently, the maximum heating efficiency is determined for each MNP size and set of parameters, outlining the optimum MNPs for MPH treatment. In this way, we can address the different heat generation mechanisms (Brownian, Néel, and hysteresis losses) to different sizes and separate Brownian and hysteresis losses for optimized sizes by studying the heat generation as a function of the medium viscosity. Finally, MNPs immobilized into agarose solution are studied under low-field MPH treatment to find the optimum conditions for clinical applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Georgia Charalampous
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Paraskevi Kesapidou
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Vourlias
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Thomas Kehagias
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Makis Angelakeris
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Ulf Wiedwald
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany)
| |
Collapse
|
14
|
Rivera D, Schupper AJ, Bouras A, Anastasiadou M, Kleinberg L, Kraitchman DL, Attaluri A, Ivkov R, Hadjipanayis CG. Neurosurgical Applications of Magnetic Hyperthermia Therapy. Neurosurg Clin N Am 2023; 34:269-283. [PMID: 36906333 PMCID: PMC10726205 DOI: 10.1016/j.nec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Magnetic hyperthermia therapy (MHT) is a highly localized form of hyperthermia therapy (HT) that has been effective in treating various forms of cancer. Many clinical and preclinical studies have applied MHT to treat aggressive forms of brain cancer and assessed its role as a potential adjuvant to current therapies. Initial results show that MHT has a strong antitumor effect in animal studies and a positive association with overall survival in human glioma patients. Although MHT is a promising therapy with the potential to be incorporated into the future treatment of brain cancer, significant advancement of current MHT technology is required.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Alexander J Schupper
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alexandros Bouras
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Maria Anastasiadou
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA
| | - Dara L Kraitchman
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, The Pennsylvania State University, 777 West Harrisburg Pike Middletown, PA 17057, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA; Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231-5678, USA; Department of Mechanical Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Constantinos G Hadjipanayis
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
15
|
Immunogenic Cell Death Photothermally Mediated by Erythrocyte Membrane-Coated Magnetofluorescent Nanocarriers Improves Survival in Sarcoma Model. Pharmaceutics 2023; 15:pharmaceutics15030943. [PMID: 36986804 PMCID: PMC10051374 DOI: 10.3390/pharmaceutics15030943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Inducing immunogenic cell death (ICD) during cancer therapy is a major challenge that might significantly improve patient survival. The purpose of this study was to develop a theranostic nanocarrier, capable both of conveying a cytotoxic thermal dose when mediating photothermal therapy (PTT) after its intravenous delivery, and of consequently inducing ICD, improving survival. The nanocarrier consists of red blood cell membranes (RBCm) embedding the near-infrared dye IR-780 (IR) and camouflaging Mn-ferrite nanoparticles (RBCm-IR-Mn). The RBCm-IR-Mn nanocarriers were characterized by size, morphology, surface charge, magnetic, photophysical, and photothermal properties. Their photothermal conversion efficiency was found to be size- and concentration-dependent. Late apoptosis was observed as the cell death mechanism for PTT. Calreticulin and HMGB1 protein levels increased for in vitro PTT with temperature around 55 °C (ablative regime) but not for 44 °C (hyperthermia), suggesting ICD elicitation under ablation. RBCm-IR-Mn were then intravenously administered in sarcoma S180-bearing Swiss mice, and in vivo ablative PTT was performed five days later. Tumor volumes were monitored for the subsequent 120 days. RBCm-IR-Mn-mediated PTT promoted tumor regression in 11/12 animals, with an overall survival rate of 85% (11/13). Our results demonstrate that the RBCm-IR-Mn nanocarriers are great candidates for PTT-induced cancer immunotherapy.
Collapse
|
16
|
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma. Pharmaceutics 2023; 15:pharmaceutics15030818. [PMID: 36986678 PMCID: PMC10055620 DOI: 10.3390/pharmaceutics15030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies.
Collapse
|
17
|
Curcio A, Perez JE, Prévéral S, Fromain A, Genevois C, Michel A, Van de Walle A, Lalatonne Y, Faivre D, Ménager C, Wilhelm C. The role of tumor model in magnetic targeting of magnetosomes and ultramagnetic liposomes. Sci Rep 2023; 13:2278. [PMID: 36755030 PMCID: PMC9908874 DOI: 10.1038/s41598-023-28914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
The combined passive and active targeting of tumoral tissue remains an active and relevant cancer research field. Here, we exploit the properties of two highly magnetic nanomaterials, magnetosomes and ultramagnetic liposomes, in order to magnetically target prostate adenocarcinoma tumors, implanted orthotopically or subcutaneously, to take into account the role of tumor vascularization in the targeting efficiency. Analysis of organ biodistribution in vivo revealed that, for all conditions, both nanomaterials accumulate mostly in the liver and spleen, with an overall low tumor retention. However, both nanomaterials were more readily identified in orthotopic tumors, reflecting their higher tumor vascularization. Additionally, a 2- and 3-fold increase in nanomaterial accumulation was achieved with magnetic targeting. In summary, ultramagnetic nanomaterials show promise mostly in the targeting of highly-vascularized orthotopic murine tumor models.
Collapse
Affiliation(s)
- Alberto Curcio
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Sandra Prévéral
- Aix-Marseille University (AMU), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), 13108, Saint-Paul-lez-Durance, France
| | - Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Coralie Genevois
- TBM Core, UAR 3427, INSERM US 005, University of Bordeaux, 33000, Bordeaux, France
| | - Aude Michel
- Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Phenix, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, Bobigny, F-93017, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne F- 93009, Bobigny, France
| | - Damien Faivre
- Aix-Marseille University (AMU), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), 13108, Saint-Paul-lez-Durance, France
| | - Christine Ménager
- Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Phenix, 75005, Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
18
|
Carlton H, Ivkov R. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. JOURNAL OF APPLIED PHYSICS 2023; 133:044302. [PMID: 36718210 PMCID: PMC9884152 DOI: 10.1063/5.0131058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Heating magnetic nanoparticles (MNPs) with alternating magnetic fields (AMFs) have applications in biomedical research and cancer therapy. Accurate measurement of the heating efficiency or specific loss power (SLP) generated by the MNPs is essential to assess response(s) in biological systems. Efforts to develop standardized equipment and to harmonize results obtained from various MNP samples and AMF systems have met with little success. Without a standardized magnetic nanoparticle or calorimeter device, objective comparisons of estimated thermal output among laboratories remain a challenge. In addition, the most widely used adiabatic initial slope model fails to account for thermal losses, which are unavoidable. We propose a non-adiabatic method to analyze MNP heating efficiency derived from the Box-Lucas equation, wherein the sample is subjected to several short duration heating pulses. SLP is then estimated from an arithmetic average of the Box-Lucas fitted coefficients obtained from each pulse. Heating experiments were conducted with two identical samples that were placed within vessels having different thermal insulation using the same AMF parameters. Though the samples generated different temperature curves, the pulsed Box-Lucas method produced nearly equivalent SLP estimates. Further, the pulsed test enabled analysis of the heat transfer coefficient providing quantitative measures of sample heat loss throughout the test, with robust statistical confidence. We anticipate this new methodology will aid efforts to standardize measurements of MNP heating efficiency, enabling direct comparison among varied systems.
