1
|
Gupta D, Kaovasia TP, Komaiha M, Nielsen JF, Allen SP, Hall TL, Noll DC, Xu Z. Transcranial MRI-guided Histotripsy Targeting Using MR-thermometry and MR-ARFI. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:330-335. [PMID: 39592380 DOI: 10.1016/j.ultrasmedbio.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE Transcranial magnetic resonance imaging (MRI)-guided histotripsy has been demonstrated to treat various locations in in vivo swine brain through a human skull. To ensure that the histotripsy treatment is delivered to the intended target location, accurate pre-treatment targeting is necessary. In this work, we investigate the feasibility of MR-thermometry and MR-acoustic radiation force imaging (MR-ARFI) to perform pre-treatment targeting of histotripsy in ex vivo bovine brain through a human skull. METHODS A 700 kHz, 128-element MR-compatible histotripsy array was used to generate histotripsy and tone-burst sonications. The array's electronic drivers were modified to also generate low-amplitude tone-burst sonications to perform MR-thermometry and MR-ARFI-based targeting. Twelve ex vivo bovine brains were treated with histotripsy at 35 MPa, 75 MPa and through a skull at 36 MPa. Before treating the tissue, both MR-ARFI and MR-thermometry were used to estimate the lesion location. Finally, the location of the histotripsy lesion was compared with the focus estimated by MR-thermometry and MR-ARFI. RESULTS MR-thermometry and MR-ARFI were able to successfully perform pre-treatment targeting of histotripsy using the modified histotripsy array driver. Histotripsy focus was estimated with mean absolute errors along the transverse/longitudinal axis of 2.06/2.95 mm and 2.13/2.51 mm for MR-ARFI and MR-thermometry, respectively. The presence of the human skull reduced the pressure at the focal region, but it did not compromise the targeting accuracy of either of the two methods with a mean absolute error of 1.10/2.91 mm and 1.29/2.91 mm for MR-ARFI and MR-thermometry, respectively. CONCLUSION This study demonstrated that transcranial histotripsy pre-treatment targeting is feasible with MR-thermometry and MR-ARFI.
Collapse
Affiliation(s)
- Dinank Gupta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tarana P Kaovasia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mahmoud Komaiha
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Douglas C Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1-14. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Holmström A, Pudas T, Hyvönen J, Weber M, Mizohata K, Sillanpää T, Mäkinen J, Kuronen A, Kotiaho T, Hæggström E, Salmi A. Gold removal from e-waste using high-intensity focused ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 111:107109. [PMID: 39437616 PMCID: PMC11532776 DOI: 10.1016/j.ultsonch.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The demand for rare and precious metals (RPMs), e.g. gold, is increasing, as these are used in the ever-increasing amount of electronics needed for technological development and digitalization. Due to their rarity, virgin mining of RPMs is becoming more difficult and expensive. At the same time, over 62Mt of e-waste is created globally each year. The high concentration of gold and other RPMs in e-waste makes it an excellent source for recycling. Unfortunately, current recycling methods need to separate the different metals and the current pyrometallurgical and hydrometallurgical processes also create toxic pollutants, large amounts of wastewater and require highly corrosive substances. Here we present a new method for gold removal for the purpose of recycling, using only water and high-intensity focused ultrasound to induce material erosion through cavitation. An 11.8MHz ultrasonic transducer is used to first image the sample to locate gold-coated pads on discarded printed circuit boards (PCBs) and subsequently to remove only the gold layer. We demonstrate that the gold removal can be controlled by the number of transmitted ultrasonic bursts and that the energy efficiency is optimal when only minute amounts of the nickel layer beneath are also removed. Removing solely the gold layer also decreases the need for further processing steps. This greener gold removal method for e-waste is therefore well aligned with, and contributing to, the United Nations Sustainable Development Goal 12: Ensure sustainable consumption and production patterns.
Collapse
Affiliation(s)
- Axi Holmström
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland.
| | - Topi Pudas
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Jere Hyvönen
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Martin Weber
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Kenichiro Mizohata
- Accelerator Laboratory, Faculty of Science, University of Helsinki, P.O.B. 43, FIN-00014 University of Helsinki, Finland
| | - Tom Sillanpää
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland; Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O.B. 56, FIN-00014 University of Helsinki, Finland
| | - Joni Mäkinen
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Antti Kuronen
- Accelerator Laboratory, Faculty of Science, University of Helsinki, P.O.B. 43, FIN-00014 University of Helsinki, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O.B. 56, FIN-00014 University of Helsinki, Finland; Department of Chemistry, Faculty of Science, University of Helsinki, P.O.B 55, FIN-00014 University of Helsinki, Finland
| | - Edward Hæggström
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Ari Salmi
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
4
|
Verma Y, Arachchige ASPM. Revolutionizing cardiovascular care: the power of histotripsy. J Ultrasound 2024; 27:759-768. [PMID: 38217765 PMCID: PMC11496427 DOI: 10.1007/s40477-023-00848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 01/15/2024] Open
Abstract
Histotripsy, an innovative ultrasonic technique, is poised to transform the landscape of cardiovascular disease management. This review explores the multifaceted applications of histotripsy across various domains of cardiovascular medicine. In thrombolysis, histotripsy presents a non-invasive, drug-free, and precise method for recanalizing blood vessels obstructed by clots, minimizing the risk of vessel damage and embolism. Additionally, histotripsy showcases its potential in congenital heart defect management, offering a promising alternative to invasive procedures by creating intracardiac communications noninvasively. For patients with calcified aortic stenosis, histotripsy demonstrates its effectiveness in softening calcified bioprosthetic valves, potentially revolutionizing valve interventions. In the realm of arrhythmias, histotripsy could play an important role in scar-based ventricular tachycardia ablation, eliminating channel-like isthmuses of slowly conducting myocardium. Histotripsy`s potential applications also extend to structural heart interventions, enabling the safe sectioning of basal chordae and potentially addressing mitral regurgitation. Furthermore, it showcases its versatility by safely generating ventricular septal defects, providing a non-invasive means of creating intracardiac communications in neonates with congenital heart disease. Yet, most supporting studies are in-vitro or animal studies and there are possible challenges in translating experimental data on cardiac histotripsy to the clinical level. As histotripsy continues to evolve and mature, its remarkable potential in cardiovascular disease management holds promise for improving patient outcomes and reducing the burden of invasive procedures in the field of cardiology.
Collapse
Affiliation(s)
- Yash Verma
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | | |
Collapse
|
5
|
Epstein JE, Pople CB, Meng Y, Lipsman N. An update on the role of focused ultrasound in neuro-oncology. Curr Opin Neurol 2024; 37:682-692. [PMID: 39498847 DOI: 10.1097/wco.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Brain tumor treatment presents challenges for patients and clinicians, with prognosis for many of the most common brain tumors being poor. Focused ultrasound (FUS) can be deployed in several ways to circumvent these challenges, including the need to penetrate the blood-brain barrier and spare healthy brain tissue. This article reviews current FUS applications within neuro-oncology, emphasizing ongoing or recently completed clinical trials. RECENT FINDINGS Most clinical interest in FUS for neuro-oncology remains focused on exploring BBB disruption to enhance the delivery of standard-of-care therapeutics. More recently, the application of FUS for radiosensitization, liquid biopsy, and sonodynamic therapy is garnering increased clinical attention to assist in tumor ablation, early detection, and phenotypic diagnosis. Preclinical studies show encouraging data for the immunomodulatory effects of FUS, but these findings have yet to be tested clinically. SUMMARY FUS is a burgeoning area of neuro-oncology research. Data from several forthcoming large clinical trials should help clarify its role in neuro-oncology care.
Collapse
Affiliation(s)
- Jordan E Epstein
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
6
|
Khan ZM, Zhang J, Gannon J, Johnson BN, Verbridge SS, Vlaisavljevich E. Development of an Injectable Hydrogel for Histotripsy Ablation Toward Future Glioblastoma Therapy Applications. Ann Biomed Eng 2024; 52:3157-3171. [PMID: 39210157 PMCID: PMC11561036 DOI: 10.1007/s10439-024-03601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells. We previously optimized a thiol-Michael addition hydrogel for physical, chemical, and biological compatibility with the GBM microenvironment and demonstrated CXCL12-mediated chemotaxis can attract and entrap GBM cells into this hydrogel. In this study, we synthesize hydrogels under conditions mimicking GBM resection cavities and assess feasibility of histotripsy to ablate hydrogel-encapsulated cells. The results showed the hydrogel synthesis was bio-orthogonal, not shear-thinning, and can be scaled up for injection into GBM resection mimics in vitro. Experiments also demonstrated ultrasound imaging can distinguish the synthetic hydrogel from healthy porcine brain tissue. Finally, a 500 kHz transducer applied focused ultrasound treatment to the synthetic hydrogels, with results demonstrating precise histotripsy bubble clouds could be sustained in order to uniformly ablate red blood cells encapsulated by the hydrogel for homogeneous, mechanical fractionation of the entrapped cells. Overall, this hydrogel is a promising platform for biomaterials-based GBM treatment.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Junru Zhang
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jessica Gannon
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Yildiz YO, Ruan JL, Gray MD, Bau L, Browning RJ, Mannaris C, Kiltie AE, Vojnovic B, Stride E. Combined drug delivery and treatment monitoring using a single high frequency ultrasound system. Int J Hyperthermia 2024; 41:2430330. [PMID: 39592132 DOI: 10.1080/02656736.2024.2430330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Ultrasound-mediated drug delivery is typically performed using transducers with center frequencies ≤ 1 MHz to promote acoustic cavitation. Such frequencies are not commonly used for diagnostic ultrasound due to limited spatial resolution. Therefore, delivery and monitoring of therapeutic ultrasound typically requires two transducers to enable both treatment and imaging. This study investigates the feasibility of using a single commercial ultrasound imaging transducer operating at 5 MHz for both drug delivery and real-time imaging. We compared a single-transducer system (STS) at 5 MHz with a conventional dual-transducer system (DTS) using a 1.1 MHz therapeutic transducer and an imaging probe. in vitro experiments demonstrated that the STS could achieve comparable extravasation depth and area as the DTS, with higher drug deposition observed at 5 MHz. Additionally, extravasation patterns were influenced by peak negative pressure (PNP) and duty cycle, with the narrower beam width at 5 MHz offering potential advantages for targeted drug delivery. in vivo experiments in a murine bladder cancer model confirmed the efficacy of the STS for real-time imaging and drug delivery, with cavitation dose correlating with drug deposition. The results suggest that a single-transducer approach may enhance the precision and efficiency of ultrasound-mediated drug delivery, potentially reducing system complexity and cost.
