1
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
2
|
Ahmadpoor X, Sun J, Douglas N, Zhu W, Lin H. Hydrogel-Enhanced Autologous Chondrocyte Implantation for Cartilage Regeneration-An Update on Preclinical Studies. Bioengineering (Basel) 2024; 11:1164. [PMID: 39593824 PMCID: PMC11591888 DOI: 10.3390/bioengineering11111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Autologous chondrocyte implantation (ACI) and matrix-induced ACI (MACI) have demonstrated improved clinical outcomes and reduced revision rates for treating osteochondral and chondral defects. However, their ability to achieve lasting, fully functional repair remains limited. To overcome these challenges, scaffold-enhanced ACI, particularly utilizing hydrogel-based biomaterials, has emerged as an innovative strategy. These biomaterials are intended to mimic the biological composition, structural organization, and biomechanical properties of native articular cartilage. This review aims to provide comprehensive and up-to-date information on advancements in hydrogel-enhanced ACI from the past decade. We begin with a brief introduction to cartilage biology, mechanisms of cartilage injury, and the evolution of surgical techniques, particularly looking at ACI. Subsequently, we review the diversity of hydrogel scaffolds currently undergoing development and evaluation in preclinical studies for articular cartilage regeneration, emphasizing chondrocyte-laden hydrogels applicable to ACI. Finally, we address the key challenges impeding effective clinical translation, with particular attention to issues surrounding fixation and integration, aiming to inform and guide the future progression of tissue engineering strategies.
Collapse
Affiliation(s)
- Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
| | - Jessie Sun
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
| | - Nerone Douglas
- Department of Molecular Oncology, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA;
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518025, China
- Clinical College of the Second Shenzhen Hospital, Anhui Medical University, Shenzhen 518025, China
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Orland Bethel Family Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Choi H, Choi WS, Jeong JO. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024; 10:693. [PMID: 39590049 PMCID: PMC11594258 DOI: 10.3390/gels10110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels are known for their high water retention capacity and biocompatibility and have become essential materials in tissue engineering and drug delivery systems. This review explores recent advancements in hydrogel technology, focusing on innovative types such as self-healing, tough, smart, and hybrid hydrogels, each engineered to overcome the limitations of conventional hydrogels. Self-healing hydrogels can autonomously repair structural damage, making them well-suited for applications in dynamic biomedical environments. Tough hydrogels are designed with enhanced mechanical properties, enabling their use in load-bearing applications such as cartilage regeneration. Smart hydrogels respond to external stimuli, including changes in pH, temperature, and electromagnetic fields, making them ideal for controlled drug release tailored to specific medical needs. Hybrid hydrogels, made from both natural and synthetic polymers, combine bioactivity and mechanical resilience, which is particularly valuable in engineering complex tissues. Despite these innovations, challenges such as optimizing biocompatibility, adjusting degradation rates, and scaling up production remain. This review provides an in-depth analysis of these emerging hydrogel technologies, highlighting their transformative potential in both tissue engineering and drug delivery while outlining future directions for their development in biomedical applications.
Collapse
Affiliation(s)
- Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Wan-Sun Choi
- Department of Orthopaedic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Koh RH, Kim J, Kim JU, Kim SL, Rajendran AK, Lee SS, Lee H, Kim JH, Jeong JH, Hwang Y, Bae JW, Hwang NS. Bioceramic-mediated chondrocyte hypertrophy promotes calcified cartilage formation for rabbit osteochondral defect repair. Bioact Mater 2024; 40:306-317. [PMID: 38978806 PMCID: PMC11228467 DOI: 10.1016/j.bioactmat.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Junhee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Seunghun S Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 10326, South Korea
| | - Heesoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, 31538, South Korea
| | - Jong Woo Bae
- Department of Orthopaedic Surgery, Konkuk University Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, South Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- BioMAX Institute, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Barthold JE, Cai L, McCreery KP, Fischenich KM, Eckstein KN, Ferguson VL, Emery NC, Breur G, Neu CP. Integrative cartilage repair using acellular allografts for engineered structure and surface lubrication in vivo. NPJ Regen Med 2024; 9:25. [PMID: 39341829 PMCID: PMC11438864 DOI: 10.1038/s41536-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The repair of articular cartilage after damage is challenging, and decellularized tissue offers a possible treatment option to promote regeneration. Here, we show that acellular osteochondral allografts improve integrative cartilage repair compared to untreated defects after 6 months in an ovine model. Functional measures of intratissue strain/structure assessed by MRI demonstrate similar biomechanics of implants and native cartilage. Compared to native tissue and defects, the structure, composition, and tribology of acellular allografts preserve surface roughness and lubrication, material properties under compression and relaxation, compositional ratios of collagen:glycosaminoglycan and collagen:phosphate, and relative composition of types I/II collagen. While high cellularity was observed in bone regions and integration zones between cartilage-allografts, recellularization of chondral implants was inconsistent, with cell migration typically less than ~750 µm into the dense decellularized tissue, possibly limiting long-term cellular maintenance. Our results demonstrate the structural and biomechanical efficacy of acellular allografts for at least six months in vivo.
Collapse
Affiliation(s)
- Jeanne E Barthold
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Luyao Cai
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kaitlin P McCreery
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Kristine M Fischenich
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin N Eckstein
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Gert Breur
- Department of Veterinary Clinical Services, Purdue University, West Lafayette, IN, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
6
|
Olivero E, Gawronska E, Manimuda P, Jivani D, Chaggan FZ, Corey Z, de Almeida TS, Kaplan-Bie J, McIntyre G, Wodo O, Nalam PC. Gradient porous structures of mycelium: a quantitative structure-mechanical property analysis. Sci Rep 2023; 13:19285. [PMID: 37935723 PMCID: PMC10630317 DOI: 10.1038/s41598-023-45842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
Gradient porous structures (GPS) are characterized by structural variations along a specific direction, leading to enhanced mechanical and functional properties compared to homogeneous structures. This study explores the potential of mycelium, the root part of a fungus, as a biomaterial for generating GPS. During the intentional growth of mycelium, the filamentous network undergoes structural changes as the hyphae grow away from the feed substrate. Through microstructural analysis of sections obtained from the mycelium tissue, systematic variations in fiber characteristics (such as fiber radii distribution, crosslink density, network density, segment length) and pore characteristics (including pore size, number, porosity) are observed. Furthermore, the mesoscale mechanical moduli of the mycelium networks exhibit a gradual variation in local elastic modulus, with a significant change of approximately 50% across a 30 mm thick mycelium tissue. The structure-property analysis reveals a direct correlation between the local mechanical moduli and the network crosslink density of the mycelium. This study presents the potential of controlling growth conditions to generate mycelium-based GPS with desired functional properties. This approach, which is both sustainable and economically viable, expands the applications of mycelium-based GPS to include filtration membranes, bio-scaffolds, tissue regeneration platforms, and more.
Collapse
Affiliation(s)
- Eric Olivero
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | - Elzbieta Gawronska
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42201, Czestochowa, Poland
| | | | - Devyani Jivani
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | | | - Zachary Corey
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | | | | | - Gavin McIntyre
- Ecovative Design LLC, 60 Cohoes Ave, Green Island, NY, 12183, USA
| | - Olga Wodo
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA.
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA.
| |
Collapse
|
7
|
Kurz B, Lange T, Voelker M, Hart ML, Rolauffs B. Articular Cartilage-From Basic Science Structural Imaging to Non-Invasive Clinical Quantitative Molecular Functional Information for AI Classification and Prediction. Int J Mol Sci 2023; 24:14974. [PMID: 37834422 PMCID: PMC10573252 DOI: 10.3390/ijms241914974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
This review presents the changes that the imaging of articular cartilage has undergone throughout the last decades. It highlights that the expectation is no longer to image the structure and associated functions of articular cartilage but, instead, to devise methods for generating non-invasive, function-depicting images with quantitative information that is useful for detecting the early, pre-clinical stage of diseases such as primary or post-traumatic osteoarthritis (OA/PTOA). In this context, this review summarizes (a) the structure and function of articular cartilage as a molecular imaging target, (b) quantitative MRI for non-invasive assessment of articular cartilage composition, microstructure, and function with the current state of medical diagnostic imaging, (c), non-destructive imaging methods, (c) non-destructive quantitative articular cartilage live-imaging methods, (d) artificial intelligence (AI) classification of degeneration and prediction of OA progression, and (e) our contribution to this field, which is an AI-supported, non-destructive quantitative optical biopsy for early disease detection that operates on a digital tissue architectural fingerprint. Collectively, this review shows that articular cartilage imaging has undergone profound changes in the purpose and expectations for which cartilage imaging is used; the image is becoming an AI-usable biomarker with non-invasive quantitative functional information. This may aid in the development of translational diagnostic applications and preventive or early therapeutic interventions that are yet beyond our reach.
Collapse
Affiliation(s)
- Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Thomas Lange
- Medical Physics Department of Radiology, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany;
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.V.); (M.L.H.)