Collapse
Affiliation(s)
- Hayden Carlton
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
19
|
Vassallo M, Martella D, Barrera G, Celegato F, Coïsson M, Ferrero R, Olivetti ES, Troia A, Sözeri H, Parmeggiani C, Wiersma DS, Tiberto P, Manzin A. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating. ACS OMEGA 2023; 8:2143-2154. [PMID: 36687092 PMCID: PMC9850460 DOI: 10.1021/acsomega.2c06244] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, Fe3O4 nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field.
Collapse
Affiliation(s)
- Marta Vassallo
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
- Dipartimento
di Elettronica e Telecomunicazioni, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129Torino, Italy
| | - Daniele Martella
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
| | - Gabriele Barrera
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Federica Celegato
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Marco Coïsson
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Riccardo Ferrero
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Elena S. Olivetti
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Adriano Troia
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Hüseyin Sözeri
- Magnetics
Laboratory, TÜBİTAK Ulusal
Metroloji Enstitüsü (UME), Gebze Yerleşkesi, 41470Kocaeli, Turkey
| | - Camilla Parmeggiani
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019Sesto Fiorentino, Italy
| | - Diederik S. Wiersma
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
- Department
of Physics and Astronomy, University of
Florence, Via Giovanni
Sansone, 1, 50019Sesto Fiorentino, Italy
| | - Paola Tiberto
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Alessandra Manzin
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| |
Collapse
|
20
|
Coupling of cationic porphyrins on manganese ferrite nanoparticles: a potential multifunctional nanostructure for theranostics applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Hedayatnasab Z, Ramazani Saadatabadi A, Shirgahi H, Mozafari M. Heat induction of iron oxide nanoparticles with rational artificial neural network design-based particle swarm optimization for magnetic cancer hyperthermia. MATERIALS RESEARCH BULLETIN 2023; 157:112035. [DOI: 10.1016/j.materresbull.2022.112035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
22
|
Rytov RA, Usov NA. Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:485-493. [PMID: 37091289 PMCID: PMC10113520 DOI: 10.3762/bjnano.14.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Numerical simulations using the stochastic Landau-Lifshitz equation are performed to study magnetization dynamics of dilute assemblies of iron oxide nanoparticles exposed to an alternating (ac) magnetic field with an amplitude H ac = 200 Oe and a frequency f = 300 kHz and a static (dc) magnetic field in the range H dc = 0-800 Oe. The specific absorption rate (SAR) of the assemblies is calculated depending on the angle between the directions of the ac and dc magnetic fields. For the case of an inhomogeneous dc magnetic field created by two opposite magnetic fluxes, the spatial distribution of the SAR in the vicinity of the field-free point is obtained for assemblies with different nanoparticle size distributions. The results obtained seem to be helpful for the development of a promising joint application of magnetic nanoparticle imaging and magnetic hyperthermia.
Collapse
Affiliation(s)
- Ruslan Alekseevich Rytov
- National University of Science and Technology «MISiS», Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia
| | - Nikolai Aleksandrovich Usov
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia
| |
Collapse
|
23
|
Song Y, Zhu Y, Jiang K, Liu X, Dong L, Li D, Chen S, Xing H, Yan X, Lu Y, Yang X, Wang J, Xu Y. Self-assembling ferrimagnetic fluorescent micelles for bioimaging guided efficient magnetic hyperthermia therapy. NANOSCALE 2022; 15:365-375. [PMID: 36508179 DOI: 10.1039/d2nr02059a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multifunctional magnet-fluorescent nanocomposites are widely applied in biomedical applications. Incorporating biocompatible quantum dots with highly ferrimagnetic magnetic nanoparticles into one nanoplatform for achieving efficient magnetic hyperthermia therapy (MHT) is very important. Herein, we reported an amphiphilic block copolymer with a flowable hydrophobic chain to encapsulate highly ferrimagnetic magnetic nanoparticles and ZnS/InP quantum dots via a facile self-assembly method. The obtained ferrimagnetic fluorescent micelle (FMFM) exhibited a uniform diameter of about 180 nm. In stark contrast, larger aggregation (400 nm in diameter) inevitably occurred using common poly(D,L-lactide) (PLA)-based amphiphilic block copolymer with a rigid hydrophobic chain, which was readily cleared by the reticuloendothelial system (RES). The flowable FMFM exhibited long-term colloidal stability within one month and desired fluorescent stability within 84 h. Benefiting from the high ferrimagnetism, the FMFM revealed excellent magnetic heating effect and magnetic resonance imaging capability. With accurate manipulation under an external magnetic field, FMFM realized in vitro enhanced fluorescence imaging sensitivity and accumulation efficiency at the tumor region, achieving in vitro and vivo improved MHT efficacy.