Collapse
Affiliation(s)
- Yesna O Yildiz
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jia-Ling Ruan
- Department of Oncology, University of Oxford, Oxford, UK
| | - Michael D Gray
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | | - Christophoros Mannaris
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Rog CJ, Alassas M, Ong E. Histotripsy-A Novel and Intriguing Technique of Liver Ablation. JAMA Surg 2024:2826562. [PMID: 39565600 DOI: 10.1001/jamasurg.2024.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This article discusses the use of histotripsy as a noninvasive method for tumor ablation that involves mechanical destruction of tissues without the generation of heat, resulting in accurate and precise treatment without surrounding tissue damage.
Collapse
Affiliation(s)
- Colin J Rog
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mohamed Alassas
- Department of Surgery, Swedish Medical Center, Seattle, Washington
| | - Evan Ong
- Department of Surgery, Swedish Medical Center, Seattle, Washington
| |
Collapse
|
9
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024. [PMID: 39526313 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Frederic Padilla
- Gene Therapy Program, Focused Ultrasound Foundation, Charlottesville, Virginia, USA
- Department of Radiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kevin J Haworth
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
10
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
DeWitt M, Demir ZEF, Sherlock T, Brenin DR, Sheybani ND. MR Imaging-Guided Focused Ultrasound for Breast Tumors. Magn Reson Imaging Clin N Am 2024; 32:593-613. [PMID: 39322350 DOI: 10.1016/j.mric.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Breast tumors remain a complex and prevalent health burden impacting millions of individuals worldwide. Challenges in treatment arise from the invasive nature of traditional surgery and, in malignancies, the complexity of treating metastatic disease. The development of noninvasive treatment alternatives is critical for improving patient outcomes and quality of life. This review aims to explore the advancements and applications of focused ultrasound (FUS) technology over the past 2 decades. FUS offers a promising noninvasive, nonionizing intervention strategy in breast tumors including primary breast cancer, fibroadenomas, and metastatic breast cancer.
Collapse
Affiliation(s)
- Matthew DeWitt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Thomas Sherlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David R Brenin
- Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA; Division of Surgical Oncology, University of Virginia Health System, Charlottesville, VA, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA; Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
van den Bemd BAT, Puijk RS, Keijzers H, van den Tol PM, Meijerink MR. Mathematical 3D Liver Model for Surgical versus Ablative Therapy Treatment Planning for Colorectal Liver Metastases: Recommendations from the COLLISION and COLDFIRE Trial Expert Panels. Radiol Imaging Cancer 2024; 6:e240068. [PMID: 39400233 PMCID: PMC11615634 DOI: 10.1148/rycan.240068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
Purpose To further define anatomic criteria for resection and ablation using an expert panel-based three-dimensional liver model to objectively predict local treatment recommendations for colorectal liver metastases (CRLM). Materials and Methods This study analyzed data from participants with small CRLM (≤3 cm) considered suitable for resection, thermal ablation, or irreversible electroporation (IRE), according to a multidisciplinary expert panel, who were included in two prospective multicenter trials (COLLISION [NCT03088150] and COLDFIRE-2 [NCT02082782]) between August 2017 and June 2022. Ten randomly selected participants were used to standardize the model's Couinaud segments. CRLM coordinates were measured and plotted in the model as color-coded lesions according to the treatment recommendations. Statistical validation was achieved through leave-one-out cross-validation. Results A total of 611 CRLM in 202 participants (mean age, 63 [range, 29-87] years; 138 male and 64 female) were included. Superficially located CRLM were considered suitable for resection, whereas more deep-seated CRLM were preferably ablated, with the transition zone at a subsurface depth of 3 cm. Ninety-three percent (25 of 27) of perihilar CRLM treated with IRE were at least partially located within 1 cm from the portal triad. Use of the model correctly predicted the preferred treatment in 313 of 424 CRLM (73.8%). Conclusion The results suggest that CRLM can be defined as superficial (preferably resected) and deep-seated (preferably ablated) if the tumor center is within versus beyond 3 cm from the liver surface, respectively, and as perihilar if the tumor margins extend to within 1 cm from the portal triad. Keywords: Ablation Techniques, CT, MRI, Liver, Abdomen/GI, Metastases, Oncology Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Bente A. T. van den Bemd
- From the Department of Radiology and Nuclear Medicine, Amsterdam UMC,
Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Cancer Center Amsterdam, Amsterdam,
the Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Department of Surgical Oncology,
OLVG Hospital, Oost, Amsterdam, the Netherlands (B.A.T.v.d.B.); Department of
Radiology and Nuclear Medicine, OLVG Hospital, Oost, Amsterdam, the Netherlands
(R.S.P.), Department of Medical Physics and Radiation Protection, Haaglanden MC,
The Hague, the Netherlands (H. Keijzers); and Department of Surgical Oncology,
Medical Center Leeuwarden, Leeuwarden, the Netherlands (P.M.v.d.T.)
| | - Robbert S. Puijk
- From the Department of Radiology and Nuclear Medicine, Amsterdam UMC,
Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Cancer Center Amsterdam, Amsterdam,
the Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Department of Surgical Oncology,
OLVG Hospital, Oost, Amsterdam, the Netherlands (B.A.T.v.d.B.); Department of
Radiology and Nuclear Medicine, OLVG Hospital, Oost, Amsterdam, the Netherlands
(R.S.P.), Department of Medical Physics and Radiation Protection, Haaglanden MC,
The Hague, the Netherlands (H. Keijzers); and Department of Surgical Oncology,
Medical Center Leeuwarden, Leeuwarden, the Netherlands (P.M.v.d.T.)
| | - Han Keijzers
- From the Department of Radiology and Nuclear Medicine, Amsterdam UMC,
Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Cancer Center Amsterdam, Amsterdam,
the Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Department of Surgical Oncology,
OLVG Hospital, Oost, Amsterdam, the Netherlands (B.A.T.v.d.B.); Department of
Radiology and Nuclear Medicine, OLVG Hospital, Oost, Amsterdam, the Netherlands
(R.S.P.), Department of Medical Physics and Radiation Protection, Haaglanden MC,
The Hague, the Netherlands (H. Keijzers); and Department of Surgical Oncology,
Medical Center Leeuwarden, Leeuwarden, the Netherlands (P.M.v.d.T.)
| | - Petrousjka M. van den Tol
- From the Department of Radiology and Nuclear Medicine, Amsterdam UMC,
Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Cancer Center Amsterdam, Amsterdam,
the Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Department of Surgical Oncology,
OLVG Hospital, Oost, Amsterdam, the Netherlands (B.A.T.v.d.B.); Department of
Radiology and Nuclear Medicine, OLVG Hospital, Oost, Amsterdam, the Netherlands
(R.S.P.), Department of Medical Physics and Radiation Protection, Haaglanden MC,
The Hague, the Netherlands (H. Keijzers); and Department of Surgical Oncology,
Medical Center Leeuwarden, Leeuwarden, the Netherlands (P.M.v.d.T.)
| | - Martijn R. Meijerink
- From the Department of Radiology and Nuclear Medicine, Amsterdam UMC,
Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Cancer Center Amsterdam, Amsterdam,
the Netherlands (B.A.T.v.d.B., R.S.P., M.R.M.); Department of Surgical Oncology,
OLVG Hospital, Oost, Amsterdam, the Netherlands (B.A.T.v.d.B.); Department of
Radiology and Nuclear Medicine, OLVG Hospital, Oost, Amsterdam, the Netherlands
(R.S.P.), Department of Medical Physics and Radiation Protection, Haaglanden MC,
The Hague, the Netherlands (H. Keijzers); and Department of Surgical Oncology,
Medical Center Leeuwarden, Leeuwarden, the Netherlands (P.M.v.d.T.)
| | | |
Collapse
|
13
|
Engelen Y, Krysko DV, Effimova I, Breckpot K, Versluis M, De Smedt S, Lajoinie G, Lentacker I. Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool. J Control Release 2024; 375:389-403. [PMID: 39293525 DOI: 10.1016/j.jconrel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, ultrasound (US) has gathered significant attention and research focus in the realm of medical treatments, particularly within the domain of anti-cancer therapies. This growing interest can be attributed to its non-invasive nature, precision in delivery, availability, and safety. While the conventional objective of US-based treatments to treat breast, prostate, and liver cancer is the ablation of target tissues, the introduction of the concept of immunogenic cell death (ICD) has made clear that inducing cell death can take different non-binary pathways through the activation of the patient's anti-tumor immunity. Here, we investigate high-intensity focused ultrasound (HIFU) to induce ICD by unraveling the underlying physical phenomena and resulting biological effects associated with HIFU therapy using an automated and fully controlled experimental setup. Our in-vitro approach enables the treatment of adherent cancer cells (B16F10 and CT26), analysis for ICD hallmarks and allows to monitor and characterize in real time the US-induced cavitation activity through passive cavitation detection (PCD). We demonstrate HIFU-induced cell death, CRT exposure, HMGB1 secretion and antigen release. This approach holds great promise in advancing our understanding of the therapeutic potential of HIFU for anti-cancer strategies.