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.V.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.V.); (M.L.H.)
| |
Collapse
|
8
|
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Liu K, Zhang Y, Zuo J, Ding J. Bioinspired gradient scaffolds for osteochondral tissue engineering. EXPLORATION (BEIJING, CHINA) 2023; 3:20210043. [PMID: 37933242 PMCID: PMC10624381 DOI: 10.1002/exp.20210043] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 11/08/2023]
Abstract
Repairing articular osteochondral defects present considerable challenges in self-repair due to the complex tissue structure and low proliferation of chondrocytes. Conventional clinical therapies have not shown significant efficacy, including microfracture, autologous/allograft osteochondral transplantation, and cell-based techniques. Therefore, tissue engineering has been widely explored in repairing osteochondral defects by leveraging the natural regenerative potential of biomaterials to control cell functions. However, osteochondral tissue is a gradient structure with a smooth transition from the cartilage to subchondral bone, involving changes in chondrocyte morphologies and phenotypes, extracellular matrix components, collagen type and orientation, and cytokines. Bioinspired scaffolds have been developed by simulating gradient characteristics in heterogeneous tissues, such as the pores, components, and osteochondrogenesis-inducing factors, to satisfy the anisotropic features of osteochondral matrices. Bioinspired gradient scaffolds repair osteochondral defects by altering the microenvironments of cell growth to induce osteochondrogenesis and promote the formation of osteochondral interfaces compared with homogeneous scaffolds. This review outlines the meaningful strategies for repairing osteochondral defects by tissue engineering based on gradient scaffolds and predicts the pros and cons of prospective translation into clinical practice.
Collapse
Affiliation(s)
- Yachen Peng
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Mingran Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Kai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yanbo Zhang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianlin Zuo
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiP. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| |
Collapse
|
9
|
Olaru M, Simionescu N, Doroftei F, David G. Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs. Polymers (Basel) 2023; 15:polym15071635. [PMID: 37050249 PMCID: PMC10096539 DOI: 10.3390/polym15071635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered and multiphasic 3D macroporous structure was achieved at subzero temperature by the Michael addition reaction of amino functionalities of collagen with acryloyl groups of a bifunctionalized poly(ε-caprolactone). This green approach has been successfully applied to crosslink layers of different composition, both for their efficient sequential formation and connection. Polyethylenimine functionalized nano-hydroxyapatite (nHApLPEI) was added to the bottom layer. The resulting hybrid cryogels were characterized by morphology, equilibrium swelling ratios, compressive strength analysis, and MTS assay. They presented good stability, integrity, and biocompatibility. The results revealed that the properties of the prepared constructs may be tuned by varying the composition, number, and thickness of the layers. The Young modulus values were between 3.5 ± 0.02 and 10.5 ± 0.6 kPa for the component layers, while for the multilayered structures they were more than 7.3 ± 0.2 kPa. The equilibrium swelling ratio varied between 4.6 and 14.2, with a value of ~10.5 for the trilayered structure, correlated with the mean pore sizes (74–230 µm).
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Geta David
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gh. Asachi” Technical University of Iasi, 71A Bd. D. Mangeron, 700050 Iasi, Romania
- Correspondence:
| |
Collapse
|
10
|
Tee CA, Han J, Hui JHP, Lee EH, Yang Z. Perspective in Achieving Stratified Articular Cartilage Repair Using Zonal Chondrocytes. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36416231 DOI: 10.1089/ten.teb.2022.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Articular cartilage is composed of superficial, medial, and deep zones, which endow the tissue with biphasic mechanical properties to withstand shearing force and compressional loading. The tissue has very limited self-healing capacity once it is damaged due to its avascular nature. To prevent the early onset of osteoarthritis, surgical intervention is often needed to repair the injured cartilage. Current noncell-based and cell-based treatments focus on the regeneration of homogeneous cartilage to achieve bulk compressional properties without recapitulating the zonal matrix and mechanical properties, and often oversight in aiding cartilage integration between host and repair cartilage. It is hypothesized that achieving zonal architecture in articular cartilage tissue repair could improve the structural and mechanical integrity and thus the life span of the regenerated tissue. Engineering stratified cartilage constructs using zonal chondrocytes have been hypothesized to improve the functionality and life span of the regenerated tissues. However, stratified articular cartilage repair has yet to be realized to date due to the lack of an efficient zonal chondrocyte isolation method and an expansion platform that would allow both cell propagation and phenotype maintenance. Various attempts and challenges in achieving stratified articular cartilage repair in a clinical setting are evaluated. In this review, different perspectives on achieving stratified articular cartilage repair using zonal chondrocytes are described. The effectiveness of different zonal chondrocyte isolation and zonal chondrocyte phenotype maintenance methodologies during expansion are compared, with the focus on recent advancements in zonal chondrocyte isolation and expansion that could present a possible strategy to overcome the limitation of applying zonal chondrocytes to facilitate zonal architecture development in articular cartilage regeneration. Impact Statement The zonal properties of articular cartilage contribute to the biphasic mechanical properties of the tissues. Recapitulation of the zonal architecture in regenerated articular cartilage has been hypothesized to improve the mechanical integrity and life span of the regenerated tissue. This review provides a comprehensive discussion on the current state of research relevant to achieving stratified articular cartilage repair using zonal chondrocytes from different perspectives. This review further elaborates on a zonal chondrocyte production pipeline that can potentially overcome the current clinical challenges and future work needed to realize stratified zonal chondrocyte implantation in a clinical setting.
Collapse
Affiliation(s)
- Ching Ann Tee
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Electrical Engineering and Computer Science, Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.,Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Li X, Zhang W, Fan Y, Niu X. MV-mediated biomineralization mechanisms and treatments of biomineralized diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Zhang Y, Su D, Wang Y, Wang Z, Ren Y, Liu R, Du B, Duan R, Shi Y, Liu L, Li X, Zhang Q. Locally delivered modified citrus pectin - a galectin-3 inhibitor shows expected anti-inflammatory and unexpected regeneration-promoting effects on repair of articular cartilage defect. Biomaterials 2022; 291:121870. [DOI: 10.1016/j.biomaterials.2022.121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
14
|
[Effect of xanthohumol-loaded anti-inflammatory scaffolds on cartilage regeneration in goats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1296-1304. [PMID: 36310469 PMCID: PMC9626270 DOI: 10.7507/1002-1892.202204044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To develop an anti-inflammatory poly (lactic-co-glycolic acid) (PLGA) scaffold by loading xanthohumol, and investigate its anti-inflammatory and cartilage regeneration effects in goats. METHODS The PLGA porous scaffolds were prepared by pore-causing agent leaching method, and then placed in xanthohumol solution for 24 hours to prepare xanthohumol-PLGA scaffolds (hereinafter referred to as drug-loaded scaffolds). The PLGA scaffolds and drug-loaded scaffolds were taken for general observation, the pore diameter of the scaffolds was measured by scanning electron microscope, the porosity was calculated by the drainage method, and the loading of xanthohumol on the scaffolds was verified by Fourier transform infrared (FTIR) spectrometer. Then the two scaffolds were co-cultured with RAW264.7 macrophages induced by lipopolysaccharide for 24 hours, and the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by RT-PCR and Western blot to evaluate the anti-inflammatory properties in vitro of two scaffolds. Bone marrow mesenchymal stem cells (BMSCs) was obtained from bone marrow of a 6-month-old female healthy goat, cultured by adherent method, and passaged in vitro. The second passage cells were seeded on two scaffolds to construct BMSCs-scaffolds, and the cytocompatibility of scaffolds was observed by live/dead cell staining and cell counting kit 8 (CCK-8) assay. The BMSCs-scaffolds were cultured in vitro for 6 weeks, aiming to verify its feasibility of generating cartilage in vitro by gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, and biochemical analysis. Finally, the two kinds of BMSCs-scaffolds cultured in vitro for 6 weeks were implanted into the goat subcutaneously, respectively. After 4 weeks, gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, biochemical analysis, and RT-PCR were performed to comprehensively evaluate the anti-inflammatory effect in vivo and promotion of cartilage regeneration of the drug-loaded scaffolds. RESULTS The prepared drug-loaded scaffold had a white porous structure with abundant, continuous, and uniform pore structures. Compared with the PLGA scaffold, there was no significant difference in pore size and porosity ( P>0.05). FTIR spectrometer analysis showed that xanthohumol was successfully loaded to PLGA scaffolds. The in vitro results demonstrated that the gene and protein expressions of inflammatory cytokines (IL-1β and TNF-α) in drug-loaded scaffold significantly decreased than those in PLGA scaffold ( P<0.05). With the prolongation of culture, the number of live cells increased significantly, and there was no significant difference between the two scaffolds ( P>0.05). The in vitro cartilage regeneration test indicated that the BMSCs-drug-loaded scaffolds displayed smooth and translucent appearance with yellow color after 6 weeks in vitro culture, and could basically maintained its original shape. The histological and immunohistochemical stainings revealed that the scaffolds displayed typical lacunar structure and cartilage-specific extracellular matrix. In addition, quantitative data revealed that the contents of glycosaminoglycan (GAG) and collagen type Ⅱ were not significantly different from BMSCs-PLGA scaffolds ( P>0.05). The evaluation of cartilage regeneration in vivo showed that the BMSCs-drug-loaded scaffolds basically maintained their pre-implantation shape and size at 4 weeks after implantation in goat, while the BMSCs-PLGA scaffolds were severely deformed. The BMSCs-drug-loaded scaffolds had typical cartilage lacuna structure and cartilage specific extracellular matrix, and no obvious inflammatory cells infiltration; while the BMSCs-PLGA scaffolds had a messy fibrous structure, showing obvious inflammatory response. The contents of cartilage-specific GAG and collagen type Ⅱ in BMSCs-drug-loaded scaffolds were significantly higher than those in BMSCs-PLGA scaffolds ( P<0.05); the relative gene expressions of IL-1β and TNF-α were significantly lower than those in BMSCs-PLGA scaffolds ( P<0.05). CONCLUSION The drug-loaded scaffolds have suitable pore size, porosity, cytocompatibility, and good anti-inflammatory properties, and can promote cartilage regeneration after implantation with BMSCs in goats.