Collapse
Affiliation(s)
- Yonghong Song
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Division of Nanomaterials & Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yueqiang Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Kun Jiang
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xingyu Liu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Liang Dong
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Division of Nanomaterials & Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dongdong Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Sheng Chen
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Hanye Xing
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xu Yan
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yang Lu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Junxia Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006 Guangzhou, P. R. China.
| | - Yunjun Xu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Division of Nanomaterials & Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
24
|
Yu X, Yang T, Liu R, Wu D, Tian D, Zhou T, Yan H, He S, Zeng H. Simultaneous Enhancement of Magnetothermal and Photothermal Responses by Zn, Co Co-Doped Ferrite Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205037. [PMID: 36336630 DOI: 10.1002/smll.202205037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Reducing nanoparticle (NP) dosage for hyperthermia therapy has remained a great challenge. In this work, efficiencies of alternating current (AC) magnetic field and near-infrared (NIR) heating are simultaneously enhanced by Zn and Co co-doping of magnetite NPs. The optimum magnetic anisotropy for maximized loss power under each magnetic field is achieved by tuning the doping concentration. The specific loss power of Zn0.3 Co0.08 Fe2.62 O4 @SiO2 NPs reaches 2428 W g-1 under an AC field of 27 kA m-1 at 430 kHz; 12 296 W g-1 under NIR laser irradiation at 808 nm and 2.5 W cm-2 ; and an unprecedented value of 14 724 W g-1 under dual mode. These values far exceed what has been achieved previously in iron oxide NPs. Ex vivo experiments on sacrificial mice show that while the NP dosage is substantially reduced to that used for magnetic resonance imaging, the surface body temperature of the mice reaches 50 °C after exposure to both AC field and laser irradiation under field parameters and laser intensity below safety limits. This nanoplatform is thus promising for multi-modal local hyperthermia therapy.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Tianyu Yang
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Ruoshui Liu
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Di'an Wu
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Daming Tian
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Tianshi Zhou
- Department of Physics, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haitao Yan
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Shuli He
- Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Hao Zeng
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| |
Collapse
|
25
|
Castellanos-Rubio I, Barón A, Luis-Lizarraga O, Rodrigo I, de Muro IG, Orue I, Martínez-Martínez V, Castellanos-Rubio A, López-Arbeloa F, Insausti M. Efficient Magneto-Luminescent Nanosystems based on Rhodamine-Loaded Magnetite Nanoparticles with Optimized Heating Power and Ideal Thermosensitive Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50033-50044. [PMID: 36302136 PMCID: PMC9650688 DOI: 10.1021/acsami.2c14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Nanosystems that simultaneously contain fluorescent and magnetic modules can offer decisive advantages in the development of new biomedical approaches. A biomaterial that enables multimodal imaging and contains highly efficient nanoheaters together with an intrinsic temperature sensor would become an archetypical theranostic agent. In this work, we have designed a magneto-luminescent system based on Fe3O4 NPs with large heating power and thermosensitive rhodamine (Rh) fluorophores that exhibits the ability to self-monitor the hyperthermia degree. Three samples composed of highly homogeneous Fe3O4 NPs of ∼25 nm and different morphologies (cuboctahedrons, octahedrons, and irregular truncated-octahedrons) have been finely synthesized. These NPs have been thoroughly studied in order to choose the most efficient inorganic core for magnetic hyperthermia under clinically safe radiofrequency. Surface functionalization of selected Fe3O4 NPs has been carried out using fluorescent copolymers composed of PMAO, PEG and Rh. Copolymers with distinct PEG tail lengths (5-20 kDa) and different Rh percentages (5, 10, and 25%) have been synthesized, finding out that the copolymer with 20 kDa PEG and 10% Rh provides the best coating for an efficient fluorescence with minimal aggregation effects. The optimized Fe3O4@Rh system offers very suitable fluorescence thermosensitivity in the therapeutic hyperthermia range. Additionally, this sample presents good biocompatibility and displays an excellent heating capacity within the clinical safety limits of the AC field (≈ 1000 W/g at 142 kHz and 44 mT), which has been confirmed by both calorimetry and AC magnetometry. Thus, the current work opens up promising avenues toward next-generation medical technologies.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Departamento
Química Orgánica e Inorgánica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Ander Barón
- Departamento
Química Orgánica e Inorgánica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Oier Luis-Lizarraga
- Departamento
Química Orgánica e Inorgánica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Irati Rodrigo
- Departamento
Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, Leioa48940, Spain
| | - Izaskun Gil de Muro
- Departamento
Química Orgánica e Inorgánica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
- BC Materials,
Basque Center for Materials, Applications
and Nanostructures, Barrio
Sarriena s/n, Leioa48940, Spain
| | - Iñaki Orue
- SGIker,
Servicios Generales de Investigación, UPV/EHU, Barrio Sarriena
s/n, Leioa48940, Spain
| | - Virginia Martínez-Martínez
- Departamento
Química Física, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, Leioa48940, Spain
| | - Ainara Castellanos-Rubio
- Departamento
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina, UPV/EHU, Leioa48940, Spain
- Biocruces
Bizkaia Health Research Institute, Cruces Plaza, Barakaldo48903, Spain
- Biomedical
Research Center in Diabetes Network and Associated Metabolic Diseases, Madrid28029, Spain
- IKERBASQUE
Basque Foundation for Science, Bilbao48013, Spain
| | - Fernando López-Arbeloa
- Departamento
Química Física, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, Leioa48940, Spain
| | - Maite Insausti
- Departamento
Química Orgánica e Inorgánica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
- BC Materials,
Basque Center for Materials, Applications
and Nanostructures, Barrio
Sarriena s/n, Leioa48940, Spain
| |
Collapse
|
26
|
Thong PQ, Thu Huong LT, Tu ND, My Nhung HT, Khanh L, Manh DH, Nam PH, Phuc NX, Alonso J, Qiao J, Sridhar S, Thu HP, Phan MH, Kim Thanh NT. Multifunctional nanocarriers of Fe 3O 4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine (Lond) 2022; 17:1677-1693. [PMID: 36621896 DOI: 10.2217/nnm-2022-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.