Collapse
Affiliation(s)
- Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Iuliia Effimova
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Grogan DP, Abduhalikov T, Kassell NF, Moosa S. Future Directions of MR-guided Focused Ultrasound. Magn Reson Imaging Clin N Am 2024; 32:705-715. [PMID: 39322359 DOI: 10.1016/j.mric.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (MRgFUS) allows for the incisionless treatment of intracranial lesions in an outpatient setting. While this is currently approved for the surgical treatment of essential tremor and Parkinson's disease, advancements in imaging and ultrasound technology are allowing for the expansion of treatment indications to other intracranial diseases. In addition, these advancements are also making MRgFUS treatments easier, safer, and more efficacious.
Collapse
Affiliation(s)
- Dayton P Grogan
- Department of Neurosurgery, University of Virginia Hospital, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Timour Abduhalikov
- University of Virginia, School of Medicine, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA 22903, USA
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia Hospital, PO Box 800212, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Wu Q, Gray M, Smith CAB, Bau L, Cleveland RO, Coussios C, Stride E. Challenges in classifying cavitation: Correlating high-speed optical imaging and passive acoustic mapping of cavitation dynamics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:3608-3620. [PMID: 39589331 DOI: 10.1121/10.0034426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Both the biological effects and acoustic emissions generated by cavitation are functions of bubble dynamics. Monitoring of acoustic emissions is therefore desirable to improve treatment safety and efficacy. The relationship between the emission spectra and bubble dynamics is, however, complex. The aim of this study was to characterise this relationship for single microbubbles using simultaneous ultra-high-speed optical imaging and passive acoustic mapping of cavitation emissions. As expected, both the number of discrete harmonics and broadband content in the emissions increased with increasing amplitude of bubble oscillation, but the spectral content was also dependent upon other variables, including the frequency of bubble collapse and receiving transducer characteristics. Moreover, phenomena, such as fragmentation and microjetting, could not be distinguished from spherical oscillations when using the full duration acoustic waveform to calculate the emission spectra. There was also no correlation between the detection of broadband noise and widely used thresholds for distinguishing bubble dynamics. It is therefore concluded that binary categorisations, such as stable and inertial cavitation, should be avoided, and different types of bubble behavior should not be inferred on the basis of frequency content alone. Treatment monitoring criteria should instead be defined according to the relevant bioeffect(s) for a particular application.
Collapse
Affiliation(s)
- Qiang Wu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Luca Bau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Chen H, Anastasiadis P, Woodworth GF. MR Imaging-Guided Focused Ultrasound-Clinical Applications in Managing Malignant Gliomas. Magn Reson Imaging Clin N Am 2024; 32:673-679. [PMID: 39322356 DOI: 10.1016/j.mric.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Malignant gliomas (MGs) are the most common primary brain tumors in adults. Despite recent advances in understanding the biology and potential therapeutic vulnerabilities of MGs, treatment options remain limited as the delivery of drugs is often impeded by the blood-brain barrier (BBB), and safe, complete surgical resection may not always be possible, especially for deep-seated tumors. In this review, the authors highlight emerging applications for MR imaging-guided focused ultrasound (MRgFUS) as a noninvasive treatment modality for MGs. Specifically, the authors discuss MRgFUS's potential role in direct tumor cell killing, opening the BBB, and modulating antitumor immunity.
Collapse
Affiliation(s)
- Huanwen Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, S-12D, 22 South Greene Street, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, S-12D, 22 South Greene Street, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center.
| |
Collapse
|
17
|
Khandpur U, Haile B, Makary MS. Early-Stage Renal Cell Carcinoma Locoregional Therapies: Current Approaches and Future Directions. Clin Med Insights Oncol 2024; 18:11795549241285390. [PMID: 39435052 PMCID: PMC11492234 DOI: 10.1177/11795549241285390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Renal cell carcinoma (RCC) is the most common primary renal malignancy. Prevalence of RCC in developed countries has slowly increased. Although partial or total nephrectomy has been the first-line treatment for early-stage RCC, improved or similar safety and treatment outcomes with locoregional therapies have challenged this paradigm. In this review, we explore locoregional techniques for early-stage RCC, including radiofrequency ablation, cryoablation, and microwave ablation with a focus on procedural technique, patient selection, and safety/treatment outcomes. Furthermore, we discuss future advances and novel techniques, including radiomics, combination therapy, high-intensity focused ultrasound, and catheter-directed techniques.
Collapse
Affiliation(s)
- Umang Khandpur
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bereket Haile
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
18
|
Ruger L, Langman M, Farrell R, Rossmeisl JH, Prada F, Vlaisavljevich E. Ultrasound-Guided Mechanical High-Intensity Focused Ultrasound (Histotripsy) Through an Acoustically Permeable Polyolefin-Based Cranioplasty Device. IEEE Trans Biomed Eng 2024; 71:2877-2888. [PMID: 38728123 DOI: 10.1109/tbme.2024.3399688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Histotripsy is a non-thermal focused ultrasound therapy in development for the non-invasive ablation of cancerous tumors. Intracranial histotripsy has been limited by significant pressure attenuation through the skull, requiring large, complex array transducers to overcome this effect. OBJECTIVE Recently, a biocompatible, polyolefin-based cranioplasty device was developed to allow ultrasound (US) transmission into the intracranial space with minimal distortion. In this study, we investigated the in vitro feasibility of applying US-guided histotripsy procedures across the prosthesis. METHODS Pressure waveforms and beam profiles were collected for single- and multi-element histotripsy transducers. Then, high-speed optical images of the bubble cloud with and without the prosthesis were collected in water and tissue-mimicking agarose gel phantoms. Finally, red blood cell (RBC) tissue phantom and excised brain tissue experiments were completed to test the ablative efficacy across the prosthesis. RESULTS Single element tests revealed increased pressure loss with increasing transducer frequency and increasing transducer-to-prosthesis angle. Array transducer measurements at 1 MHz showed average pressure losses of >50% across the prosthesis. Aberration correction recovered up to 18% of the pressure lost, and high-speed optical imaging in water, agarose gels, and RBC phantoms demonstrated that histotripsy bubble clouds could be generated across the prosthesis at pulse repetition frequencies of 50-500 Hz. Histologic analysis revealed a complete breakdown of brain tissue treated across the prosthesis. Conclusion & Significance: Overall, the results of this study demonstrate that the cranial prosthesis may be used as an acoustic window through which intracranial histotripsy can be applied under US guidance without the need for large transcranial array transducers.
Collapse
|
19
|
Hewitt DB, Wolfgang CL. The Role of Surgery in "Oligometastatic" Pancreas Cancer. Surg Clin North Am 2024; 104:1065-1081. [PMID: 39237164 DOI: 10.1016/j.suc.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The majority of patients diagnosed with pancreatic cancer already have metastatic disease at the time of presentation, which results in a 5-year survival rate of only 13%. However, multiagent chemotherapy regimens can stabilize the disease in select patients with limited metastatic disease. For such patients, a combination of curative-intent therapy and systemic therapy may potentially enhance outcomes compared to using systemic therapy alone. Of note, the evidence supporting this approach is primarily derived from retrospective studies and may carry a significant selection bias. Looking ahead, ongoing prospective trials are exploring the efficacy of curative-intent therapy in managing oligometastatic pancreatic cancer and the implementation of treatment strategies based on specific biomarkers. The emergence of these trials, coupled with the development of less invasive therapeutic modalities, provides hope for patients with oligometastatic pancreatic cancer.
Collapse
Affiliation(s)
- D Brock Hewitt
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The NYU Grossman School of Medicine, 577 1st Avenue, 2nd Floor, New York, NY 10016, USA.
| | - Christopher L Wolfgang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The NYU Grossman School of Medicine, 577 1st Avenue, 2nd Floor, New York, NY 10016, USA
| |
Collapse
|
20
|
Chlorogiannis DD, Sotirchos VS, Sofocleous CT. Oncologic Outcomes after Percutaneous Ablation for Colorectal Liver Metastases: An Updated Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1536. [PMID: 39336577 PMCID: PMC11433672 DOI: 10.3390/medicina60091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer is a major cause of cancer-related mortality, with liver metastases occurring in over a third of patients, and is correlated with poor prognosis. Despite surgical resection being the primary treatment option, only about 20% of patients qualify for surgery. Current guidelines recommend thermal ablation either alone or combined with surgery to treat limited hepatic metastases, provided that all visible disease can be effectively eradicated. Several ablation modalities, including radiofrequency ablation, microwave ablation, cryoablation, irreversible electroporation and histotripsy, are part of the percutaneous ablation armamentarium. Thermal ablation, including radiofrequency, microwave ablation and cryoablation, can offer local tumor control rates comparable to limited resection for selected tumors that can be ablated with margins. This review aims to encapsulate the current clinical evidence regarding the efficacy and oncologic outcomes after percutaneous ablation for the treatment of colorectal liver metastatic disease.
Collapse
Affiliation(s)
| | - Vlasios S Sotirchos
- Interventional Oncology/IR Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Constantinos T Sofocleous
- Interventional Oncology/IR Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Phipps MA, Manuel TJ, Sigona MK, Luo H, Yang PF, Newton A, Chen LM, Grissom W, Caskey CF. Practical Targeting Errors During Optically Tracked Transcranial Focused Ultrasound Using MR-ARFI and Array- Based Steering. IEEE Trans Biomed Eng 2024; 71:2740-2748. [PMID: 38640051 DOI: 10.1109/tbme.2024.3391383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is being explored for neuroscience research and clinical applications due to its ability to affect precise brain regions noninvasively. The ability to target specific brain regions and localize the beam during these procedures is important for these applications to avoid damage and minimize off-target effects. Here, we present a method to combine optical tracking with magnetic resonance (MR) acoustic radiation force imaging to achieve targeting and localizing of the tFUS beam. This combined method provides steering coordinates to target brain regions within a clinically practical time frame. METHODS Using an optically tracked hydrophone and bias correction with MR imaging we transformed the FUS focus coordinates into the MR space for targeting and error correction. We validated this method in vivo in 18 macaque FUS studies. RESULTS Across these in vivo studies a single localization scan allowed for the average targeting error to be reduced from 4.8 mm to 1.4 mm and for multiple brain regions to be targeted with one transducer position. CONCLUSIONS By reducing targeting error and providing the means to target multiple brain regions within a single session with high accuracy this method will allow further study of the effects of tFUS neuromodulation with more advanced approaches such as simultaneous dual or multi-site brain stimulation.