Collapse
|
15
|
Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol 2022; 10:911281. [PMID: 36131726 PMCID: PMC9483725 DOI: 10.3389/fbioe.2022.911281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sandwiched between articular cartilage and subchondral bone, the calcified cartilage layer (CCL) takes on both biomechanical and biochemical functions in joint development and ordinary activities. The formation of CCL is not only unique in articular cartilage but can also be found in the chondro-osseous junction adjacent to the growth plate during adolescence. The formation of CCL is an active process under both cellular regulation and intercellular communication. Abnormal alterations of CCL can be indications of degenerative diseases including osteoarthritis. Owing to the limited self-repair capability of articular cartilage and core status of CCL in microenvironment maintenance, tissue engineering reconstruction of CCL in damaged cartilage can be of great significance. This review focuses on possible tissue engineering reconstruction methods targeting CCL for further OA treatment.
Collapse
Affiliation(s)
- Weiyang Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixi Ye
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueyao Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Senbo An
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| |
Collapse
|
16
|
Merrild NG, Holzmann V, Ariosa-Morejon Y, Faull PA, Coleman J, Barrell WB, Young G, Fischer R, Kelly DJ, Addison O, Vincent TL, Grigoriadis AE, Gentleman E. Local depletion of proteoglycans mediates cartilage tissue repair in an ex vivo integration model. Acta Biomater 2022; 149:179-188. [PMID: 35779773 DOI: 10.1016/j.actbio.2022.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Successfully replacing damaged cartilage with tissue-engineered constructs requires integration with the host tissue and could benefit from leveraging the native tissue's intrinsic healing capacity; however, efforts are limited by a poor understanding of how cartilage repairs minor defects. Here, we investigated the conditions that foster natural cartilage tissue repair to identify strategies that might be exploited to enhance the integration of engineered/grafted cartilage with host tissue. We damaged porcine articular cartilage explants and using a combination of pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies reveal that integration of damaged cartilage surfaces is not driven by neo-matrix synthesis, but rather local depletion of proteoglycans. ADAMTS4 expression and activity are upregulated in injured cartilage explants, but integration could be reduced by inhibiting metalloproteinase activity with TIMP3. These observations suggest that catabolic enzyme-mediated proteoglycan depletion likely allows existing collagen fibrils to undergo cross-linking, fibrillogenesis, or entanglement, driving integration. Catabolic enzymes are often considered pathophysiological markers of osteoarthritis. Our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions and in osteoarthritis, but could also be harnessed in tissue engineering strategies to mediate repair. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies require graft integration with the surrounding tissue; however, how the native tissue repairs minor injuries is poorly understood. We applied pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies to a porcine cartilage explant model and found that integration of damaged cartilage surfaces is driven by catabolic enzyme-mediated local depletion of proteoglycans. Although catabolic enzymes have been implicated in cartilage destruction in osteoarthritis, our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions. They also suggest that this natural cartilage tissue repair process could be harnessed in tissue engineering strategies to enhance the integration of engineered cartilage with host tissue.
Collapse
Affiliation(s)
- Nicholas Groth Merrild
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Viktoria Holzmann
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Yoanna Ariosa-Morejon
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Peter A Faull
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Coleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gloria Young
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Owen Addison
- Centre for Oral, Clinical and Translational Sciences, King's College London, London SE1 9RT, UK
| | - Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
17
|
Barthold JE, McCreery K, Martinez J, Bellerjeau C, Ding Y, Bryant SJ, Whiting G, Neu CP. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication 2022; 14. [PMID: 35203071 DOI: 10.1088/1758-5090/ac584c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/24/2022] [Indexed: 11/11/2022]
Abstract
Articular cartilage is a layered tissue with a complex, heterogenous structure and lubricated surface which is challenging to reproduce using traditional tissue engineering methods. 3D printing techniques have enabled engineering of complex scaffolds for cartilage regeneration, but constructs fail to replicate the unique zonal layers, and limited cytocompatible crosslinkers exist. To address the need for mechanically robust, layered scaffolds, we developed an extracellular matrix particle-based biomaterial ink (pECM biomaterial ink) which can be extruded, polymerizes via disulfide bonding, and restores surface lubrication. Our cartilage pECM biomaterial ink utilizes functionalized hyaluronan, a naturally occurring glycosaminoglycan, crosslinked directly to decellularized tissue particles (ø 40-100 µm). We experimentally determined that hyaluronan functionalized with thiol groups (t-HA) forms disulfide bonds with the ECM particles to form a 3D network. We show that two inks can be co-printed to create a layered cartilage scaffold with bulk compressive and surface (friction coefficient, adhesion, and roughness) mechanics approaching values measured on native cartilage. We demonstrate that our printing process enables the addition of macropores throughout the construct, increasing the viability of introduced cells by 10%. The delivery of these 3D printed scaffolds to a defect is straightforward, customizable to any shape, and adheres to surrounding tissue.
Collapse
Affiliation(s)
- Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Kaitlin McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Jaylene Martinez
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Charlotte Bellerjeau
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Yifu Ding
- Department of Mechanical Engineering Campmode, University of Colorado at Boulder, Campus Box 427, 1111 Engineering Drive, Boulder, Colorado, 80309, UNITED STATES
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Ave, USA, Boulder, Colorado, 80309, UNITED STATES
| | - Gregory Whiting
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado, 80309-0401, UNITED STATES
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado, 80309-0401, UNITED STATES
| |
Collapse
|
18
|
Link JM, Hu JC, Athanasiou KA. Chondroitinase ABC Enhances Integration of Self-Assembled Articular Cartilage, but Its Dosage Needs to Be Moderated Based on Neocartilage Maturity. Cartilage 2021; 13:672S-683S. [PMID: 32441107 PMCID: PMC8804832 DOI: 10.1177/1947603520918653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To enhance the in vitro integration of self-assembled articular cartilage to native articular cartilage using chondroitinase ABC. DESIGN To examine the hypothesis that chondroitinase ABC (C-ABC) integration treatment (C-ABCint) would enhance integration of neocartilage of different maturity levels, this study was conducted in 2 phases. In phase I, the impact on integration of 2 treatments, TCL (TGF-β1, C-ABC, and lysyl oxidase like 2) and C-ABCint, was examined via a 2-factor, full factorial design. In phase II, construct maturity (2 levels) and C-ABCint concentration (3 levels) were the factors in a full factorial design to determine whether the effective C-ABCint dose was dependent on neocartilage maturity level. Neocartilages formed or treated per the factors above were placed into native cartilage rings, cultured for 2 weeks, and, then, integration was studied histologically and mechanically. Prior to integration, in phase II, a set of treated constructs were also assayed to provide a baseline of properties. RESULTS In phase I, C-ABCint and TCL treatments synergistically enhanced interface Young's modulus by 6.2-fold (P = 0.004) and increased interface tensile strength by 3.8-fold (P = 0.02) compared with control. In phase II, the interaction of the factors C-ABCint and construct maturity was significant (P = 0.0004), indicating that the effective C-ABCint dose to improve interface Young's modulus is dependent on construct maturity. Construct mechanical properties were preserved regardless of C-ABCint dose. CONCLUSIONS Applying C-ABCint to neocartilage is an effective integration strategy with translational potential, provided its dose is calibrated appropriately based on implant maturity, that also preserves implant biomechanical properties.
Collapse
Affiliation(s)
- Jarrett M. Link
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA,Kyriacos A. Athanasiou, Distinguished
Professor Henry Samueli Chair, Director, DELTAi (Driving
Engineering and Life-science Translational Advances @ Irvine), Department of
Biomedical Engineering, Henry Samueli School of Engineering, University of
California, 3418 Engineering Hall, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Liu M, Ke X, Yao Y, Wu F, Ye S, Zhang L, Yang G, Shen M, Li Y, Yang X, Zhong C, Gao C, Gou Z. Artificial osteochondral interface of bioactive fibrous membranes mediating calcified cartilage reconstruction. J Mater Chem B 2021; 9:7782-7792. [PMID: 34586140 DOI: 10.1039/d1tb01238j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcified cartilage is a mineralized osteochondral interface region between the hyaline cartilage and subchondral bone. There are few reported artificial biomaterials that could offer bioactivities for substantial reconstruction of calcified cartilage. Herein we developed new poly(L-lactide-co-caprolactone) (PLCL)-based trilayered fibrous membranes as a functional interface for calcified cartilage reconstruction and superficial cartilage restoration. The trilayered membranes were prepared by the electrospinning technique, and the fibrous morphology was maintained when the chondroitin sulfate (CS) or bioactive glass (BG) particles were introduced in the upper or bottom layer, respectively. Although 30% BG in the bottom layer led to a significant decrease in tensile resistance, the inorganic ion release was remarkably higher than that in the counterpart with 10% BG. The in vivo studies showed that the fibrous membranes as osteochondral interfaces exhibited different biological performances on superficial cartilage restoration and calcified cartilage reconstruction. All of the implanted host hyaline cartilage enabled a self-healing process and an increase in the BG content in the membranes was desirable for promoting the repair of the calcified cartilage with time. The histological staining confirmed the osteochondral interface in the 30% BG bottom membrane maintained appreciable calcified cartilage repair after 12 weeks. These findings demonstrated that such an integrated artificial osteochondral interface containing appropriate bioactive ions are potentially applicable for osteochondral interface tissue engineering.