Collapse
Affiliation(s)
- Phan Quoc Thong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,University of Khanh Hoa, 1 Nguyen Chanh, Nha Trang, 57100, Vietnam
| | - Le Thi Thu Huong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Vietnam
| | - Nguyen Dac Tu
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Hoang Thi My Nhung
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Lam Khanh
- 108 Military Central Hospital, 1 Tran Hung Dao, Hanoi, 11000, Vietnam
| | - Do Hung Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Pham Hong Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Graduate University of Science & Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 12400, Vietnam
| | - Nguyen Xuan Phuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Duy Tan University, 3 Quang Trung, Danang, 50300, Vietnam
| | - Javier Alonso
- Department of CITIMAC, Universidad de Cantabria, Santander, 39005, Spain.,Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Ju Qiao
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ha Phuong Thu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Manh Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London.,UCL Healthcare Biomagnetics & Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
27
|
Siqueira ERL, Pinheiro WO, Aquino VRR, Coelho BCP, Bakuzis AF, Azevedo RB, Sousa MH, Morais PC. Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2760. [PMID: 36014626 PMCID: PMC9413094 DOI: 10.3390/nano12162760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the fabrication of spherical gold shelled maghemite nanoparticles for use in magnetic hyperthermia (MHT) assays. A maghemite core (14 ± 3 nm) was used to fabricate two samples with different gold thicknesses, which presented gold (g)/maghemite (m) content ratios of 0.0376 and 0.0752. The samples were tested in MHT assays (temperature versus time) with varying frequencies (100-650 kHz) and field amplitudes (9-25 mT). The asymptotic temperatures (T∞) of the aqueous suspensions (40 mg Fe/mL) were found to be in the range of 59-77 °C (naked maghemite), 44-58 °C (g/m=0.0376) and 33-51 °C (g/m=0.0752). The MHT data revealed that T∞ could be successful controlled using the gold thickness and cover the range for cell apoptosis, thereby providing a new strategy for the safe use of MHT in practice. The highest SAR (specific absorption rate) value was achieved (75 kW/kg) using the thinner gold shell layer (334 kHz, 17 mT) and was roughly twenty times bigger than the best SAR value that has been reported for similar structures. Moreover, the time that was required to achieve T∞ could be modeled by changing the thermal conductivity of the shell layer and/or the shape/size of the structure. The MHT assays were pioneeringly modeled using a derived equation that was analytically identical to the Box-Lucas method (which was reported as phenomenological).
Collapse
Affiliation(s)
- Elis Regina Lima Siqueira
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF 70910-900, Brazil
| | - Willie Oliveira Pinheiro
- Green Nanotechnology Group, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-900, Brazil
- Post-Graduation Program in Sciences and Health Technologies, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-275, Brazil
| | - Victor Raul Romero Aquino
- Institute of Physics, Federal University of Goiás, Goiânia GO 74690-631, Brazil
- Institute of Physics, University of Brasília, Brasília DF 70910-900, Brazil
| | | | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia GO 74690-631, Brazil
- CNanoMed, Federal University of Goiás, Goiânia GO 74690-631, Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF 70910-900, Brazil
| | - Marcelo Henrique Sousa
- Green Nanotechnology Group, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-900, Brazil
- Post-Graduation Program in Sciences and Health Technologies, Faculty of Ceilândia, University of Brasília, Brasília DF 72220-275, Brazil
| | - Paulo Cesar Morais
- Institute of Physics, University of Brasília, Brasília DF 70910-900, Brazil
- Catholic University of Brasília, Brasília DF 70790-160, Brazil
| |
Collapse
|
28
|
Vicentini M, Vassallo M, Ferrero R, Androulakis I, Manzin A. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106975. [PMID: 35792363 DOI: 10.1016/j.cmpb.2022.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Magnetic hyperthermia is an oncological therapy that employs magnetic nanoparticles activated by alternating current (AC) magnetic fields with frequencies between 50 kHz and 1 MHz, to release heat in a diseased tissue and produce a local temperature increase of about 5 °C. To assess the treatment efficacy, in vivo tests on murine models (mice and rats) are typically performed. However, these are often carried out without satisfying the biophysical constraints on the electromagnetic (EM) field exposure, with consequent generation of hot spots and undesirable heating of healthy tissues. Here, we investigate possible adverse eddy current effects, to estimate AC magnetic field parameters (frequency and amplitude) that can potentially guarantee safe animal tests of magnetic hyperthermia. METHODS The analysis is performed through in silico modelling by means of finite element simulation tools, specifically developed to study eddy current effects in computational animal models, during magnetic hyperthermia treatments. The numerical tools enable us to locally evaluate the specific absorption rate (SAR) and the produced temperature increase, under different field exposure conditions. RESULTS The simulation outcomes demonstrate that in mice with weight lower than 30 g the thermal effects induced by AC magnetic fields are very weak, also when slightly overcoming the Hergt-Dutz limit, that is the product of the magnetic field amplitude and frequency should be lower than 5·109 A/(m·s). Conversely, we observe significant temperature increases in 500 g rats, amplified when the field is applied transversally to the body longitudinal axis. A strong mitigation of side-effects can be achieved by introducing water boluses or by applying focused fields. CONCLUSIONS The developed physics-based modelling approach has proved to be a useful predictive tool for the optimization of preclinical tests of magnetic hyperthermia, allowing the identification of proper EM field conditions and the design of setups that guarantee safe levels of field exposure during animal treatments. In such contest, the obtained results can be considered as valid indicators to assess reference levels for animal testing of biomedical techniques that involve EM fields, like magnetic hyperthermia, thus complying with the Directive 2010/63/EU on the protection of animals used for scientific purposes.
Collapse
Affiliation(s)
- Marta Vicentini
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy; Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marta Vassallo
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy; Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Riccardo Ferrero
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Ioannis Androulakis
- Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alessandra Manzin
- Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy.
| |
Collapse
|
29
|
Rotundo S, Brizi D, Flori A, Giovannetti G, Menichetti L, Monorchio A. Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. SENSORS (BASEL, SWITZERLAND) 2022; 22:5132. [PMID: 35890812 PMCID: PMC9318684 DOI: 10.3390/s22145132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.
Collapse
Affiliation(s)
- Sabrina Rotundo
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Danilo Brizi
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Alessandra Flori
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy;
| | | | - Luca Menichetti
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (G.G.); (L.M.)
| | - Agostino Monorchio
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| |
Collapse
|
30
|
Castelló CM, de Carvalho MT, Bakuzis AF, Fonseca SG, Miguel MP. Local tumour nanoparticle thermal therapy: A promising immunomodulatory treatment for canine cancer. Vet Comp Oncol 2022; 20:752-766. [PMID: 35698822 DOI: 10.1111/vco.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Distinct thermal therapies have been used for cancer therapy. For hyperthermia (HT) treatment the tumour tissue is heated to temperatures between 39 and 45°C, while during ablation (AB) temperatures above 50°C are achieved. HT is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In contrast, AB is usually used as a single modality for direct tumour cell killing. Both thermal therapies have been shown to result in cytotoxicity as well as immune response stimulation. Immunogenic responses encompass the innate and adaptive immune systems and involve the activation of macrophages, dendritic cells, natural killer cells and T cells. Several heat technologies are used, but great interest arises from nanotechnology-based thermal therapies. Spontaneous tumours in dogs can be a model for cancer immunotherapies with several advantages. In addition, veterinary oncology represents a growing market with an important demand for new therapies. In this review, we will focus on nanoparticle-mediated thermal-induced immunogenic effects, the beneficial potential of integrating thermal nanomedicine with immunotherapies and the results of published works with thermotherapies for cancer using dogs with spontaneous tumours, highlighting the works that evaluated the effect on the immune system in order to show dogs with spontaneous cancer as a good model for evaluated the immunomodulatory effect of nanoparticle-mediated thermal therapies.