Collapse
|
22
|
Nezami N, Georgiades C. From Echoes to Disruption: US from Diagnostic Imaging to Precision Therapeutic Modality. Radiology 2024; 312:e242012. [PMID: 39225604 DOI: 10.1148/radiol.242012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Nariman Nezami
- From the Division of Interventional Radiology, Department of Radiology, MedStar Georgetown University Hospital, 3800 Reservoir Rd NW, CCC Bldg, Rm CG225, Washington, DC 20007 (N.N.); Georgetown University School of Medicine, Washington, DC (N.N.); Lombardi Comprehensive Cancer Center, Washington, DC (N.N.); and Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (C.G.)
| | - Christos Georgiades
- From the Division of Interventional Radiology, Department of Radiology, MedStar Georgetown University Hospital, 3800 Reservoir Rd NW, CCC Bldg, Rm CG225, Washington, DC 20007 (N.N.); Georgetown University School of Medicine, Washington, DC (N.N.); Lombardi Comprehensive Cancer Center, Washington, DC (N.N.); and Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (C.G.)
| |
Collapse
|
23
|
Du Z, Li M, Chen G, Xiang M, Jia D, Cheng JX, Yang C. Mid-Infrared Photoacoustic Stimulation of Neurons through Vibrational Excitation in Polydimethylsiloxane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405677. [PMID: 38994890 PMCID: PMC11425203 DOI: 10.1002/advs.202405677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Photoacoustic (PA) emitters are emerging ultrasound sources offering high spatial resolution and ease of miniaturization. Thus far, PA emitters rely on electronic transitions of absorbers embedded in an expansion matrix such as polydimethylsiloxane (PDMS). Here, it is shown that mid-infrared vibrational excitation of C─H bonds in a transparent PDMS film can lead to efficient mid-infrared photoacoustic conversion (MIPA). MIPA shows 37.5 times more efficient than the commonly used PA emitters based on carbon nanotubes embedded in PDMS. Successful neural stimulation through MIPA both in a wide field with a size up to a 100 µm radius and in single-cell precision is achieved. Owing to the low heat conductivity of PDMS, less than a 0.5 °C temperature increase is found on the surface of a PDMS film during successful neural stimulation, suggesting a non-thermal mechanism. MIPA emitters allow repetitive wide-field neural stimulation, opening up opportunities for high-throughput screening of mechano-sensitive ion channels and regulators.
Collapse
Affiliation(s)
- Zhiyi Du
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Maijie Xiang
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Danchen Jia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
24
|
Mendiratta-Lala M, Wiggermann P, Pech M, Serres-Créixams X, White SB, Davis C, Ahmed O, Parikh ND, Planert M, Thormann M, Xu Z, Collins Z, Narayanan G, Torzilli G, Cho C, Littler P, Wah TM, Solbiati L, Ziemlewicz TJ. The #HOPE4LIVER Single-Arm Pivotal Trial for Histotripsy of Primary and Metastatic Liver Tumors. Radiology 2024; 312:e233051. [PMID: 39225612 PMCID: PMC11427859 DOI: 10.1148/radiol.233051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Histotripsy is a nonthermal, nonionizing, noninvasive, focused US technique that relies on cavitation for mechanical tissue breakdown at the focal point. Preclinical data have shown its safety and technical success in the ablation of liver tumors. Purpose To evaluate the safety and technical success of histotripsy in destroying primary or metastatic liver tumors. Materials and Methods The parallel United States and European Union and England #HOPE4LIVER trials were prospective, multicenter, single-arm studies. Eligible patients were recruited at 14 sites in Europe and the United States from January 2021 to July 2022. Up to three tumors smaller than 3 cm in size could be treated. CT or MRI and clinic visits were performed at 1 week or less preprocedure, at index-procedure, 36 hours or less postprocedure, and 30 days postprocedure. There were co-primary end points of technical success of tumor treatment and absence of procedure-related major complications within 30 days, with performance goals of greater than 70% and less than 25%, respectively. A two-sided 95% Wilson score CI was derived for each end point. Results Forty-four participants (21 from the United States, 23 from the European Union or England; 22 female participants, 22 male participants; mean age, 64 years ± 12 [SD]) with 49 tumors were enrolled and treated. Eighteen participants (41%) had hepatocellular carcinoma and 26 (59%) had non-hepatocellular carcinoma liver metastases. The maximum pretreatment tumor diameter was 1.5 cm ± 0.6 and the maximum post-histotripsy treatment zone diameter was 3.6 cm ± 1.4. Technical success was observed in 42 of 44 treated tumors (95%; 95% CI: 84, 100) and procedure-related major complications were reported in three of 44 participants (7%; 95% CI: 2, 18), both meeting the performance goal. Conclusion The #HOPE4LIVER trials met the co-primary end-point performance goals for technical success and the absence of procedure-related major complications, supporting early clinical adoption. Clinical trial registration nos. NCT04572633, NCT04573881 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Nezami and Georgiades in this issue.
Collapse
Affiliation(s)
- Mishal Mendiratta-Lala
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Philipp Wiggermann
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Maciej Pech
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Xavier Serres-Créixams
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Sarah B White
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Clifford Davis
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Osman Ahmed
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Neehar D Parikh
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Mathis Planert
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Maximilian Thormann
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Zhen Xu
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Zachary Collins
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Govindarajan Narayanan
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Guido Torzilli
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Clifford Cho
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Peter Littler
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Tze Min Wah
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Luigi Solbiati
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| | - Timothy J Ziemlewicz
- From the Department of Radiology, University of Michigan Medicine, Ann Arbor, Mich (M.M.L., N.D.P., C.C.); Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig, Braunschweig, Germany (P.W., M.P.); Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany (M.P., M.T.); Department of Radiology, Vall d'Hebrón University Hospital, Barcelona, Spain (X.S.C.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W.); Department of Radiology, Tampa General Hospital, Tampa, Fla (C.D.); Department of Interventional Radiology, University of Chicago Pritzker School of Medicine, Chicago, Ill (O.A.); Departments of Biomedical Engineering, Radiology, and Neurosurgery, University of Michigan, Ann Arbor, Mich (Z.X.); Department of Radiology, University of Kansas Medical Center, Kansas City, Kan (Z.C.); Department of Interventional Radiology, Baptist Hospital of Miami, Miami, Fla (G.N.); Department of Biomedical Science, Humanitas University & Humanitas Clinical and Research Hospital IRCCS, Rozzano, Italy (G.T., L.S.); Department of Radiology, Freeman Hospital, Newcastle, United Kingdom (P.L.); Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospital and Trust, West Yorkshire, United Kingdom (T.M.W.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792 (T.J.Z.)
| |
Collapse
|
25
|
Lafond M, Payne A, Lafon C. Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples. Int J Hyperthermia 2024; 41:2389288. [PMID: 39134055 PMCID: PMC11375802 DOI: 10.1080/02656736.2024.2389288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of UT, Salt Lake City, UT, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| |
Collapse
|
26
|
Yang S, Zemzemi C, Escudero DS, Vela DC, Haworth KJ, Holland CK. Histotripsy and Catheter-Directed Lytic: Efficacy in Highly Retracted Porcine Clots In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1167-1177. [PMID: 38777639 DOI: 10.1016/j.ultrasmedbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Standard treatment for deep vein thrombosis (DVT) involves catheter-directed anticoagulants or thrombolytics, but the chronic thrombi present in many DVT cases are often resistant to this therapy. Histotripsy has been found to be a promising adjuvant treatment, using the mechanical action of cavitating bubble clouds to enhance thrombolytic activity. The objective of this study was to determine if histotripsy enhanced recombinant tissue plasminogen activator (rt-PA) thrombolysis in highly retracted porcine clots in vitro in a flow model of occlusive DVT. METHODS Highly retracted porcine whole blood clots were treated for 1 h with either catheter-directed saline (negative control), rt-PA (lytic control), histotripsy, DEFINITY and histotripsy or the combination of rt-PA and histotripsy with or without DEFINITY. Five-cycle, 1.5 MHz histotripsy pulses with a peak negative pressure of 33.2 MPa and pulse repetition frequency of 40 Hz were applied along the clot. B-Mode and passive cavitation images were acquired during histotripsy insonation to monitor bubble activity. RESULTS Clots subjected to histotripsy with and without rt-PA exhibited greater thrombolytic efficacy than controls (7.0% flow recovery or lower), and histotripsy with rt-PA was more efficacious than histotripsy with saline (86.1 ± 10.2% compared with 61.7 ± 19.8% flow recovery). The addition of DEFINITY to histotripsy with or without rt-PA did not enhance either thrombolytic efficacy or cavitation dose. Cavitation dose generally did not correlate with thrombolytic efficacy. CONCLUSION Enhancement of thrombolytic efficacy was achieved using histotripsy, with and without catheter-directed rt-PA, in the presence of physiologic flow. This suggests these treatments may be effective as therapy for DVT.