Collapse
Affiliation(s)
- Mengtao Liu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xiurong Ke
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fanghui Wu
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Shuo Ye
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Lei Zhang
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Guojing Yang
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| | - Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Cheng Zhong
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| | - Changyou Gao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China. .,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Identifying Consensus and Open Questions around Assessing or Predicting the Quality and Success of Cartilage Repair: A Delphi Study. SURGERIES 2021. [DOI: 10.3390/surgeries2030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A range of surgical techniques have been developed for the repair or regeneration of lesioned cartilage in the human knee and a corresponding array of scoring systems have been created to assess their outcomes. The published literature displays a wide range of opinions regarding the factors that influence the success of surgical cartilage repair and which parameters are the most useful for measuring the quality of the repair at follow-up. Our objective was to provide some clarity to the field by collating items that were agreed upon by a panel of experts to be important in these areas. A modified, three-round Delphi consensus study was carried out consisting of one idea-generating focus-group and two subsequent, self-completed questionnaire rounds. In each round, items were assessed for their importance and level of consensus against pre-determined threshold levels. In total, 31 items reached consensus, including a hierarchy of tissues in the joint based on their importance in cartilage repair, markers of repair cartilage quality and the implications of environmental and patient-related factors. Items were stratified into those that can be employed for predicting the success of cartilage repair and those that could be used for assessing the structural quality of the resulting repair cartilage. Items that did not reach consensus represent areas where dissent remains and could, therefore, be used to guide future clinical and fundamental scientific research.
Collapse
|
21
|
Haghwerdi F, Khozaei Ravari M, Taghiyar L, Shamekhi MA, Jahangir S, Haririan I, Baghaban Eslaminejad M. Application of bone and cartilage extracellular matrices in articular cartilage regeneration. Biomed Mater 2021; 16. [PMID: 34102624 DOI: 10.1088/1748-605x/ac094b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/08/2021] [Indexed: 01/02/2023]
Abstract
Articular cartilage has an avascular structure with a poor ability for self-repair; therefore, many challenges arise in cases of trauma or disease. It is of utmost importance to identify the proper biomaterial for tissue repair that has the capability to direct cell recruitment, proliferation, differentiation, and tissue integration by imitating the natural microenvironment of cells and transmitting an orchestra of intracellular signals. Cartilage extracellular matrix (cECM) is a complex nanostructure composed of divergent proteins and glycosaminoglycans (GAGs), which regulate many functions of resident cells. Numerous studies have shown the remarkable capacity of ECM-derived biomaterials for tissue repair and regeneration. Moreover, given the importance of biodegradability, biocompatibility, 3D structure, porosity, and mechanical stability in the design of suitable scaffolds for cartilage tissue engineering, demineralized bone matrix (DBM) appears to be a promising biomaterial for this purpose, as it possesses the aforementioned characteristics inherently. To the best of the authors' knowledge, no comprehensive review study on the use of DBM in cartilage tissue engineering has previously been published. Since so much work is needed to address DBM limitations such as pore size, cell retention, and so on, we decided to draw the attention of researchers in this field by compiling a list of recent publications. This review discusses the implementation of composite scaffolds of natural or synthetic origin functionalized with cECM or DBM in cartilage tissue engineering. Cutting-edge advances and limitations are also discussed in an attempt to provide guidance to researchers and clinicians.
Collapse
Affiliation(s)
- Fatemeh Haghwerdi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Mohammad Amin Shamekhi
- Department of Polymer Engineering, Islamic Azad University, Sarvestan Branch, Sarvestan, Iran
| | - Shahrbano Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| |
Collapse
|
22
|
Mosher CZ, Brudnicki PAP, Gong Z, Childs HR, Lee SW, Antrobus RM, Fang EC, Schiros TN, Lu HH. Green electrospinning for biomaterials and biofabrication. Biofabrication 2021; 13. [PMID: 34102612 DOI: 10.1088/1758-5090/ac0964] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]
Abstract
Green manufacturing has emerged across industries, propelled by a growing awareness of the negative environmental and health impacts associated with traditional practices. In the biomaterials industry, electrospinning is a ubiquitous fabrication method for producing nano- to micro-scale fibrous meshes that resemble native tissues, but this process traditionally utilizes solvents that are environmentally hazardous and pose a significant barrier to industrial scale-up and clinical translation. Applying sustainability principles to biomaterial production, we have developed a 'green electrospinning' process by systematically testing biologically benign solvents (U.S. Food and Drug Administration Q3C Class 3), and have identified acetic acid as a green solvent that exhibits low ecological impact (global warming potential (GWP) = 1.40 CO2eq. kg/L) and supports a stable electrospinning jet under routine fabrication conditions. By tuning electrospinning parameters, such as needle-plate distance and flow rate, we updated the fabrication of widely utilized biomedical polymers (e.g. poly-α-hydroxyesters, collagen), polymer blends, polymer-ceramic composites, and growth factor delivery systems. Resulting 'green' fibers and composites are comparable to traditional meshes in terms of composition, chemistry, architecture, mechanical properties, and biocompatibility. Interestingly, material properties of green synthetic fibers are more biomimetic than those of traditionally electrospun fibers, doubling in ductility (91.86 ± 35.65 vs. 45 ± 15.07%,n= 10,p< 0.05) without compromising yield strength (1.32 ± 0.26 vs. 1.38 ± 0.32 MPa) or ultimate tensile strength (2.49 ± 0.55 vs. 2.36 ± 0.45 MPa). Most importantly, green electrospinning proves advantageous for biofabrication, rendering a greater protection of growth factors during fiber formation (72.30 ± 1.94 vs. 62.87 ± 2.49% alpha helical content,n= 3,p< 0.05) and recapitulating native ECM mechanics in the fabrication of biopolymer-based meshes (16.57 ± 3.92% ductility, 33.38 ± 30.26 MPa elastic modulus, 1.30 ± 0.19 MPa yield strength, and 2.13 ± 0.36 MPa ultimate tensile strength,n= 10). The eco-conscious approach demonstrated here represents a paradigm shift in biofabrication, and will accelerate the translation of scalable biomaterials and biomimetic scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Christopher Z Mosher
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Philip A P Brudnicki
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Zhengxiang Gong
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Sang Won Lee
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Romare M Antrobus
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Elisa C Fang
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Theanne N Schiros
- Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America.,Science and Mathematics Department, Fashion Institute of Technology, New York, NY 10001, United States of America
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.,Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
23
|
Duan WP, Huang LA, Dong ZQ, Li HQ, Guo L, Song WJ, Yang YF, Li PC, Wei XC. Studies of Articular Cartilage Repair from 2009 to 2018: A Bibliometric Analysis of Articles. Orthop Surg 2021; 13:608-615. [PMID: 33554478 PMCID: PMC7957388 DOI: 10.1111/os.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023] Open
Abstract
Objective To perform a bibliometric analysis of research on articular cartilage repair published in Chinese and English over the past decade. Fundamental and clinical research topics of high interest were further comparatively analyzed. Methods Relevant studies published from 1 January 2009 to 31 December 2018 (10 years) were retrieved from the Wanfang database (Chinese articles) and six databases, including MEDLINE, WOS, INSPEC, SCIELO, KJD, and RSCI on the website “Web of Science” (English articles), using key words: “articular cartilage” AND “injury” AND “repair”. The articles were categorized according to research focuses for a comparative analysis between those published in Chinese vs English, and further grouped according to publication date (before and after 2014). A comparative analysis was performed on research focus to characterize the variation in research trends between two 5‐year time spans. Moreover, articles were classified as basic and clinical research studies. Results Overall, 5762 articles were retrieved, including 2748 in domestic Chinese journals and 3014 in international English journals. A total of 4937 articles focused on the top 10 research topics, with the top 3 being stem cells (32.1%), tissue‐engineered scaffold (22.8%), and molecular mechanisms (16.4%). Differences between the numbers of Chinese and English papers were observed for 3 topics: chondrocyte implantation (104 vs 316), osteochondral allograft (27 vs 86), and microfracture (127 vs 293). The following topics gained more research interest in the second 5‐year time span compared with the first: microfracture, osteochondral allograft, osteochondral autograft, stem cells, and tissue‐engineered scaffold. Articles with a focus on three‐dimensional‐printing technology have shown the fastest increase in publication numbers. Among 5613 research articles, basic research studies accounted for the majority (4429), with clinical studies described in only 1184 articles. The top 7 research topics of clinical studies were: chondrocyte implantation (28.7%), stem cells (21.9%), microfracture (19.2%), tissue scaffold (10.6%), osteochondral autograft (10.5%), osteochondral allograft (6.3%), and periosteal transplantation (2.8%). Conclusion Studies focused on stem cells and tissue‐engineered scaffolds led the field of damaged articular cartilage repair. International researchers studied allograft‐related implantation approaches more often than Chinese researchers. Traditional surgical techniques, such as microfracture and osteochondral transplantation, gained high research interest over the past decade.