Collapse
Affiliation(s)
- Carla Martí Castelló
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mara Taís de Carvalho
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Simone Gonçalves Fonseca
- Setor de Imunologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marina Pacheco Miguel
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil.,Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
31
|
Li ZL, Wu H, Zhu JQ, Sun LY, Tong XM, Huang DS, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhen-Li Li
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Jia-Qi Zhu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Li-Yang Sun
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Xiang-Min Tong
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Dong-Sheng Huang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| |
Collapse
|
32
|
Park Y, Demessie AA, Luo A, Taratula OR, Moses AS, Do P, Campos L, Jahangiri Y, Wyatt CR, Albarqi HA, Farsad K, Slayden OD, Taratula O. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107808. [PMID: 35434932 PMCID: PMC9232988 DOI: 10.1002/smll.202107808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.
Collapse
Affiliation(s)
- Youngrong Park
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Addie Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Olena R Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter Do
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
- Advanced Imaging Research Center, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, King Abdulaziz Road, Najran, 55461, Saudi Arabia
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
33
|
Ferrero R, Androulakis I, Martino L, Nadar R, van Rhoon GC, Manzin A. Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia. SENSORS 2022; 22:s22103610. [PMID: 35632018 PMCID: PMC9148047 DOI: 10.3390/s22103610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
The evaluation of the biological effects of therapeutic hyperthermia in oncology and the precise quantification of thermal dose, when heating is coupled with radiotherapy or chemotherapy, are active fields of research. The reliable measurement of hyperthermia effects on cells and tissues requires a strong control of the delivered power and of the induced temperature rise. To this aim, we have developed a radiofrequency (RF) electromagnetic applicator operating at 434 MHz, specifically engineered for in vitro tests on 3D cell cultures. The applicator has been designed with the aid of an extensive modelling analysis, which combines electromagnetic and thermal simulations. The heating performance of the built prototype has been validated by means of temperature measurements carried out on tissue-mimicking phantoms and aimed at monitoring both spatial and temporal temperature variations. The experimental results demonstrate the capability of the RF applicator to produce a well-focused heating, with the possibility of modulating the duration of the heating transient and controlling the temperature rise in a specific target region, by simply tuning the effectively supplied power.
Collapse
Affiliation(s)
- Riccardo Ferrero
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino, Italy; (L.M.); (A.M.)
- Correspondence: (R.F.); (I.A.); Tel.: +39-0113919825 (R.F.)
| | - Ioannis Androulakis
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.N.); (G.C.v.R.)
- Correspondence: (R.F.); (I.A.); Tel.: +39-0113919825 (R.F.)
| | - Luca Martino
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino, Italy; (L.M.); (A.M.)
| | - Robin Nadar
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.N.); (G.C.v.R.)
- Department of Radiation Science and Technology, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.N.); (G.C.v.R.)
- Department of Radiation Science and Technology, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Alessandra Manzin
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino, Italy; (L.M.); (A.M.)
| |
Collapse
|
34
|
Healy S, Bakuzis AF, Goodwill PW, Attaluri A, Bulte JWM, Ivkov R. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1779. [PMID: 35238181 PMCID: PMC9107505 DOI: 10.1002/wnan.1779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat‐based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle‐imaging technology that provides real‐time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof‐of‐principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Collapse
Affiliation(s)
- Sean Healy
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andris F Bakuzis
- Instituto de Física and CNanoMed, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Anilchandra Attaluri
- Department of Mechanical Engineering, Pennsylvania State University, Harrisburg, Harrisburg, Pennsylvania, USA
| | - Jeff W M Bulte
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Veres T, Voniatis C, Molnár K, Nesztor D, Fehér D, Ferencz A, Gresits I, Thuróczy G, Márkus BG, Simon F, Nemes NM, García-Hernández M, Reiniger L, Horváth I, Máthé D, Szigeti K, Tombácz E, Jedlovszky-Hajdu A. An Implantable Magneto-Responsive Poly(aspartamide) Based Electrospun Scaffold for Hyperthermia Treatment. NANOMATERIALS 2022; 12:nano12091476. [PMID: 35564185 PMCID: PMC9101327 DOI: 10.3390/nano12091476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.
Collapse
Affiliation(s)
- Tamás Veres
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary
| | - Kristóf Molnár
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
| | - Dániel Nesztor
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
| | - Daniella Fehér
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Andrea Ferencz
- Heart and Vascular Centre, Department of Surgical Research and Techniques, Semmelweis University, 1122 Budapest, Hungary; (D.F.); (A.F.)
| | - Iván Gresits
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - György Thuróczy
- NRIRR “Frédéric Joliot-Curie” National Research Institute for Radiobiology and Radiohygiene, 1221 Budapest, Hungary;
| | - Bence Gábor Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA;
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Ferenc Simon
- Institute of Physics, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
- Wigner Research Centre for Physics Economics, 1121 Budapest, Hungary
| | - Norbert Marcell Nemes
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Mar García-Hernández
- Grupo de Física de Materiales Complejos (GFMC), Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.M.N.); (M.G.-H.)
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
- Hungarian Center of Excellence for Molecular Medicine (HCEMM), In Vivo Imaging Advanced Core Facility, Semmelweis University Site, 1094 Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (I.G.); (I.H.); (D.M.); (K.S.)
| | - Etelka Tombácz
- Department of Food Engineering, University of Szeged, 6725 Szeged, Hungary; (D.N.); (E.T.)
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, 8800 Nagykanizsa, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, 1089 Budapest, Hungary; (T.V.); (C.V.); (K.M.)