Collapse
Affiliation(s)
- Shumeng Yang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Chadi Zemzemi
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Deborah C Vela
- Cardiovascular Pathology, Texas Heart Institute, Houston, TX, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
27
|
Edsall C, Huynh L, Mustafa W, Hall TL, Durmaz YY, Vlaisavljevich E. Nanoparticle-Mediated Histotripsy Using Dual-Frequency Pulsing Methods. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1214-1223. [PMID: 38797630 DOI: 10.1016/j.ultrasmedbio.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Nanoparticle-mediated histotripsy (NMH) is a novel ablation method that combines nanoparticles as artificial cavitation nuclei with focused ultrasound pulsing to achieve targeted, non-invasive, and cell-selective tumor ablation. The study described here examined the effect of dual-frequency histotripsy pulsing on the cavitation threshold, bubble cloud characteristics, and ablative efficiency in NMH. High-speed optical imaging was used to analyze bubble cloud characteristics and to measure ablation efficiency for NMH inside agarose tissue phantoms containing perfluorohexane-filled nanocone clusters, which were previously developed to reduce the histotripsy cavitation threshold for NMH. METHODS Dual-frequency histotripsy pulsing was applied at a 1:1 pressure ratio using a modular 500 kHz and 3 MHz dual-frequency array transducer. Optical imaging results revealed predictable, well-defined bubble clouds generated for all tested cases with similar reductions in the cavitation thresholds observed for single-frequency and dual-frequency pulsing. RESULTS Dual-frequency pulsing was seen to nucleate small, dense clouds in agarose phantoms, intermediate in size of their component frequencies but closer in area to that of the higher component frequency. Red blood cell experiments revealed complete ablations were generated by dual-frequency NMH in all phantoms in <1500 pulses. This result was a significant increase in ablation efficiency compared with the ∼4000 pulses required in prior single-frequency NMH studies. CONCLUSION Overall, this study indicates the potential for using dual-frequency histotripsy methods to increase the ablation efficacy of NMH.
Collapse
Affiliation(s)
- Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Laura Huynh
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Waleed Mustafa
- Department of Biomedical Engineering, Istanbul Medipol University, İstanbul, Turkey
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yasemin Yuksel Durmaz
- Department of Biomedical Engineering, Istanbul Medipol University, İstanbul, Turkey; Research Institute of Health Science and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
28
|
Sandilos G, Butchy MV, Koneru M, Gongalla S, Sensenig R, Hong YK. Histotripsy - hype or hope? Review of innovation and future implications. J Gastrointest Surg 2024; 28:1370-1375. [PMID: 38862075 DOI: 10.1016/j.gassur.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Histotripsy is a novel, ultrasound-based ablative technique that was recently approved by the Food and Drug Administration for hepatic targets. It has several promising additional theoretical applications that need to be further investigated. Its basis as a nonthermal cavitational technology presents a unique advantage over existing thermal ablation techniques in maximizing local effects while minimizing adjacent tissue destruction. This review discusses the technical basis and current preclinical and clinical data surrounding histotripsy. METHODS This was a comprehensive review of the literature surrounding histotripsy and the clinical landscape of existing ablative techniques using the PubMed database. A technical summary of histotripsy's physics and cellular effect was described. Moreover, data from recent clinical trials, including Hope4Liver, and future implications regarding its application in various benign and malignant conditions were discussed. RESULTS Preclinical data demonstrated the efficacy of histotripsy ablation in various organ systems with minimal tissue destruction when examined at the histologic level. The first prospective clinical trial involving histotripsy in hepatocellular carcinoma and liver metastases, Hope4Liver, demonstrated a primary efficacy of 95.5% with minimal complications (6.8%). This efficacy was replicated in similar trials involving the treatment of benign prostatic hypertrophy. DISCUSSION In addition to the noninvasive ability to ablate lesions in the liver, histotripsy offers additional therapeutic potential. Early data suggest a potential complementary therapeutic effect when combining histotripsy with existing immunologic therapies because of the technology's theoretical ability to sensitize tumors to adaptive immunity. As with most novel therapies, the effect of histotripsy on the oncologic therapeutic landscape remains uncertain.
Collapse
Affiliation(s)
- Georgianna Sandilos
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States
| | - Margaret Virginia Butchy
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States
| | - Manisha Koneru
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Shivsai Gongalla
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Richard Sensenig
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Young Ki Hong
- Division of Surgical Oncology, Department of Surgery, Cooper University Hospital, Cooper University Health Care, Camden, NJ, United States.
| |
Collapse
|
29
|
Yeats E, Lu N, Stocker G, Komaiha M, Sukovich JR, Xu Z, Hall TL. In Vivo Cavitation-Based Aberration Correction of Histotripsy in Porcine Liver. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1019-1029. [PMID: 38837932 PMCID: PMC11479660 DOI: 10.1109/tuffc.2024.3409638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Histotripsy is a noninvasive ablation technique that focuses ultrasound pulses into the body to destroy tissues via cavitation. Heterogeneous acoustic paths through tissue introduce phase errors that distort and weaken the focus, requiring additional power output from the histotripsy transducer to perform therapy. This effect, termed phase aberration, limits the safety and efficacy of histotripsy ablation. It has been shown in vitro that the phase errors from aberration can be corrected by receiving the acoustic signals emitted by cavitation. For transabdominal histotripsy in vivo, however, cavitation-based aberration correction (AC) is complicated by acoustic signal clutter and respiratory motion. This study develops a method that enables robust, effective cavitation-based AC in vivo and evaluates its efficacy in the swine liver. The method begins with a high-speed pulsing procedure to minimize the effects of respiratory motion. Then, an optimal phase correction is obtained in the presence of acoustic clutter by filtering with the singular value decomposition (SVD). This AC method reduced the power required to generate cavitation in the liver by 26% on average (range: 0%-52%) and required ~2 s for signal acquisition and processing per focus location. These results suggest that the cavitation-based method could enable fast and effective AC for transabdominal histotripsy.
Collapse
|
30
|
Ponomarchuk E, Tsysar S, Kvashennikova A, Chupova D, Pestova P, Danilova N, Malkov P, Buravkov S, Khokhlova V. Pilot Study on Boiling Histotripsy Treatment of Human Leiomyoma Ex Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1255-1261. [PMID: 38762389 DOI: 10.1016/j.ultrasmedbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE As an alternative to surgical excision and magnetic resonance-guided thermal high-intensity focused ultrasound ablation of uterine leiomyoma, this work was aimed at pilot feasibility demonstration of use of ultrasound-guided boiling histotripsy for non-invasive non-thermal fractionation of human uterine leiomyoma ex vivo. METHODS A custom-made sector ultrasound transducer of 1.5-MHz operating frequency and nominal f-number F# = 0.75 was used to produce a volumetric lesion (two layers of 5 × 5 foci with a 1 mm step) in surgically resected human leiomyoma ex vivo. A sequence of 10 ms pulses (P+/P-/As = 157/-25/170 MPa in situ) with 1% duty cycle was delivered N = 30 times per focus under B-mode guidance. The treatment outcome was evaluated via B-mode imaging and histologically with hematoxylin and eosin and Masson's trichrome staining. RESULTS The treatment was successfully performed in less than 30 min and resulted in formation of a rectangular lesion visualized on B-mode images during the sonication as an echogenic region, which sustained for about 10 min post-treatment. Histology revealed loss of cellular structure, necrotic debris and globules of degenerated collagen in the target volume surrounded by injured smooth muscle cells. CONCLUSION The pilot experiment described here indicates that boiling histotripsy is feasible for non-invasive mechanical disintegration of human uterine leiomyoma ex vivo under B-mode guidance, encouraging further investigation and optimization of this potential clinical application of boiling histotripsy.
Collapse
Affiliation(s)
| | - Sergey Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Daria Chupova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Pestova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Danilova
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Pavel Malkov
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Sergey Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
31
|
Campbell WA, Makary MS. Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers (Basel) 2024; 16:2560. [PMID: 39061199 PMCID: PMC11274819 DOI: 10.3390/cancers16142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Image-guided solid tumor ablation methods have significantly advanced in their capability to target primary and metastatic tumors. These techniques involve noninvasive or percutaneous insertion of applicators to induce thermal, electrochemical, or mechanical stress on malignant tissue to cause tissue destruction and apoptosis of the tumor margins. Ablation offers substantially lower risks compared to traditional methods. Benefits include shorter recovery periods, reduced bleeding, and greater preservation of organ parenchyma compared to surgical intervention. Due to the reduced morbidity and mortality, image-guided tumor ablation offers new opportunities for treatment in cancer patients who are not candidates for resection. Currently, image-guided ablation techniques are utilized for treating primary and metastatic tumors in various organs with both curative and palliative intent, including the liver, pancreas, kidneys, thyroid, parathyroid, prostate, lung, breast, bone, and soft tissue. The invention of new equipment and techniques is expanding the criteria of eligible patients for therapy, as now larger and more high-risk tumors near critical structures can be ablated. This article provides an overview of the different imaging modalities, noninvasive, and percutaneous ablation techniques available and discusses their applications and associated complications across various organs.
Collapse
Affiliation(s)
- Warren A. Campbell
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mina S. Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Xu Z, Khokhlova TD, Cho CS, Khokhlova VA. Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound. Annu Rev Biomed Eng 2024; 26:141-167. [PMID: 38346277 DOI: 10.1146/annurev-bioeng-073123-022334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
33
|
Shen X, Wu P, Lin W. A new model for bubble cluster dynamics in a viscoelastic media. ULTRASONICS SONOCHEMISTRY 2024; 107:106890. [PMID: 38693010 PMCID: PMC11176833 DOI: 10.1016/j.ultsonch.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bubble cluster dynamics in viscoelastic media is instructive for ultrasound diagnosis and therapy. In this paper, we propose a statistical model for bubble cluster dynamics in viscoelastic media considering the radius distribution of bubble nuclei. By investigating and comparing the response for a bubble in three conditions: single bubble; multi-bubble with the same radius; multi-bubble with different radius, the following rules are found: The promotion or suppression of the bubble cluster on the bubble vibration is not monotonous with the increase of the number of bubbles. The promotion or suppression of the bubble cluster on the bubble vibration varies alternately with the frequency. The effect of bubble cluster on bubble vibration is mostly suppressed when the driving acoustic pressure amplitude pa is high (5000 kPa). Usually, the bubble cluster promotes the vibration of the large bubbles (R0 = 10 μm) more, or suppresses it less.