Collapse
Affiliation(s)
- Wang-Ping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Ling-An Huang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Zheng-Quan Dong
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Hao-Qian Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Li Guo
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Wen-Jie Song
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Yan-Fei Yang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Peng-Cui Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Xiao-Chun Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| |
Collapse
|
24
|
Trengove A, Di Bella C, O'Connor AJ. The Challenge of Cartilage Integration: Understanding a Major Barrier to Chondral Repair. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:114-128. [PMID: 33307976 DOI: 10.1089/ten.teb.2020.0244] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Articular cartilage defects caused by injury frequently lead to osteoarthritis, a painful and costly disease. Despite widely used surgical methods to treat articular cartilage defects and a plethora of research into regenerative strategies as treatments, long-term clinical outcomes are not satisfactory. Failure to integrate repair tissue with native cartilage is a recurring issue in surgical and tissue-engineered strategies, seeing eventual degradation of the regenerated or surrounding tissue. This review delves into the current understanding of why continuous and robust integration with native cartilage is so difficult to achieve. Both the intrinsic limitations of chondrocytes to remodel injured cartilage, and the significant challenges posed by a compromised biomechanical environment are described. Recent scaffold and cell-based techniques to repair cartilage are also discussed, and limitations of existing methods to evaluate integrative repair. In particular, the importance of evaluating the mechanical integrity of the interface between native and repair tissue is highlighted as a meaningful assessment of any strategy to repair this load-bearing tissue. Impact statement The failure to integrate grafts or biomaterials with native cartilage is a major barrier to cartilage repair. An in-depth understanding of the reasons cartilage integration remains a challenge is required to inform cartilage repair strategies. In particular, this review highlights that integration of cartilage repair strategies is frequently assessed in terms of the continuity of tissue, but not the mechanical integrity. Given the load-bearing nature of cartilage, evaluating integration in terms of interfacial strength is essential to assessing the potential success of cartilage repair methods.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Claudia Di Bella
- Department of Surgery, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Department of Orthopedics, St. Vincent's Hospital Melbourne, Melbourne, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
26
|
Shah SS, Lee S, Mithoefer K. Next-Generation Marrow Stimulation Technology for Cartilage Repair: Basic Science to Clinical Application. JBJS Rev 2021; 9:e20.00090. [PMID: 33512974 DOI: 10.2106/jbjs.rvw.20.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
» Given the relatively high prevalence of full-thickness articular cartilage lesions, including in patients who are <40 years of age, and an inability to detect some of these lesions until the time of arthroscopy, there is value in performing a single-stage cartilage procedure such as marrow stimulation (MS). » While the positive outcomes of first-generation MS (namely microfracture) have been observed to drop off after 24 months in several studies, improvements have been seen when compared with preoperative conditions for lesions that are 2 to 3 cm2 in size, and MS is considered to be a procedure with technical simplicity, fairly short surgical times, and relatively low morbidity. A recent study showed that autologous chondrocyte implantation (ACI) and osteochondral allograft (OCA) transplantation remain viable treatment options for chondral defects of the knee in the setting of failed MS. » Basic science principles that have been elucidated in recent years include (1) the creation of vertical walls during defect preparation, (2) an increased depth of subchondral penetration, (3) a smaller awl diameter, and (4) an increased number of subchondral perforations, which are all thought to help resolve issues of access to the mesenchymal stromal cells (MSCs) and the subchondral bone structure/overgrowth issues. » Pioneering and evolving basic science and clinical studies have led to next-generation clinical applications, such as a hyaluronic acid-based scaffold (ongoing randomized controlled trial [RCT]), an atelocollagen-based gel (as described in a recently published RCT), a micronized allogeneic cartilage scaffold (as described in a recently completed prospective cohort study), and a biosynthetic hydrogel that is composed of polyethylene glycol (PEG) diacrylate and denatured fibrinogen (as described in an ongoing prospective study). » This review summarizes important points for defect preparation and the recent advances in MS techniques and identifies specific scaffolding augmentation strategies (e.g., mesenchymal augmentation and scaffold stimulation [MASS]) that have the capacity to advance cartilage regeneration in light of recent laboratory and clinical studies.
Collapse
Affiliation(s)
- Sarav S Shah
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Boston, Massachusetts
| | - Sonia Lee
- Department of Orthopaedic Surgery, Tufts University School of Medicine, Boston, Massachusetts
| | - Kai Mithoefer
- Department of Orthopedics and Sports Medicine, Harvard Vanguard Medical Associates, Boston, Massachusetts
| |
Collapse
|
27
|
Oláh T, Michaelis JC, Cai X, Cucchiarini M, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: Small animals. Ann Anat 2020; 234:151630. [PMID: 33129976 DOI: 10.1016/j.aanat.2020.151630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Small animal models are critical to model the complex disease mechanisms affecting a functional joint leading to articular cartilage disorders. They are advantageous for several reasons and significantly contributed to the understanding of the mechanisms of cartilage diseases among which osteoarthritis. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major small animal species, including mice, rats, guinea pigs, and rabbits compared with humans. Specific characteristics of each species, including kinematical gait parameters are provided and compared with the human situation. When placed in a proper context respecting their challenges and limitations, small animal models are important and appropriate models for articular cartilage disorders.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
28
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
29
|
Fu L, Yang Z, Gao C, Li H, Yuan Z, Wang F, Sui X, Liu S, Guo Q. Advances and prospects in biomimetic multilayered scaffolds for articular cartilage regeneration. Regen Biomater 2020; 7:527-542. [PMID: 33365139 PMCID: PMC7748444 DOI: 10.1093/rb/rbaa042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the sophisticated hierarchical structure and limited reparability of articular cartilage (AC), the ideal regeneration of AC defects has been a major challenge in the field of regenerative medicine. As defects progress, they often extend from the cartilage layer to the subchondral bone and ultimately lead to osteoarthritis. Tissue engineering techniques bring new hope for AC regeneration. To meet the regenerative requirements of the heterogeneous and layered structure of native AC tissue, a substantial number of multilayered biomimetic scaffolds have been studied. Ideal multilayered scaffolds should generate zone-specific functional tissue similar to native AC tissue. This review focuses on the current status of multilayered scaffolds developed for AC defect repair, including design strategies based on the degree of defect severity and the zone-specific characteristics of AC tissue, the selection and composition of biomaterials, and techniques for design and manufacturing. The challenges and future perspectives of biomimetic multilayered scaffold strategies for AC regeneration are also discussed.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhen Yang
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Cangjian Gao
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Hao Li
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China
| | - Fuxin Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
30
|
Tsai CC, Kuo SH, Lu TY, Cheng NC, Shie MY, Yu J. Enzyme-Cross-linked Gelatin Hydrogel Enriched with an Articular Cartilage Extracellular Matrix and Human Adipose-Derived Stem Cells for Hyaline Cartilage Regeneration of Rabbits. ACS Biomater Sci Eng 2020; 6:5110-5119. [PMID: 33455262 DOI: 10.1021/acsbiomaterials.9b01756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyaline cartilage regeneration remains clinically challenging. In this study, microbial transglutaminase was used to cross-link gelatin. The articular cartilage extracellular matrix (cECM), mainly comprising collagen type II and glycosaminoglycans (GAGs), which can support chondrogenesis, was enclosed in this enzyme-catalyzed hydrogel. After human adipose-derived stem cells (hASCs) were encapsulated in the hydrogel enriched with the cECM, the results demonstrated that the enzymatic cross-linking reaction is of low cytotoxicity. Moreover, the stem cells showed great proliferation and chondrogenic differentiation potential in the hydrogel. Most importantly, we assessed the therapeutic effects of applying a hydrogel enriched with the cECM and hASCs to repair a full-thickness osteochondral defect. At 8 weeks after surgery, the GCC group (hydrogel encapsulating cells and the cECM) exhibited a smooth articular surface with transparent new hyaline-like tissue macroscopically. According to histological analysis, inflammatory responses were hardly observed, and sound chondrocytes were aligned in the newly formed chondral layer. In addition, the GCC group exhibited significant improvement in the GAG content between weeks 4 and 8. In summary, the implantation of a gelatin hydrogel enriched with the cECM and hASCs could facilitate the hyaline cartilage regeneration significantly in rabbit knee joint models.
Collapse
Affiliation(s)
- Ching-Cheng Tsai
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, No.1, Changde St., Zhongzheng Dist., Taipei City 10048, Taiwan
| | - Ming-You Shie
- Department of Dentistry, China Medical University, No.91 Hsueh-Shih Rd., Taichung City 40402, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| |
Collapse
|
31
|
Favreau H, Pijnenburg L, Seitlinger J, Fioretti F, Keller L, Scipioni D, Adriaensen H, Kuchler-Bopp S, Ehlinger M, Mainard D, Rosset P, Hua G, Gentile L, Benkirane-Jessel N. Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102253. [PMID: 32619705 DOI: 10.1016/j.nano.2020.102253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
Functional articular cartilage regeneration remains challenging, and it is essential to restore focal osteochondral defects and prevent secondary osteoarthritis. Combining autologous stem cells with therapeutic medical device, we developed a bi-compartmented implant that could promote both articular cartilage and subchondral bone regeneration. The first compartment based on therapeutic collagen associated with bone morphogenetic protein 2, provides structural support and promotes subchondral bone regeneration. The second compartment contains bone marrow-derived mesenchymal stem cell spheroids to support the regeneration of the articular cartilage. Six-month post-implantation, the regenerated articular cartilage surface was 3 times larger than that of untreated animals, and the regeneration of the osteochondral tissue occurred during the formation of hyaline-like cartilage. Our results demonstrate the positive impact of this combined advanced therapy medicinal product, meeting the needs of promising osteochondral regeneration in critical size articular defects in a large animal model combining not only therapeutic implant but also stem cells.