- Correspondence:
| |
Collapse
|
36
|
Cintra ER, Hayasaki TG, Sousa-Junior AA, Silva ACG, Valadares MC, Bakuzis AF, Mendanha SA, Lima EM. Folate-Targeted PEGylated Magnetoliposomes for Hyperthermia-Mediated Controlled Release of Doxorubicin. Front Pharmacol 2022; 13:854430. [PMID: 35387345 PMCID: PMC8978894 DOI: 10.3389/fphar.2022.854430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent commonly used for the treatment of solid tumors. However, the cardiotoxicity associated with its prolonged use prevents further adherence and therapeutic efficacy. By encapsulating DOX within a PEGylated liposome, Doxil® considerably decreased DOX cardiotoxicity. By using thermally sensitive lysolipids in its bilayer composition, ThermoDox® implemented a heat-induced controlled release of DOX. However, both ThermoDox® and Doxil® rely on their passive retention in tumors, depending on their half-lives in blood. Moreover, ThermoDox® ordinarily depend on invasive radiofrequency-generating metallic probes for local heating. In this study, we prepare, characterize, and evaluate the antitumoral capabilities of DOX-loaded folate-targeted PEGylated magnetoliposomes (DFPML). Unlike ThermoDox®, DOX delivery via DFPML is mediated by the heat released through dynamic hysteresis losses from magnetothermal converting systems composed by MnFe2O4 nanoparticles (NPs) under AC magnetic field excitation—a non-invasive technique designated magnetic hyperthermia (MHT). Moreover, DFPML dismisses the use of thermally sensitive lysolipids, allowing the use of simpler and cheaper alternative lipids. MnFe2O4 NPs and DFPML are fully characterized in terms of their size, morphology, polydispersion, magnetic, and magnetothermal properties. About 50% of the DOX load is released from DFPML after 30 min under MHT conditions. Being folate-targeted, in vitro DFPML antitumoral activity is higher (IC50 ≈ 1 μg/ml) for folate receptor-overexpressing B16F10 murine melanoma cells, compared to MCF7 human breast adenocarcinoma cells (IC50 ≈ 4 μg/ml). Taken together, our results indicate that DFPML are strong candidates for folate-targeted anticancer therapies based on DOX controlled release.
Collapse
Affiliation(s)
- Emílio R Cintra
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Tacio G Hayasaki
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Ailton A Sousa-Junior
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Artur C G Silva
- Toxin-Laboratory of Education and Research in In Vitro Toxicology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Marize C Valadares
- Toxin-Laboratory of Education and Research in In Vitro Toxicology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Andris F Bakuzis
- Physics Institute, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| | - Sebastião A Mendanha
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil.,Physics Institute, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| | - Eliana M Lima
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
37
|
Chen C, Wang P, Chen H, Wang X, Halgamuge MN, Chen C, Song T. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14049-14058. [PMID: 35311270 DOI: 10.1021/acsami.1c24154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetotactic bacteria are ubiquitous microorganisms in nature that synthesize intracellular magnetic nanoparticles called magnetosomes in a gene-controlled way and arrange them in chains. From in vitro to in vivo, we demonstrate that the intact body of Magnetospirillum magneticum AMB-1 has potential as a natural magnetic hyperthermia material for cancer therapy. Compared to chains of magnetosomes and individual magnetosomes, the entire AMB-1 cell exhibits superior heating capability under an alternating magnetic field. When incubating with tumor cells, the intact AMB-1 cells disperse better than the other two types of magnetosomes, decreasing cellular viability under the control of an alternating magnetic field. Furthermore, in vivo experiments in nude mice with neuroblastoma found that intact AMB-1 cells had the best antitumor activity with magnetic hyperthermia therapy compared to other treatment groups. These findings suggest that the intact body of magnetotactic bacteria has enormous promise as a natural material for tumor magnetic hyperthermia. In biomedical applications, intact and living magnetotactic bacteria play an increasingly essential function as a targeting robot due to their magnetotaxis.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Malka N Halgamuge
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
39
|
Jardim KV, Palomec‐Garfias AF, Araújo MV, Márquez‐Beltrán C, Bakuzis AF, Moya SE, Parize AL, Sousa MH. Remotely triggered curcumin release from stimuli‐responsive magneto‐polymeric
layer‐by‐layer
engineered nanoplatforms. J Appl Polym Sci 2022. [DOI: 10.1002/app.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Andris Figueiroa Bakuzis
- Instituto de Física Universidade Federal de Goiás, Campus Samambaia Goiânia Brazil
- CNanoMed, Parque Tecnológico Samambaia Universidade Federal de Goiás Goiânia Brazil
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Laboratory CIC biomaGUNE San Sebastián, Guip Spain
| | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química Universidade Federal de Santa Catarina Florianópolis Brazil
| | | |
Collapse
|
40
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
41
|
Yu X, Gao S, Wu D, Li Z, Mi Y, Yang T, Sun F, Wang L, Liu R, He S, Ge Q, Lv Y, Xu AY, Zeng H. Bone Tumor Suppression in Rabbits by Hyperthermia below the Clinical Safety Limit Using Aligned Magnetic Bone Cement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104626. [PMID: 34862842 DOI: 10.1002/smll.202104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Indexed: 05/15/2023]
Abstract
Demonstrating highly efficient alternating current (AC) magnetic field heating of nanoparticles in physiological environments under clinically safe field parameters has remained a great challenge, hindering clinical applications of magnetic hyperthermia. In this work, exceptionally high loss power of magnetic bone cement under the clinical safety limit of AC field parameters, incorporating direct current field-aligned soft magnetic Zn0.3 Fe2.7 O4 nanoparticles with low concentration, is reported. Under an AC field of 4 kA m-1 at 430 kHz, the aligned bone cement with 0.2 wt% nanoparticles achieves a temperature increase of 30 °C in 180 s. This amounts to a specific loss power value of 327 W gmetal-1 and an intrinsic loss power of 47 nHm2 kg-1 , which is enhanced by 50-fold compared to randomly oriented samples. The high-performance magnetic bone cement allows for the demonstration of effective hyperthermia suppression of tumor growth in the bone marrow cavity of New Zealand White Rabbits subjected to rapid cooling due to blood circulation, and significant enhancement of survival rate.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Shan Gao
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Di'an Wu
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Zhengrui Li
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Yan Mi
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Tianyu Yang
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Fan Sun
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Lichen Wang
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Ruoshui Liu
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Shuli He
- Department of Physics, Capital Normal University, Beijing, 100048, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Lv
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Andy Yuanguang Xu
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hao Zeng
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| |
Collapse
|
42
|
Kazantseva NE, Smolkova IS, Babayan V, Vilčáková J, Smolka P, Saha P. Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. NANOMATERIALS 2021; 11:nano11123402. [PMID: 34947751 PMCID: PMC8706233 DOI: 10.3390/nano11123402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023]
Abstract
Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor’s vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH.