Collapse
Affiliation(s)
- Xiaozhuo Shen
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Yang Y, Cheng Y, Cheng L. The emergence of cancer sono-immunotherapy. Trends Immunol 2024; 45:549-563. [PMID: 38910097 DOI: 10.1016/j.it.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Owing to its remarkable ease of use, ultrasound has recently been explored for stimulating or amplifying immune responses during cancer therapy, termed 'sono-immunotherapy'. Ultrasound can cause immunogenic cell death in cancer cells via thermal and nonthermal effects to regulate the tumor microenvironment, thereby priming anticancer immunity; by integrating well-designed biomaterials, novel sono-immunotherapy approaches with augmented efficacy can also be developed. Here, we review the advances in sono-immunotherapy for cancer treatment and summarize existing limitations along with potential trends. We offer emerging insights into this realm, which might prompt breakthroughs and expand its potential applications to other diseases.
Collapse
Affiliation(s)
- Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China; Monash Suzhou Research Institute, Monash University, Suzhou, 215000, China; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou, 215000, China; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
35
|
Ponomarchuk EM, Rosnitskiy PB, Tsysar SA, Khokhlova TD, Karzova MM, Kvashennikova AV, Tumanova KD, Kadrev AV, Buravkov SV, Trakhtman PE, Starostin NN, Sapozhnikov OA, Khokhlova VA. Elastic Properties of Aging Human Hematoma Model In Vitro and Its Susceptibility to Histotripsy Liquefaction. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:927-938. [PMID: 38514363 DOI: 10.1016/j.ultrasmedbio.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Tissue susceptibility to histotripsy disintegration has been reported to depend on its elastic properties. This work was aimed at investigation of histotripsy efficiency for liquefaction of human hematomas, depending on their stiffness and degree of retraction over time (0-10 d). METHODS As an in vitro hematoma model, anticoagulated human blood samples (200 mL) were recalcified at different temperatures. In one set of samples, the shear modulus was measured by shear wave elastography during blood clotting at 10℃, 22℃ and 37℃, and then daily during further aging. The ultrastructure of the samples was analyzed daily with scanning electron microscopy (SEM). Another set of blood samples (50-200 mL) were recalcified at 37℃ for density and retraction measurements over aging and exposed to histotripsy at varying time points. Boiling histotripsy (2.5 ms pulses) and hybrid histotripsy (0.2 ms pulses) exposures (2 MHz, 1% dc, P+/P-/As = 182/-27/207 MPa in situ) were used to produce either individual cigar-shaped or volumetric (0.8-3 mL) lesions in samples incubated for 3 h, 5 d and 10 d. The obtained lesions were sized, then the lysate aspirated under B-mode guidance was analyzed ultrastructurally and diluted in distilled water for sizing of residual fragments. RESULTS It was found that clotting time decreased from 113 to 25 min with the increase in blood temperature from 10℃ to 37℃. The shear modulus increased to 0.53 ± 0.17 kPa during clotting and remained constant within 8 d of incubation at 2℃. Sample volumes decreased by 57% because of retraction within 10 d. SEM revealed significant echinocytosis but unchanged ultrastructure of the fibrin meshwork. Liquefaction rate and lesion dimensions produced with the same histotripsy protocols correlated with the increase in the degree of retraction and were lower in retracted samples versus freshly clotted samples. More than 80% of residual fibrin fragments after histotripsy treatment were shorter than 150 µm; the maximum length was 208 µm, allowing for unobstructed aspiration of the lysate with most clinically used needles. CONCLUSION The results indicate that hematoma susceptibility to histotripsy liquefaction is not entirely determined by its stiffness, and correlates with the retraction degree.
Collapse
Affiliation(s)
| | - Pavel B Rosnitskiy
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey A Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria M Karzova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexey V Kadrev
- Department of Urology and Andrology, Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia; Diagnostic Ultrasound Division, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel E Trakhtman
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nicolay N Starostin
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Oleg A Sapozhnikov
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Vera A Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Pieper AA, Stowe NA, Periyasamy S, Burkel BM, Tsarovsky NW, Singh AP, Rakhmilevich AL, Sondel PM, Ponik SM, Laeseke PF, Yu JPJ. Histoplasty Modification of the Tumor Microenvironment in a Murine Preclinical Model of Breast Cancer. J Vasc Interv Radiol 2024; 35:900-908.e2. [PMID: 38508448 PMCID: PMC11586070 DOI: 10.1016/j.jvir.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS Histoplasty significantly increased (P = .002) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P = .022) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P = .044). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.
Collapse
MESH Headings
- Animals
- Tumor Microenvironment
- Doxorubicin/pharmacology
- Doxorubicin/administration & dosage
- Doxorubicin/analogs & derivatives
- Female
- Cell Line, Tumor
- Mice, Inbred BALB C
- Mice
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/administration & dosage
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/diagnostic imaging
- Mammary Neoplasms, Experimental/surgery
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/drug therapy
- Breast Neoplasms/pathology
- Transducers
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Polyethylene Glycols/chemistry
- Disease Models, Animal
- Leukocyte Common Antigens
Collapse
Affiliation(s)
- Alexander A Pieper
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nicholas A Stowe
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sarvesh Periyasamy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Noah W Tsarovsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ajay P Singh
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Graduate Program in Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
37
|
Miao K, Basterrechea KF, Hernandez SL, Ahmed OS, Patel MV, Bader KB. Development of Convolutional Neural Network to Segment Ultrasound Images of Histotripsy Ablation. IEEE Trans Biomed Eng 2024; 71:1789-1797. [PMID: 38198256 DOI: 10.1109/tbme.2024.3352538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Histotripsy is a focused ultrasound therapy that ablates tissue via the action of bubble clouds. It is under investigation to treat a number of ailments, including renal tumors. Ultrasound imaging is used to monitor histotripsy, though there remains a lack of definitive imaging metrics to confirm successful treatment outcomes. In this study, a convolutional neural network (CNN) was developed to segment ablation on ultrasound images. METHODS A transfer learning approach was used to replace classification layers of the residual network ResNet-18. Inputs to the classification layers were based on ultrasound images of ablated red blood cell phantoms. Digital photographs served as the ground truth. The efficacy of the CNN was compared to subtraction imaging, and manual segmentation of images by two board-certified radiologists. RESULTS The CNN had a similar performance to manual segmentation, though was improved relative to segmentation with subtraction imaging. Predictions of the network improved over the course of treatment, with the Dice similarity coefficient less than 20% for fewer than 500 applied pulses, but 85% for more than 750 applied pulses. The network was also applied to ultrasound images of ex vivo kidney exposed to histotripsy, which indicated a morphological shift in the treatment profile relative to the phantoms. These findings were consistent with histology that confirmed ablation of the targeted tissue. CONCLUSION Overall, the CNN showed promise as a rapid means to assess outcomes of histotripsy and automate treatment. SIGNIFICANCE Data collected in this study indicate integration of CNN image segmentation to gauge outcomes for histotripsy ablation holds promise for automating treatment procedures.
Collapse
|
38
|
Nwafor DC, Obiri-Yeboah D, Fazad F, Blanks W, Mut M. Focused ultrasound as a treatment modality for gliomas. Front Neurol 2024; 15:1387986. [PMID: 38813245 PMCID: PMC11135048 DOI: 10.3389/fneur.2024.1387986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Ultrasound waves were initially used as a diagnostic tool that provided critical insights into several pathological conditions (e.g., gallstones, ascites, pneumothorax, etc.) at the bedside. Over the past decade, advancements in technology have led to the use of ultrasound waves in treating many neurological conditions, such as essential tremor and Parkinson's disease, with high specificity. The convergence of ultrasound waves at a specific region of interest/target while avoiding surrounding tissue has led to the coined term "focused ultrasound (FUS)." In tumor research, ultrasound technology was initially used as an intraoperative guidance tool for tumor resection. However, in recent years, there has been growing interest in utilizing FUS as a therapeutic tool in the management of brain tumors such as gliomas. This mini-review highlights the current knowledge surrounding using FUS as a treatment modality for gliomas. Furthermore, we discuss the utility of FUS in enhanced drug delivery to the central nervous system (CNS) and highlight promising clinical trials that utilize FUS as a treatment modality for gliomas.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - Derrick Obiri-Yeboah
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Faraz Fazad
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - William Blanks
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
39
|
Mustafa W, Hall S, Huynh L, Mannasse R, Luleburgaz S, Vlaisavljevich E, Yuksel Durmaz Y. Investigation of Optimum Production Conditions and the Stability of β-Cyclodextrin-Perfluorocarbon Nanocone Clusters for Histotripsy Applications. Mol Pharm 2024; 21:2383-2393. [PMID: 38551360 DOI: 10.1021/acs.molpharmaceut.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Nanocone clusters (NCCs) have been developed as clusters with inclusion complexes of FDA-approved β-cyclodextrin (βCD) and perfluorocarbons (PFC) (i.e., perfluoropentane (PFP) and perfluorohexane (PFH)) and have shown promise in nanoparticle-mediated histotripsy (NMH) applications owing to their lowered cavitation threshold, ease of production, and fluorocarbon quantification. However, there is still a lack of information on the best conditions of the synthesis of NCCs as a product that can have a maximum determinable fluorocarbon content and maintain the stability of the NCC during synthesis and when used as histotripsy agents or exposed to physiological conditions. These concerns about the stability of the clusters and the best possible formulation are investigated in the current work. The cluster formation potential was tested taking into consideration the nature of both PFCs and βCD by employing different synthesis conditions in terms of solution and environmental parameters such as concentration of solvent, stoichiometry between βCD and PFCs, temperature, pH, solvent type, etc. The best route of synthesis was then translated into various batch sizes and investigated in terms of the PFC loading and yield. These studies revealed that preparing NCCs in double-distilled water in an ice bath at the optimized solution concentration gave the highest yields and optimal PFC loading, as determined from gas chromatography. Furthermore, the stability of the clusters with different stoichiometries was scrutinized in varying concentrations, mechanical disruption times, pH levels, and temperature conditions, showing effects on each cluster's particle size in dynamic light scattering, visualized in transmission electron microscopy, and cavitation behavior in agarose gel tissue phantoms. These studies revealed stable clusters for all formulations, with PFH-containing NCCs emerging to be the most stable in terms of their cluster size and bubble formation potential in histotripsy. Finally, the shelf life of these clusters was investigated using DLS, which revealed a stable cluster. In conclusion, NCCs have shown high stability in terms of both synthesis, which can be replicated in gram-level production, and the cluster itself, which can be exposed to harsher conditions and still form stable bubbles in histotripsy.