Collapse
Affiliation(s)
- Henri Favreau
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Luc Pijnenburg
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Joseph Seitlinger
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Florence Fioretti
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laetitia Keller
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Dominique Scipioni
- Hôpital Erasme-Cliniques universitaires de Bruxelles, Université libre de Bruxelles (ULB), CHIREC-Hôpital Delta, Belgique
| | - Hans Adriaensen
- CHRU de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, and INRA de tours, Université François Rabelais, Tours, France
| | - Sabine Kuchler-Bopp
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Matthieu Ehlinger
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpitaux universitaires de Strasbourg (HUS), Hôpital de Hautepierre, Service de rhumatologie, Service de chirurgie thoracique and Service de chirurgie orthopédique et de traumatologie, Université de Strasbourg, Strasbourg, France
| | - Didier Mainard
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Hôpital central Nancy, Service d'Orthopédie, Nancy, France
| | - Phillippe Rosset
- CHRU de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, and INRA de tours, Université François Rabelais, Tours, France
| | - Guoqiang Hua
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Luca Gentile
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.
| |
Collapse
|
32
|
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:357-373. [PMID: 30913997 DOI: 10.1089/ten.teb.2018.0330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge
Collapse
Affiliation(s)
- Yaima Campos
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gastón Fuentes
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L Bloem
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric L Kaijzel
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luis J Cruz
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Horkay F, Basser PJ. Composite Hydrogel Model of Cartilage Predicts Its Load-Bearing Ability. Sci Rep 2020; 10:8103. [PMID: 32415132 PMCID: PMC7228937 DOI: 10.1038/s41598-020-64917-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a load-bearing tissue found in animal and human joints. It is a composite gel-like material in which a fibrous collagen network encapsulates large proteoglycan assemblies that imbibe fluid and “inflate” the network. Here we describe a composite hydrogel consisting of a cross-linked polyvinyl alcohol matrix filled with poly(acrylic acid) microparticles that mimics functional properties and biomechanical behavior of cartilage. The swelling and mechanical behaviors of this biomimetic model system are strikingly similar to that of human cartilage. The development of synthetic composite gel-based articular cartilage analog suggests new avenues to explore material properties, and their change in disease and degeneration, as well as novel strategies for developing composite tissue-engineered cartilage constructs for regenerative medicine applications.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD, 20892-5772, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD, 20892-5772, USA
| |
Collapse
|
34
|
Schwarz ML, Reisig G, Schütte A, Becker K, Serba S, Forsch E, Thier S, Fickert S, Lenz T, Weiß C, Hetjens S, Bludau F, Bothe F, Richter W, Schneider-Wald B. Report on a large animal study with Göttingen Minipigs where regenerates and controls for articular cartilage were created in a large number. Focus on the conditions of the operated stifle joints and suggestions for standardized procedures. PLoS One 2019; 14:e0224996. [PMID: 31877143 PMCID: PMC6932782 DOI: 10.1371/journal.pone.0224996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
The characterization of regenerated articular cartilage (AC) can be based on various methods, as there is an unambiguous accepted criterion neither for the natural cartilage tissue nor for regenerates. Biomechanical aspects should be considered as well, leading to the need for more equivalent samples. The aim of the study was to describe a large animal model where 8 specimens of regenerated AC can be created in one animal plus the impact of two surgeries on the welfare of the animals. The usefulness of the inclusion of a group of untreated animals (NAT) was to analyzed. Based on the histological results the conditions of the regenerates were to be described and the impact on knee joints were to be explored in terms of degenerative changes of the cartilage. The usefulness of the statistical term “effect size” (ES) will be explained with histological results. We analyzed an animal model where 8 AC regenerates were obtained from one Göttingen Minipig, on both sides of the trochleae. 60 animals were divided into 6 groups of 10 each, where the partial thickness defects in the trochlea were filled with matrices made of Collagen I with or without autologous chondrocytes or left empty over the healing periods of 24 and 48 weeks. One additional control group consisting of 10 untreated animals was used to provide untouched “external” cartilage. We harvested 560 samples of regenerated tissue and “external” controls, besides that, twice the number of further samples from other parts of the joints referred to as “internal” controls were also harvested. The animals recovered faster after the 1st operation when the defects were set compared to the 2nd operation when the defects were treated. 9% of all animals were lost. Other complications were for example superficial infections, seroma, diarrhea, febrile state and an injury of a claw. The histological results of the treatments proved the robustness of the study design where we included an “external” control group (NAT) in which the animals were not operated. Comparable significant differences between treated groups and the NAT group were detected both after ½ year and after 1 year. Spontaneous regenerated AC as control revealed differences after an observation time of nearly 1 year. The impact of the treatment on cartilage adjacent to the defect as well as the remaining knee joint was low. The ES was helpful for planning the study as it is shown that the power of a statistical comparison seems to be more influenced by the ES than by the sample size. The ranking of the ES was done exemplarily, listing the results according to their magnitude, thus making the results comparable. We were able to follow the 3 R requirements also in terms of a numerical reduction of animals due to the introduction of a group of untreated animals. This makes the model cost effective. The presented study may contribute as an improvement of the standardization of large animal models for research and regulatory requirements for regenerative therapies of AC.
Collapse
Affiliation(s)
- Markus L. Schwarz
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Gregor Reisig
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andy Schütte
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristianna Becker
- Interfaculty Biomedical Facility, Heidelberg University, Heidelberg, Germany
| | - Susanne Serba
- Interfaculty Biomedical Facility, Heidelberg University, Heidelberg, Germany
| | - Elmar Forsch
- Department of Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steffen Thier
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Sportchirurgie Heidelberg, Klonz—Thier–Stock, ATOS Klinik Heidelberg, Heidelberg, Germany
| | - Stefan Fickert
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Sporthopaedicum Regensburg/Straubing, Straubing, Germany
| | | | - Christel Weiß
- Department of Medical Statistics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederic Bludau
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Friederike Bothe
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Schneider-Wald
- Section for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
35
|
Catechol-modified poly(oxazoline)s with tunable degradability facilitate cell invasion and lateral cartilage integration. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Zanotto G, Liebesny P, Barrett M, Zlotnick H, Grodzinsky A, Frisbie D. Trypsin Pre-Treatment Combined With Growth Factor Functionalized Self-Assembling Peptide Hydrogel Improves Cartilage Repair in Rabbit Model. J Orthop Res 2019; 37:2307-2315. [PMID: 31318103 PMCID: PMC6778710 DOI: 10.1002/jor.24414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
The objective of this study was to improve cartilage repair and integration using self-assembling KLD hydrogel functionalized with platelet-derived growth factor-BB and heparin-binding insulin-like growth factor-1 with associated enzymatic trypsin pre-treatment of the native cartilage. Bilateral osteochondral defects were created at the central portion of the femoral trochlear groove of 48 skeletally mature, white New Zealand rabbits. One limb received a randomly assigned treatment and the contralateral limb served as the control. Treated defects were exposed to trypsin for 2 min and filled with self-assembling KLD hydrogel only, or associated to growth factors. All control limbs received KLD hydrogel alone or received only trypsin but not hydrogel. Ninety days post-defect creation, the rabbits were euthanized and magnetic resonance imaging, radiography, macroscopic evaluation, histology, and immunohistochemistry of the joint and repaired tissue were performed. Mixed model analyses of variance were utilized to assess the outcome parameters and individual comparisons were performed using Least Square Means procedure and differences with p-value < 0.05 were considered significant. Trypsin enzymatic pre-treatment improved cellular morphology, cluster formation and subchondral bone reconstitution. Platelet-derived growth factor-BB improved subchondral bone healing and basal integration. Heparin-binding insulin-like growth factor-1 associated with platelet-derived growth factor improved tissue and cell morphology. The authors conclude that self-assembling KLD hydrogel functionalized with platelet-derived growth factor and heparin-binding insulin-like growth factor-1 with associated enzymatic pre-treatment of the native cartilage with trypsin resulted in an improvement on the cartilage repair process. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2307-2315, 2019.