Collapse
Affiliation(s)
- Natalia E. Kazantseva
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (I.S.S.); (V.B.); (J.V.); (P.S.); (P.S.)
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Correspondence: ; Tel.: +420-608607035
| | - Ilona S. Smolkova
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (I.S.S.); (V.B.); (J.V.); (P.S.); (P.S.)
| | - Vladimir Babayan
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (I.S.S.); (V.B.); (J.V.); (P.S.); (P.S.)
| | - Jarmila Vilčáková
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (I.S.S.); (V.B.); (J.V.); (P.S.); (P.S.)
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Petr Smolka
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (I.S.S.); (V.B.); (J.V.); (P.S.); (P.S.)
| | - Petr Saha
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (I.S.S.); (V.B.); (J.V.); (P.S.); (P.S.)
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| |
Collapse
|
43
|
Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021; 11:10091-10113. [PMID: 34815806 PMCID: PMC8581415 DOI: 10.7150/thno.62218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
The theranostics paradigm is based on the concept of combining therapeutic and diagnostic modalities into one platform to improve the effectiveness of treatment. Combinations of multiple modalities provide numerous medical advantages and are enabled by nano- and micron-sized mediators. Here we review recent advancements in the field of ultrasound theranostics and the use of magnetic materials as mediators. Several subdisciplines are described in detail, including controlled drug delivery and release, ultrasound hyperthermia, magneto-ultrasonic heating, sonodynamic therapy, magnetoacoustic imaging, ultrasonic wave generation by magnetic fields, and ultrasound tomography. The continuous progress and improvement in theranostic materials, methods, and physical computing models have created undeniable possibilities for the development of new approaches. We discuss the prospects of ultrasound theranostics and possible expansions of other studies to the theranostic context.
Collapse
Affiliation(s)
- Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Katarzyna Kaczmarek
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, United Kingdom
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
44
|
Gkountas AA, Polychronopoulos ND, Sofiadis GN, Karvelas EG, Spyrou LA, Sarris IE. Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106477. [PMID: 34736172 DOI: 10.1016/j.cmpb.2021.106477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Glioblastoma multiforme is considered as one of the most aggressive types of cancer, while various treatment techniques have been proposed. Magnetic nanoparticles (MNPs) loaded with drug and magnetically controlled and targeted to tissues affected by disease, is considered as a possible treatment. However, MNPs are difficult to penetrate the central nervous system and approach the unhealthy tissue, because of the blood-brain barrier (BBB). This study investigates numerically the delivery of magnetic nanoparticles through the barrier driven by normal pressure drop and external gradient magnetic fields, employing a simplified geometrical model, computational fluid dynamics and discrete element method. The goal of the study is to provide information regarding the permeability of the BBB under various conditions like the imposed forces and the shape of the domain, as a preliminary predictive tool. METHODS To achieve that, the three-dimensional Navier-Stokes equations are solved in the margin of a blood vessel along with a discrete model for the MNPs with various acting forces. The numerical results are compared with experimental measurements showing that the model can predict acceptably the flow behavior. RESULTS The effect of nanoparticles' size, external magnetic field and blood flow in the vessel, on the brain-barrier's permeability are investigated. Three different cases of available area among the endothelial cells per the MNPs' size ratio are also examined, showing that the MNPs' size and available area is not the dominant parameter affecting the permeability of the BBB. The results indicate that the applied magnetic field enhances the drug delivery into the central nervous system (CNS). When larger MNPs (∼100 nm) are exposed to an external magnetic field, the permeability can be improved up to 30%, while it is shown that smaller MNPs (∼10 nm) cannot be driven by the applied magnetic field and in this case the permeability remains relatively unchanged. Finally, the blood flow increase leads to a permeability improvement up to 15%. CONCLUSIONS The applied magnetic field improves up to 45% the permeability of the BBB for MNPs of 100 nm. The geometric characteristics of the endothelial cells, the nanoparticles' size and the blood flow are not so decisive parameters for the drug delivery into the CNS, compared to the external magnetic force.
Collapse
Affiliation(s)
- Apostolos A Gkountas
- Institute of Bio-Economy and Agri-Technology, Centre for Research and Technology Hellas (CERTH), 38333 Volos, Greece.
| | - Nickolas D Polychronopoulos
- Institute of Bio-Economy and Agri-Technology, Centre for Research and Technology Hellas (CERTH), 38333 Volos, Greece
| | - George N Sofiadis
- Department of Mechanical Engineering, University of West Attica, 12244, Athens, Greece; Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
| | - Evangelos G Karvelas
- Department of Mechanical Engineering, University of West Attica, 12244, Athens, Greece
| | - Leonidas A Spyrou
- Institute of Bio-Economy and Agri-Technology, Centre for Research and Technology Hellas (CERTH), 38333 Volos, Greece
| | - Ioannis E Sarris
- Department of Mechanical Engineering, University of West Attica, 12244, Athens, Greece
| |
Collapse
|
45
|
A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modelling of magnetic hyperthermia using nanoparticles of ellipsoid tumor shapes has not been studied adequately. To fill this gap, a computational study has been carried out to determine two key treatment parameters: the therapeutic temperature distribution and the extent of thermal damage. Prolate and oblate spheroidal tumors, of various aspect ratios, surrounded by a large healthy tissue region are assumed. Tissue temperatures are determined from the solution of Pennes’ bio-heat transfer equation. The mortality of the tissues is determined by the Arrhenius kinetic model. The computational model is successfully verified against a closed-form solution for a perfectly spherical tumor. The therapeutic temperature and the thermal damage in the tumor center decrease as the aspect ratio increases and it is insensitive to whether tumors of the same aspect ratio are oblate or prolate spheroids. The necrotic tumor area is affected by the tumor prolateness and oblateness. Good comparison is obtained of the present model with three sets of experimental measurements taken from the literature, for animal tumors exhibiting ellipsoid-like geometry. The computational model enables the determination of the therapeutic temperature and tissue thermal damage for magnetic hyperthermia of ellipsoidal tumors. It can be easily reproduced for various treatment scenarios and may be useful for an effective treatment planning of ellipsoidal tumor geometries.