Collapse
Affiliation(s)
- Waleed Mustafa
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Sarah Hall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Laura Huynh
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Rachel Mannasse
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Serter Luleburgaz
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yasemin Yuksel Durmaz
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
- Research Institute of Health Science and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| |
Collapse
|
40
|
Verma Y, Perera Molligoda Arachchige AS. Advances in Tumor Management: Harnessing the Potential of Histotripsy. Radiol Imaging Cancer 2024; 6:e230159. [PMID: 38639585 PMCID: PMC11148838 DOI: 10.1148/rycan.230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Tissue ablation techniques have long been used in clinical settings to treat various oncologic diseases. However, many of these techniques are invasive and can cause substantial adverse effects. Histotripsy is a noninvasive, nonionizing, nonthermal tissue ablation technique that has the potential to replace surgical interventions in various clinical settings. Histotripsy works by delivering high-intensity focused ultrasound waves to target tissue. These waves create cavitation bubbles within tissues that rapidly expand and collapse, thereby mechanically fractionating the tissue into acellular debris that is subsequently absorbed by the body's immune system. Preclinical and clinical studies have demonstrated the efficacy of histotripsy in treating a range of diseases, including liver, pancreatic, renal, and prostate tumors. Safety outcomes of histotripsy have been generally favorable, with minimal adverse effects reported. However, further studies are needed to optimize the technique and understand its long-term effects. This review aims to discuss the importance of histotripsy as a noninvasive tissue ablation technique, the preclinical and clinical literature on histotripsy and its safety, and the potential applications of histotripsy in clinical practice. Keywords: Tumor Microenvironment, Ultrasound-High-Intensity Focused (HIFU), Ablation Techniques, Abdomen/GI, Genital/Reproductive, Nonthermal Tissue Ablation, Histotripsy, Clinical Trials, Preclinical Applications, Focused Ultrasound © RSNA, 2024.
Collapse
|
41
|
Kutlu AZ, Minesinger GM, Laeseke PF, Speidel M, Wagner MG. A target containing phantom for accuracy assessment of cone-beam CT-guided histotripsy. J Appl Clin Med Phys 2024; 25:e14329. [PMID: 38497567 PMCID: PMC11087156 DOI: 10.1002/acm2.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE Histotripsy is a nonionizing, noninvasive, and nonthermal focal tumor therapy. Cone-beam computed tomography (CBCT) guidance was developed for targeting tumors not visible on ultrasound. This approach assumes cavitation is formed at the geometrical focal point of the therapy transducer. In practice, the exact location might vary slightly between transducers. In this study, we present a phantom with an embedded target to evaluate CBCT-guided histotripsy accuracy and assess the completeness of treatments. METHODS Spherical (2.8 cm) targets with alternating layers of agar and radiopaque barium were embedded in larger phantoms with similar layers. The layer geometry was designed so that targets were visible on pre-treatment CBCT scans. The actual histotripsy treatment zone was visualized via the mixing of adjacent barium and agar layers in post-treatment CBCT images. CBCT-guided histotripsy treatments of the targets were performed in six phantoms. Offsets between planned and actual treatment zones were measured and used for calibration refinement. To measure targeting accuracy after calibration refinement, six additional phantoms were treated. In a separate investigation, two groups (N = 3) of phantoms were treated to assess visualization of incomplete treatments ("undertreatment" group: 2 cm treatment within 2.8 cm tumor, "mistarget" group: 2.8 cm treatment intentionally shifted laterally). Treatment zones were segmented (3D Slicer 5.0.3), and the centroid distance between the prescribed target and actual treatment zones was quantified. RESULTS In the calibration refinement group, a 2 mm offset in the direction of ultrasound propagation (Z) was measured. After calibration refinement, the centroid-to-centroid distance between prescribed and actual treatment volumes was 0.5 ± 0.2 mm. Average difference between the prescribed and measured treatment sizes in the incomplete treatment groups was 0.5 ± 0.7 mm. In the mistarget group, the distance between prescribed and measured shifts was 0.2 ± 0.1 mm. CONCLUSION The proposed prototype phantom allowed for accurate measurement of treatment size and location, and the CBCT visible target provided a simple way to detect misalignments for preliminary quality assurance of CBCT-guided histotripsy.
Collapse
Affiliation(s)
- Ayca Z. Kutlu
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Grace M. Minesinger
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Paul F. Laeseke
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael Speidel
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Martin G. Wagner
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
42
|
Narsinh KH, Perez E, Haddad AF, Young JS, Savastano L, Villanueva-Meyer JE, Winkler E, de Groot J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr Neurol Neurosci Rep 2024; 24:123-139. [PMID: 38578405 PMCID: PMC11016125 DOI: 10.1007/s11910-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.
Collapse
Affiliation(s)
- Kazim H Narsinh
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Edgar Perez
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Luis Savastano
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ethan Winkler
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John de Groot
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Chlorogiannis DD, Moussa AM, Zhao K, Alexander ES, Sofocleous CT, Sotirchos VS. Imaging Considerations before and after Liver-Directed Locoregional Treatments for Metastatic Colorectal Cancer. Diagnostics (Basel) 2024; 14:772. [PMID: 38611685 PMCID: PMC11011364 DOI: 10.3390/diagnostics14070772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer is a leading cause of cancer-related death. Liver metastases will develop in over one-third of patients with colorectal cancer and are a major cause of morbidity and mortality. Even though surgical resection has been considered the mainstay of treatment, only approximately 20% of the patients are surgical candidates. Liver-directed locoregional therapies such as thermal ablation, Yttrium-90 transarterial radioembolization, and stereotactic body radiation therapy are pivotal in managing colorectal liver metastatic disease. Comprehensive pre- and post-intervention imaging, encompassing both anatomic and metabolic assessments, is invaluable for precise treatment planning, staging, treatment response assessment, and the prompt identification of local or distant tumor progression. This review outlines the value of imaging for colorectal liver metastatic disease and offers insights into imaging follow-up after locoregional liver-directed therapy.
Collapse
Affiliation(s)
| | - Amgad M. Moussa
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ken Zhao
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erica S. Alexander
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Vlasios S. Sotirchos
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
44
|
Iqbal MF, Shafique MA, Abdur Raqib M, Fadlalla Ahmad TK, Haseeb A, M. A. Mhjoob A, Raja A. Histotripsy: an innovative approach for minimally invasive tumour and disease treatment. Ann Med Surg (Lond) 2024; 86:2081-2087. [PMID: 38576932 PMCID: PMC10990312 DOI: 10.1097/ms9.0000000000001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Histotripsy is a noninvasive medical technique that uses high-intensity focused ultrasound (HIFU) to treat liver tumours. The two main histotripsy methods are boiling histotripsy and cavitation cloud histotripsy. Boiling histotripsy uses prolonged ultrasound pulses to create small boiling bubbles in the tissue, which leads to the breakdown of the tissue into smaller subcellular fragments. Cavitation cloud histotripsy uses the ultrasonic cavitation effect to disintegrate target tissue into precisely defined liquefied lesions. Both methods show similar treatment effectiveness; however, boiling histotripsy ensures treatment stability by producing a stable boiling bubble with each pulse. The therapeutic effect is ascribed to mechanical damage at the subcellular level rather than thermal damage. This article discusses the mechanisms, treatment parameters, and potential of histotripsy as a minimally invasive procedure that provides precise and controlled subcellular damage.
Collapse
Affiliation(s)
| | | | | | | | - Abdul Haseeb
- Department of Medicine, Jinnah Sindh Medical University
| | | | - Adarsh Raja
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| |
Collapse
|
45
|
Landry TG, Brown JA. Ultrasound imaging guided precision histotripsy: Effects of pulse settings on ablation properties in rat brain. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2860-2874. [PMID: 38682916 PMCID: PMC11175660 DOI: 10.1121/10.0025832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
A high-frequency 6 MHz miniature handheld histotripsy device with an endoscopic form factor and co-registered high-resolution ultrasound imaging was developed. This device could allow precision histotripsy ablation during minimally invasive brain tumor surgeries with real-time image guidance. This study characterized the outcome of acute histotripsy in the normal in vivo rat brain using the device with a range of histotripsy pulse settings, including number of cycles, pulse repetition frequency, and pressure, as well as other experimental factors. The stability and shape of the bubble cloud were measured during ablations, as well as the post-histotripsy ablation shape in ultrasound B-mode and histology. The results were compared between histological images and the ultrasound imaging data to determine how well ultrasound data reflected observable damage in histology. The results indicated that while pulse settings can have some influence on ablation shape, sample-to-sample variation had a larger influence on ablation shape. This suggests that real-time ablation monitoring is essential for accurate knowledge of outcomes. Ultrasound imaging provided an accurate real-time indication of ablation shape both during ablation and post-ablation.