Collapse
Affiliation(s)
- Gustavo Zanotto
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523
| | - Paul Liebesny
- Center for Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139
| | - Myra Barrett
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523
| | - Hannah Zlotnick
- Center for Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139
| | - Alan Grodzinsky
- Center for Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139
| | - David Frisbie
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523.,Corresponding author: David Frisbie, Translational Medicine Institute, Colorado State University, 2350 Gillette Drive, Fort Collins, CO 80523 (current address), , Ph (970) 297-4555, Fax (970) 297-4138
| |
Collapse
|
37
|
Chen T, McCarthy MM, Guo H, Warren R, Maher SA. The Scaffold-Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions. J Biomech Eng 2019; 140:2680997. [PMID: 29801169 DOI: 10.1115/1.4040121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 12/25/2022]
Abstract
The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold-cartilage explant system in which compressive sinusoidal loading cycles were applied for 14 days at 1 Hz, 5 days per week, for either 900, 1800, 3600, or 7200 cycles per day and (ii) an in silico inhomogeneous, biphasic finite element model (bFEM) of the scaffold-cartilage construct that was used to characterize interface micromotion, stress, and fluid flow under the prescribed loading conditions. In accordance with our hypothesis, mechanical loading significantly decreased scaffold-cartilage interface strength compared to unloaded controls regardless of the number of loading cycles. The decrease in interfacial strength can be attributed to abrupt changes in vertical displacement, fluid pressure, and compressive stresses along the interface, which reach steady-state after only 150 cycles of loading. The interfacial mechanical conditions are further complicated by the mismatch between the homogeneous properties of the scaffold and the depth-dependent properties of the articular cartilage. Finally, we suggest that mechanical conditions at the interface can be more readily modulated by increasing pre-incubation time before the load is applied, as opposed to varying the number of loading cycles.
Collapse
Affiliation(s)
- Tony Chen
- Department of Biomechanics and Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 e-mail:
| | - Moira M McCarthy
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 e-mail:
| | - Hongqiang Guo
- Department of Biomechanics and Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, th , New York, NY 10021 e-mail:
| | - Russell Warren
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, th , New York, NY 10021 e-mail:
| | - Suzanne A Maher
- Department of Biomechanics and Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, th , New York, NY 10021 e-mail:
| |
Collapse
|
38
|
Salvador Vergés À, Yildirim M, Salvador B, Garcia Cuyas F. Trends in Scientific Reports on Cartilage Bioprinting: Scoping Review. JMIR Form Res 2019; 3:e15017. [PMID: 31464195 PMCID: PMC6737890 DOI: 10.2196/15017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background Satisfactory therapeutic strategies for cartilaginous lesion repair do not yet exist. This creates a challenge for surgeons and biomedical engineers and leads them to investigate the role of bioprinting and tissue engineering as viable treatments through orthopedic surgery, plastic surgery, and otorhinolaryngology. Recent increases in related scientific literature suggest that bioprinted cartilage may develop into a viable solution. Objective The objectives of this review were to (1) synthesize the scientific advances published to date, (2) identify unresolved technical problems regarding human application, and (3) identify more effective ways for the scientific community to transfer their findings to clinicians. Methods This scoping review considered articles published between 2009 and 2019 that were identified through searching PubMed, Scopus, Web of Science, and Google Scholar. Arksey and O'Malley’s five-step framework was used to delimit and direct the initial search results, from which we established the following research questions: (1) What do authors of current research say about human application? (2) What necessary technical improvements are identified in the research? (3) On which issues do the authors agree? and (4) What future research priorities emerge in the studies? We used the Cohen kappa statistic to validate the interrater reliability. Results The 13 articles included in the review demonstrated the feasibility of cartilage bioprinting in live animal studies. Some investigators are already considering short-term human experimentation, although technical limitations still need to be resolved. Both the use and manufacturing process of stem cells need to be standardized, and a consensus is needed regarding the composition of hydrogels. Using on-site printing strategies and predesigned implants may allow techniques to adapt to multiple situations. In addition, the predictive capacity of implant behavior may lead to optimal results. Conclusions Cartilage bioprinting for surgical applications is nearing its initial use in humans. Current research suggests that surgeons will soon be able to replace damaged tissue with bioprinted material.
Collapse
Affiliation(s)
- Àngels Salvador Vergés
- Digital Care Research Group, Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Meltem Yildirim
- Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences, Department of Nursing, Faculty of Health Sciences and Welfare, Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Bertran Salvador
- Communication Department, University Pompeu Fabra, Barcelona, Spain
| | - Francesc Garcia Cuyas
- Catalan Society of Digital Health, Hospital Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| |
Collapse
|
39
|
Zhang B, Shen S, Xian H, Dai Y, Guo W, Li X, Zhang X, Wang Z, Li H, Peng L, Luo X, Liu S, Lu X, Guo Q. [Fabrication of poly (lactic-co-glycolic acid)/decellularized articular cartilage extracellular matrix scaffold by three-dimensional printing technology and investigating its physicochemical properties]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1011-1018. [PMID: 31407562 PMCID: PMC8337887 DOI: 10.7507/1002-1892.201901082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/30/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To manufacture a poly (lactic-co-glycolic acid) (PLGA) scaffold by low temperature deposition three-dimensional (3D) printing technology, prepare a PLGA/decellularized articular cartilage extracellular matrix (DACECM) cartilage tissue engineered scaffold by combining DACECM, and further investigate its physicochemical properties. METHODS PLGA scaffolds were prepared by low temperature deposition 3D printing technology, and DACECM suspensions was prepared by modified physical and chemical decellularization methods. DACECM oriented scaffolds were prepared by using freeze-drying and physicochemical cross-linking techniques. PLGA/DACECM oriented scaffolds were prepared by combining DACECM slurry with PLGA scaffolds. The macroscopic and microscopic structures of the three kinds of scaffolds were observed by general observation and scanning electron microscope. The chemical composition of DACECM oriented scaffold was analyzed by histological and immunohistochemical stainings. The compression modulus of the three kinds of scaffolds were measured by biomechanical test. Three kinds of scaffolds were embedded subcutaneously in Sprague Dawley rats, and HE staining was used to observe immune response. The chondrocytes of New Zealand white rabbits were isolated and cultured, and the three kinds of cell-scaffold complexes were prepared. The growth adhesion of the cells on the scaffolds was observed by scanning electron microscope. Three kinds of scaffold extracts were cultured with L-929 cells, the cells were cultured in DMEM culture medium as control group, and cell counting kit 8 (CCK-8) was used to detect cell proliferation. RESULTS General observation and scanning electron microscope showed that the PLGA scaffold had a smooth surface and large pores; the surface of the DACECM oriented scaffold was rough, which was a 3D structure with loose pores and interconnected; and the PLGA/DACECM oriented scaffold had a rough surface, and the large hole and the small hole were connected to each other to construct a vertical 3D structure. Histological and immunohistochemical qualitative analysis demonstrated that DACECM was completely decellularized, retaining the glycosaminoglycans and collagen typeⅡ. Biomechanical examination showed that the compression modulus of DACECM oriented scaffold was significantly lower than those of the other two scaffolds ( P<0.05). There was no significant difference between PLGA scaffold and PLGA/DACECM oriented scaffold ( P>0.05). Subcutaneously embedded HE staining of the three scaffolds showed that the immunological rejections of DACECM and PLGA/DACECM oriented scaffolds were significantly weaker than that of the PLGA scaffold. Scanning electron microscope observation of the cell-scaffold complex showed that chondrocytes did not obviously adhere to PLGA scaffold, and a large number of chondrocytes adhered and grew on PLGA/DACECM oriented scaffold and DACECM oriented scaffold. CCK-8 assay showed that with the extension of culture time, the number of cells cultured in the three kinds of scaffold extracts and the control group increased. There was no significant difference in the absorbance ( A) value between the groups at each time point ( P>0.05). CONCLUSION The PLGA/DACECM oriented scaffolds have no cytotoxicity, have excellent physicochemical properties, and may become a promising scaffold material of tissue engineered cartilage.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Shi Shen
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Hai Xian
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Yongjing Dai
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Haojiang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Liqing Peng
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Xujiang Luo
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853, P.R.China
| | - Xiaobo Lu
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000,
| | - Quanyi Guo
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries of Chinese PLA, Beijing, 100853,
| |
Collapse
|
40
|
Luo W, Liu H, Wang C, Qin Y, Liu Q, Wang J. Bioprinting of Human Musculoskeletal Interface. ADVANCED ENGINEERING MATERIALS 2019; 21:1900019. [DOI: 10.1002/adem.201900019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 07/28/2023]
Affiliation(s)
- Wenbin Luo
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - He Liu
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Chenyu Wang
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
- Hallym University1Hallymdaehak‐gilChuncheonGangwon‐do200‐702Korea
| | - Yanguo Qin
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchun130022P. R. China
| | - Jincheng Wang
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| |
Collapse
|
41
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
42
|
Deng C, Chang J, Wu C. Bioactive scaffolds for osteochondral regeneration. J Orthop Translat 2019; 17:15-25. [PMID: 31194079 PMCID: PMC6551354 DOI: 10.1016/j.jot.2018.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment for osteochondral defects remains a great challenge. Although several clinical strategies have been developed for management of osteochondral defects, the reconstruction of both cartilage and subchondral bone has proved to be difficult due to their different physiological structures and functions. Considering the restriction of cartilage to self-healing and the different biological properties in osteochondral tissue, new therapy strategies are essential to be developed. This review will focus on the latest developments of bioactive scaffolds, which facilitate the osteogenic and chondrogenic differentiation for the regeneration of bone and cartilage. Besides, the topic will also review the basic anatomy, strategies and challenges for osteochondral reconstruction, the selection of cells, biochemical factors and bioactive materials, as well as the design and preparation of bioactive scaffolds. Specifically, we summarize the most recent developments of single-type bioactive scaffolds for simultaneously regenerating cartilage and subchondral bone. Moreover, the future outlook of bioactive scaffolds in osteochondral tissue engineering will be discussed. This review offers a comprehensive summary of the most recent trend in osteochondral defect reconstruction, paving the way for the bioactive scaffolds in clinical therapy. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review summaries the latest developments of single-type bioactive scaffolds for regeneration of osteochondral defects. We also highlight a new possible translational direction for cartilage formation by harnessing bioactive ions and propose novel paradigms for subchondral bone regeneration in application of bioceramic scaffolds.