Collapse
|
46
|
Jivago JLPR, Brito JLM, Capistrano G, Vinícius-Araújo M, Lima Verde E, Bakuzis AF, Souza PEN, Azevedo RB, Lucci CM. New Prospects in Neutering Male Animals Using Magnetic Nanoparticle Hyperthermia. Pharmaceutics 2021; 13:pharmaceutics13091465. [PMID: 34575541 PMCID: PMC8467495 DOI: 10.3390/pharmaceutics13091465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Controlling populations of free-roaming dogs and cats poses a huge challenge worldwide. Non-surgical neutering strategies for male animals have been long pursued, but the implementation of the procedures developed has remained limited to date. As submitting the testes to high temperatures impairs spermatogenesis, the present study investigated localized application of magnetic nanoparticle hyperthermia (MNH) to the testicles as a potential non-surgical sterilization method for animals. An intratesticular injection of a magnetic fluid composed of manganese-ferrite nanoparticles functionalized with citrate was administered followed by testicle exposure to an alternate magnetic field to generate localized heat. Testicular MNH was highly effective, causing progressive seminiferous tubule degeneration followed by substitution of the parenchyma with stromal tissue and gonadal atrophy, suggesting an irreversible process with few side effects to general animal health.
Collapse
Affiliation(s)
- José Luiz P. R. Jivago
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (J.L.P.R.J.); (J.L.M.B.)
| | - Juliana Lis Mendes Brito
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (J.L.P.R.J.); (J.L.M.B.)
| | - Gustavo Capistrano
- Institute of Physics and CNanoMed, Federal University of Goiás, Goiania 74884-092, GO, Brazil; (G.C.); (M.V.-A.); (A.F.B.)
| | - Marcus Vinícius-Araújo
- Institute of Physics and CNanoMed, Federal University of Goiás, Goiania 74884-092, GO, Brazil; (G.C.); (M.V.-A.); (A.F.B.)
| | - Ediron Lima Verde
- Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Pontal do Araguaia 78060-900, MT, Brazil;
| | - Andris Figueiroa Bakuzis
- Institute of Physics and CNanoMed, Federal University of Goiás, Goiania 74884-092, GO, Brazil; (G.C.); (M.V.-A.); (A.F.B.)
| | - Paulo E. N. Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil;
| | - Ricardo Bentes Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, DF, Brazil;
| | - Carolina Madeira Lucci
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (J.L.P.R.J.); (J.L.M.B.)
- Correspondence:
| |
Collapse
|
47
|
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021; 13:cancers13184583. [PMID: 34572810 PMCID: PMC8465027 DOI: 10.3390/cancers13184583] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Magnetic hyperthermia therapy is an alternative treatment for cancer that complements traditional therapies and that has shown great promise in recent years. In this review, we assess the current applications of this therapy in order to understand why its translation from the laboratory to the clinic has been less smooth than was anticipated, identifying the possible bottlenecks and proposing solutions to the problems encountered. Abstract Hyperthermia has emerged as a promising alternative to conventional cancer therapies and in fact, traditional hyperthermia is now commonly used in combination with chemotherapy or surgery during cancer treatment. Nevertheless, non-specific application of hyperthermia generates various undesirable side-effects, such that nano-magnetic hyperthermia has arisen a possible solution to this problem. This technique to induce hyperthermia is based on the intrinsic capacity of magnetic nanoparticles to accumulate in a given target area and to respond to alternating magnetic fields (AMFs) by releasing heat, based on different principles of physics. Unfortunately, the clinical implementation of nano-magnetic hyperthermia has not been fluid and few clinical trials have been carried out. In this review, we want to demonstrate the need for more systematic and basic research in this area, as many of the sub-cellular and molecular mechanisms associated with this approach remain unclear. As such, we shall consider here the biological effects that occur and why this theoretically well-designed nano-system fails in physiological conditions. Moreover, we will offer some guidelines that may help establish successful strategies through the rational design of magnetic nanoparticles for magnetic hyperthermia.
Collapse
|
48
|
Capistrano G, Rodrigues HF, Zufelato N, Gonçalves C, Cardoso CG, Silveira-Lacerda EP, Bakuzis AF. Noninvasive intratumoral thermal dose determination during in vivo magnetic nanoparticle hyperthermia: combining surface temperature measurements and computer simulations. Int J Hyperthermia 2021; 37:120-140. [PMID: 33426991 DOI: 10.1080/02656736.2020.1826583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Noninvasive thermometry during magnetic nanoparticle hyperthermia (MNH) remains a challenge. Our pilot study proposes a methodology to determine the noninvasive intratumoral thermal dose during MNH in the subcutaneous tumor model. METHODS Two groups of Ehrlich bearing-mice with solid and subcutaneous carcinoma, a control group (n = 6), and a MNH treated group (n = 4) were investigated. Histopathology was used to evaluate the percentage of non-viable lesions in the tumor. MNH was performed at 301 kHz and 17.5 kA.m-1, using a multifunctional nanocarrier. Surface temperature measurements were obtained using an infrared camera, where an ROI with 750 pixels was used for comparison with computer simulations. Realistic simulations of the bioheat equation were obtained by combining histopathology intratumoral lesion information and surface temperature agreement of at least 50% of the pixel's temperature data calculated and measured at the surface. RESULTS One animal of the MNH group showed tumor recurrence, while two others showed complete tumor remission (monitored for 585 days). Sensitivity analysis of the simulation parameters indicated low tumor blood perfusion. Numerical simulations indicated, for the animals with complete remission, an irreversible tissue injury of 91 ± 5% and 100%, while the one with recurrence had a lower value, 56 ± 7%. The computer simulations also revealed the in vivo heat efficiency of the nanocarrier. CONCLUSION A new methodology for determining noninvasively the three-dimensional intratumoral thermal dose during MNH was developed. The method demonstrates the potential for predicting the long-term preclinical outcome of animals treated with MNH.
Collapse
Affiliation(s)
- Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil.,Instituto Federal de Mato Grosso, Pontes e Lacerda, Brazil
| | - Harley F Rodrigues
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil.,Instituto Federal de Goiás, Curso de Licenciatura em Física, Goiânia, Brazil
| | | | - Cristhiane Gonçalves
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil.,Universidade Tecnológica Federal do Paraná, Ponta Grossa, Brazil
| | - Clever G Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
49
|
Affiliation(s)
- Andris F Bakuzis
- Federal University of Goias, Institute of Physics Goiania, GO, Brazil
| |
Collapse
|