Collapse
Affiliation(s)
- Thomas G Landry
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Surgery, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Surgery, Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
46
|
Mallay MG, Landry TG, Brown JA. An 8 mm endoscopic histotripsy array with integrated high-resolution ultrasound imaging. ULTRASONICS 2024; 139:107275. [PMID: 38508082 DOI: 10.1016/j.ultras.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
An 8 mm diameter, image-guided, annular array histotripsy transducer was fabricated and characterized. The array was laser etched on a 5 MHz, 1-3 dice and fill, PZT-5H/epoxy composite with a 45 % volume fraction. Flexible PCBs were used to electrically connect to the array elements using wirebonds. The array was backed with a low acoustic impedance epoxy mixture. A 3.6 by 3.8 mm, 64-element, 30 MHz phased array imaging probe was positioned in the center hole, to co-align the imaging plane with the bubble cloud produced by the therapy array. A custom 16-channel high voltage pulse generator was used to test the annular array for focal lengths ranging from 3- to 8-mm. An aluminum lens-focussed transducer with a 7 mm focal length was fabricated using the same piezocomposite and backing material and tested along with the histotripsy array. Simulated results from COMSOL FEM models were compared to measured results for low voltage characterization of the array and lens-focussed transducer. The measured transmit sensitivity of the array ranged from 0.113 to 0.167 MPa/V, while the lens-focussed transducer was 0.192 MPa/V. Simulated values were 0.160 to 0.174 MPa/V and 0.169 MPa/V, respectively. The measured acoustic fields showed a significantly increased depth-of-field compared the lens-focussed transducer, while the beamwidths of the array focus were comparable to the lens. The measured cavitation voltage in water was between 254 V and 498 V depending on the focal length, and 336 V for the lens-focussed transducer. The array had a lower cavitation voltage than the lens-focussed transducer for a comparable operating depth. The histotripsy array was tested in a tissue phantom and an in vivo rat brain. It was used to produce an elongated lesion in the brain by electronically steering the focal length from 3- to 8-mm axially. Real time ultrasound imaging with a Doppler overlay was used to target the tissue and monitor ablation progress, and histology confirmed the targeted tissue was fully homogenized.
Collapse
Affiliation(s)
- Matthew G Mallay
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Thomas G Landry
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada; Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
47
|
Verma Y, Perera Molligoda Arachchige AS. Revolutionizing brain interventions: the multifaceted potential of histotripsy. Neurosurg Rev 2024; 47:124. [PMID: 38509320 DOI: 10.1007/s10143-024-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Histotripsy, a non-thermal ultrasound technique, holds significant promise in various applications within the realm of brain interventions. While its use for treating brain tumors is somewhat limited, focused ultrasound technology has been extensively investigated for a wide range of purposes within the brain, including disrupting the blood-brain barrier, supporting immunotherapy, addressing conditions like essential tremor, Parkinson's disease, Alzheimer's disease, epilepsy, and neuropathic pain. Research findings indicate that histotripsy can reduce tumor cells with fewer pulses, minimizing the risk of bleeding and cellular injury. The use of MRI sequences such as T2 and T2* enhances the evaluation of the effects of histotripsy treatment, facilitating non-invasive assessment of treated areas. Furthermore, histotripsy displays promise in creating precise brain lesions with minimal edema and inflammation, particularly in porcine models, suggesting considerable progress in the treatment of brain lesions. Moreover, studies confirm its feasibility, safety, and effectiveness in treating intracerebral hemorrhage by safely liquefying clots without causing significant harm to surrounding brain tissue., opening exciting possibilities for clinical applications. The development of transcranial MR-guided focused ultrasound systems based on histotripsy represents a significant breakthrough in overcoming the limitations associated with thermal ablation techniques. Histotripsy's ability to efficiently liquefy clots, minimize skull heating, and target shallow lesions near the skull establishes it as a promising alternative for various brain treatments. In conclusion, histotripsy offers diverse potential in the field of brain interventions, encompassing applications ranging from tumor treatment to the management of intracerebral hemorrhage. While challenges such as accurate monitoring and differentiation of treatment effects persist, ongoing research efforts and technological advancements continue to expand the role of histotripsy in both neurology and neurosurgery.
Collapse
Affiliation(s)
- Yash Verma
- Norfolk and Norwich University Hospital, Norwich, UK
| | | |
Collapse
|
48
|
Shen CC, Wu NH. Ultrasound Monitoring of Simultaneous high-intensity focused ultrasound (HIFU) therapy using minimum-peak-sidelobe coded excitation. ULTRASONICS 2024; 138:107224. [PMID: 38134515 DOI: 10.1016/j.ultras.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Bipolar sequences can be readily transmitted by ultrasound (US) pulser hardware with the full driving voltage to boost the echo magnitude in B-mode monitoring of HIFU treatment. In this study, a novel single-transmit bipolar sequence with minimum-peak-sidelobe (MPS) level is developed not only to restore the image quality of US monitoring but also remove acoustic interference from simultaneous HIFU transmission. The proposed MPS code is designed with an equal number of positive and negative bits and the bit duration should be an integer multiple of the period of the HIFU waveform. In addition, different permutations of code sequence are searched in order to obtain the optimal encoding. The received imaging echo is firstly decoded by matched filtering to cancel HIFU interference and to enhance the echo magnitude of US monitoring. Then, Wiener filtering is applied as the second-stage pulse compression to improve the final image quality. Simulations and phantom experiments are performed to compare the single-transmit MPS decoding with conventional two-transmit methods such as pulse-inversion subtraction (PIS) and Golay decoding for their performance in simultaneous US monitoring of HIFU treatment. Results show that the MPS decoding effectively removes HIFU interference even in the presence of tissue motion. The image quality of PIS and Golay decoding, on the other hand, is compromised by the uncancelled HIFU components due to tissue motion. Simultaneous US monitoring of tissue ablation using the proposed MPS decoding has also demonstrated to be feasible in ex-vivo experiments. Compared to the notch filtering that also allows single-transmit HIFU elimination, the MPS decoding is preferrable because it does not suffer from the tradeoff between residual HIFU and speckle deterioration in US monitoring images.
Collapse
Affiliation(s)
- Che-Chou Shen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, #43, Section 4, Keelung Road, Taipei 106, Taiwan.
| | - Nien-Hung Wu
- Department of Electrical Engineering, National Taiwan University of Science and Technology, #43, Section 4, Keelung Road, Taipei 106, Taiwan
| |
Collapse
|
49
|
Xu R, Treeby BE, Martin E. Safety Review of Therapeutic Ultrasound for Spinal Cord Neuromodulation and Blood-Spinal Cord Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:317-331. [PMID: 38182491 DOI: 10.1016/j.ultrasmedbio.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
New focused ultrasound spinal cord applications have emerged, particularly those improving therapeutic agent delivery to the spinal cord via blood-spinal cord barrier opening and the neuromodulation of spinal cord tracts. One hurdle in the development of these applications is safety. It may be possible to use safety trends from seminal and subsequent works in focused ultrasound to guide the development of safety guidelines for spinal cord applications. We collated data from decades of pre-clinical studies and illustrate a clear relationship between damage, time-averaged spatial peak intensity and exposure duration. This relationship suggests a thermal mechanism underlies ultrasound-induced spinal cord damage. We developed minimum and mean thresholds for damage from these pre-clinical studies. When these thresholds were plotted against the parameters used in recent pre-clinical ultrasonic spinal cord neuromodulation studies, the majority of the neuromodulation studies were near or above the minimum threshold. This suggests that a thermal neuromodulatory effect may exist for ultrasonic spinal cord neuromodulation, and that the thermal dose must be carefully controlled to avoid damage to the spinal cord. By contrast, the intensity-exposure duration threshold had no predictive value when applied to blood-spinal cord barrier opening studies that employed injected contrast agents. Most blood-spinal cord barrier opening studies observed slight to severe damage, except for small animal studies that employed an active feedback control method to limit pressures based on measured bubble oscillation behavior. The development of new focused ultrasound spinal cord applications perhaps reflects the recent success in the development of focused ultrasound brain applications, and recent work has begun on the translation of these technologies from brain to spinal cord. However, a great deal of work remains to be done, particularly with respect to developing and accepting safety standards for these applications.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
50
|
Ponomarchuk E, Thomas G, Song M, Krokhmal A, Kvashennikova A, Wang YN, Khokhlova V, Khokhlova T. Histology-based quantification of boiling histotripsy outcomes via ResNet-18 network: Towards mechanical dose metrics. ULTRASONICS 2024; 138:107225. [PMID: 38141356 DOI: 10.1016/j.ultras.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
This work was focused on the newly developed ultrasonic approach for non-invasive surgery - boiling histotripsy (BH) - recently proposed for mechanical ablation of tissues using pulsed high intensity focused ultrasound (HIFU). The BH lesion is known to depend in size and shape on exposure parameters and mechanical properties, structure and composition of tissue being treated. The aim of this work was to advance the concept of BH dose by investigating quantitative relationships between the parameters of the lesion, pulsing protocols, and targeted tissue properties. A HIFU focus of a 1.5 MHz 256-element array driven by power-enhanced Verasonics system was electronically steered along the grid within 12 × 4 × 12 mm volume to produce volumetric lesions in porcine liver (soft, with abundant collagenous structures) and bovine myocardium (stiff, homogenous cellular) ex vivo tissues with various pulsing protocols (1-10 ms pulses, 1-15 pulses per point). Quantification of the lesion size and completeness was performed through serial histological sectioning, and a computer vision approach using a combination of manual and automated detection of fully fractionated and residual tissue based on neural network ResNet-18 was developed. Histological sample fixation led to underestimation of BH ablation rate compared to the ultrasound-based estimations, and provided similar qualitative feedback as did gross inspection. This suggests that gross observation may be sufficient for qualitatively evaluating the BH treatment completeness. BH efficiency in liver tissue was shown to be insensitive to the changes in pulsing protocol within the tested parameter range, whereas in bovine myocardium the efficiency increased with either increasing pulse length or number of pulses per point or both. The results imply that one universal mechanical dose metric applicable to an arbitrary tissue type is unlikely to be established. The dose metric as a product of the BH pulse duration and the number of pulses per sonication point (BHD1) was shown to be more relevant for initial planning of fractionation of collagenous tissues. The dose metric as a number of pulses per point (BHD2) is more suitable for the treatment planning of softer targets primarily containing cellular tissue, allowing for significant acceleration of treatment using shorter pulses.
Collapse
Affiliation(s)
| | - Gilles Thomas
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Minho Song
- Department of Gastroenterology, University of Washington, Seattle, USA
| | - Alisa Krokhmal
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russian Federation; Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA
| | - Tatiana Khokhlova
- Department of Gastroenterology, University of Washington, Seattle, USA
| |
Collapse
|