Collapse
Affiliation(s)
| | | | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
43
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
44
|
Donnelly PE, Imbert L, Culley KL, Warren RF, Chen T, Maher SA. Self-assembled monolayers of phosphonates promote primary chondrocyte adhesion to silicon dioxide and polyvinyl alcohol materials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:215-232. [PMID: 30588859 PMCID: PMC6375775 DOI: 10.1080/09205063.2018.1563847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The optimal solution for articular cartilage repair has not yet been identified, in part because of the challenges in achieving integration with the host. Coatings have the potential to transform the adhesive features of surfaces, but their application to cartilage repair has been limited. Self-assembled monolayer of phosphonates (SAMPs) have been demonstrated to increase the adhesion of various immortalized cell types to metal and polymer surfaces, but their effect on primary chondrocyte adhesion has not been studied. The objective of this study was to investigate the response of primary chondrocytes to SAMP coatings. We hypothesized a SAMP terminated with an α,ω-bisphosphonic acid, in particular butane-1,4-diphosphonic acid, would increase the number of adherent primary chondrocytes to polyvinyl alcohol (PVA). To test our hypothesis, we first established our ability to successfully modify silicon dioxide (SiO2) surfaces to enable chondrocytes to attach to the surface, without substantial changes in gene expression. Secondly, we applied identical chemistry to PVA, and quantified chondrocyte adhesion. SAMP modification to SiO2 increased chondrocyte adhesion by ×3 after 4 hr and ×4.5 after 24 hr. PVA modification with SAMPs increased chondrocyte adhesion by at least ×31 after 4 and 24 hours. Changes in cell morphology indicated that SAMP modification led to improved chondrocyte adhesion and spreading, without changes in gene expression. In summary, we modified SiO2 and PVA with SAMPs and observed an increase in the number of adherent primary bovine chondrocytes at 4 and 24 hr post-seeding. Mechanisms of chondrocyte interaction with SAMP-modified surfaces require further investigation.
Collapse
Affiliation(s)
- Patrick E. Donnelly
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laurianne Imbert
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kirsty L. Culley
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Russell F. Warren
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tony Chen
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
45
|
Kunisch E, Knauf AK, Hesse E, Freudenberg U, Werner C, Bothe F, Diederichs S, Richter W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication 2018; 11:015001. [PMID: 30376451 DOI: 10.1088/1758-5090/aae75a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.
Collapse
Affiliation(s)
- Elke Kunisch
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rouabhia M, Mighri N, Mao J, Park HJ, Mighri F, Ajji A, Zhang Z. Surface treatment with amino acids of porous collagen based scaffolds to improve cell adhesion and proliferation. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; 2420 rue de la Terrasse Québec QC G1V 0A6 Canada
| | - Nabila Mighri
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; 2420 rue de la Terrasse Québec QC G1V 0A6 Canada
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| | - Jifu Mao
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| | - Hyun Jin Park
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; 2420 rue de la Terrasse Québec QC G1V 0A6 Canada
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| | - Frej Mighri
- Department of Chemical Engineering; Université Laval; 1065 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Abdallah Ajji
- Department of Chemical Engineering; École Polytechnique de Montréal; Montréal QC H3C 3A7 Canada
| | - Ze Zhang
- Axe Médecine régénératrice; Centre de Recherche du CHU de Québec; Département de Chirurgie; Faculté de Médecine; Université Laval; Québec QC G1L 3L5 Canada
| |
Collapse
|
47
|
Mora-Boza A, Lopez-Donaire ML. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:221-245. [PMID: 29691824 DOI: 10.1007/978-3-319-76711-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the recent years, the advent of 3D bioprinting technology has marked a milestone in osteochondral tissue engineering (TE) research. Nowadays, the traditional used techniques for osteochondral regeneration remain to be inefficient since they cannot mimic the complexity of joint anatomy and tissue heterogeneity of articular cartilage. These limitations seem to be solved with the use of 3D bioprinting which can reproduce the anisotropic extracellular matrix (ECM) and heterogeneity of this tissue. In this chapter, we present the most commonly used 3D bioprinting approaches and then discuss the main criteria that biomaterials must meet to be used as suitable bioinks, in terms of mechanical and biological properties. Finally, we highlight some of the challenges that this technology must overcome related to osteochondral bioprinting before its clinical implementation.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology-ICTP-CSIC, Madrid, Spain.
- CIBER, Health Institute Carlos III, Madrid, Spain.
| | | |
Collapse
|
48
|
Cucchiarini M, Asen AK, Goebel L, Venkatesan JK, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Madry H. Effects of TGF-β Overexpression via rAAV Gene Transfer on the Early Repair Processes in an Osteochondral Defect Model in Minipigs. Am J Sports Med 2018; 46:1987-1996. [PMID: 29792508 DOI: 10.1177/0363546518773709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Application of the chondrogenic transforming growth factor beta (TGF-β) is an attractive approach to enhance the intrinsic biological activities in damaged articular cartilage, especially when using direct gene transfer strategies based on the clinically relevant recombinant adeno-associated viral (rAAV) vectors. PURPOSE To evaluate the ability of an rAAV-TGF-β construct to modulate the early repair processes in sites of focal cartilage injury in minipigs in vivo relative to control (reporter lacZ gene) vector treatment. STUDY DESIGN Controlled laboratory study. METHODS Direct administration of the candidate rAAV-human TGF-β (hTGF-β) vector was performed in osteochondral defects created in the knee joint of adult minipigs for macroscopic, histological, immunohistochemical, histomorphometric, and micro-computed tomography analyses after 4 weeks relative to control (rAAV- lacZ) gene transfer. RESULTS Successful overexpression of TGF-β via rAAV at this time point and in the conditions applied here triggered the cellular and metabolic activities within the lesions relative to lacZ gene transfer but, at the same time, led to a noticeable production of type I and X collagen without further buildup on the subchondral bone. CONCLUSION Gene therapy via direct, local rAAV-hTGF-β injection stimulates the early reparative activities in focal cartilage lesions in vivo. CLINICAL RELEVANCE Local delivery of therapeutic (TGF-β) rAAV vectors in focal defects may provide new, off-the-shelf treatments for cartilage repair in patients in the near future.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ann-Kathrin Asen
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
49
|
Chang NJ, Erdenekhuyag Y, Chou PH, Chu CJ, Lin CC, Shie MY. Therapeutic Effects of the Addition of Platelet-Rich Plasma to Bioimplants and Early Rehabilitation Exercise on Articular Cartilage Repair. Am J Sports Med 2018; 46:2232-2241. [PMID: 29927631 DOI: 10.1177/0363546518780955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Treating articular cartilage lesions is clinically challenging. However, whether the addition of autologous platelet-rich plasma (PRP) to bioimplants along with early rehabilitation exercise provides therapeutic effects and regenerates the osteochondral defect remains uninvestigated. HYPOTHESIS The addition of PRP to a polylactic-co-glycolic acid (PLGA) scaffold along with continuous passive motion (CPM) in osteochondral defects may offer beneficial in situ microenvironment changes to facilitate hyaline cartilage and subchondral bone tissue repair. STUDY DESIGN Controlled laboratory study. METHODS In 26 rabbits, 52 critical osteochondral defects were created in bilateral femoral trochlear grooves. The rabbits were allocated to 1 of the following 3 groups: PRP gel (PG group), PRP + PLGA scaffold (PP group), and PRP + PLGA scaffold + CPM (PPC group). At 4 and 12 weeks after surgery, the specimens were assessed by a macroscopic examination, a histological evaluation with immunohistochemical staining, and micro-computed tomography. RESULTS The PPC group exhibited the most favorable therapeutic outcomes in terms of hyaline cartilage regeneration. At week 4, the PPC group exhibited significantly higher levels of glycosaminoglycan (GAG) and collagen (COL) II and modest increases in COL I, matrix metalloproteinase-3 (MMP-3), and inflammatory cells with tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). At week 12, the PPC group had significantly higher tissue repair scores, corresponding to a sound articular cartilage surface and chondrocyte and collagen arrangement. This group demonstrated restored hyaline cartilage and mineralized bone volume per tissue volume, which had an integrating structure in the repair site. However, the PG and PP groups exhibited mainly fibrous tissue and fibrocartilage, corresponding to higher expressions of COL I, TNF-α, IL-6, and MMP-3. CONCLUSION PRP with a PLGA graft along with early CPM exercise is promising for the repair of osteochondral defects in rabbit knee joints. CLINICAL RELEVANCE This study demonstrates the efficacy of a triad therapy involving the addition of PRP to bioimplants along with early CPM intervention for hyaline cartilage and subchondral regeneration. However, PRP alone (with or without PLGA implants) is limited to osteochondral defect repair without significant regeneration.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yanjmaa Erdenekhuyag
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Pei-Hsi Chou
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
50
|
Injectable self-crosslinking HA-SH/Col I blend hydrogels for in vitro construction of engineered cartilage. Carbohydr Polym 2018; 190:57-66. [PMID: 29628260 DOI: 10.1016/j.carbpol.2018.02.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
|