1
|
González-Duque MI, Flórez AM, Torres MA, Fontanilla MR. Composite Zonal Scaffolds of Collagen I/II for Meniscus Regeneration. ACS Biomater Sci Eng 2024; 10:2426-2441. [PMID: 38549452 DOI: 10.1021/acsbiomaterials.3c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.
Collapse
Affiliation(s)
- Martha Isabel González-Duque
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - Adriana Matilde Flórez
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - María Alejandra Torres
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| | - Marta Raquel Fontanilla
- Tissue Engineering Group, Departmento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, Bogotá 111321, D.C., Colombia
| |
Collapse
|
2
|
Fogarty NL, Johnson T, Kwok B, Lin A, Tsinman TK, Jiang X, Koyama E, Han L, Baxter JR, Mauck RL, Dyment NA. Reduction in postnatal weight-bearing does not alter the trajectory of murine meniscus growth and maturation. J Orthop Res 2024; 42:894-904. [PMID: 37804210 PMCID: PMC10978302 DOI: 10.1002/jor.25711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The early postnatal period represents a critical window for the maturation and development of orthopedic tissues, including those within the knee joint. To understand how mechanical loading impacts the maturational trajectory of the meniscus and other tissues of the hindlimb, perturbation of postnatal weight bearing was achieved through surgical resection of the sciatic nerve in neonatal mice at 1 or 14 days old. Sciatic nerve resection (SNR) produced significant and persistent disruptions in gait, leading to reduced tibial length and reductions in Achilles tendon mechanical properties. However, SNR resulted in minimal disruptions in morphometric parameters of the menisci and other structures in the knee joint, with no detectable differences in Col1a1-YFP or Col2a1-CFP expressing cells within the menisci. Furthermore, micromechanical properties of the meniscus and cartilage (as assessed by atomic force microscopy-based nanoindentation testing) were not different between experimental groups. In contrast to our initial hypothesis, reduced hindlimb weight bearing via neonatal SNR did not significantly impact the growth and development of the knee meniscus. This unexpected finding demonstrates that the input mechanical threshold required to sustain meniscus development may be lower than previously hypothesized, though future studies incorporating skeletal kinematic models coupled with force plate measurements will be required to calculate the loads passing through the affected hindlimb and precisely define these thresholds. Collectively, these results provide insight into the mechanobiological responses of the meniscus to alterations in load, and contribute to our understanding of the factors that influence normal postnatal development.
Collapse
Affiliation(s)
- Natalie L Fogarty
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Talayah Johnson
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alisia Lin
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eiki Koyama
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Josh R Baxter
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Laboratory, CMC VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Salinas-Fernandez S, Garcia O, Kelly DJ, Buckley CT. The influence of pH and salt concentration on the microstructure and mechanical properties of meniscus extracellular matrix-derived implants. J Biomed Mater Res A 2024; 112:359-372. [PMID: 37921203 DOI: 10.1002/jbm.a.37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Meniscus-related injuries are a common orthopedic challenge with an increasing incidence in the population. While the preservation of viable meniscal tissue is the preferred approach in repair strategies, complex or total traumatic lesions may require alternative therapeutic approaches such as meniscal reconstruction using allografts or engineered equivalents. Although clinical studies suggest promising outcomes with the use of acellular implants, further development is needed to improve their biological and mechanical requirements. Decellularized extracellular matrix (dECM) derived from menisci is a promising biomaterial for meniscus tissue engineering due to its recapitulation of the native tissue environment and the maintenance of tissue-specific cues. However, the associated mechanical limitations of dECM-derived scaffolds frequently impedes their adoption, requiring additional reinforcement or combining with stiffer biomaterials to increase their load-bearing properties. In this study, decellularized extracellular matrix was extracted and its fibrillation was controlled by adjusting both pH and salt concentrations to fabricate mechanically functional meniscal tissue equivalents. The effect of collagen fibrillation on the mechanical properties of the dECM constructs was assessed, and porcine-derived fibrochondrocytes were used to evaluate in vitro biocompatibility. It was also possible to fabricate meniscus-shaped implants by casting of the dECM and to render the implants suitable for off-the-shelf use by adopting a freeze-drying preservation method. Suture pull-out tests were also performed to assess the feasibility of using existing surgical methods to fix such implants within a damaged meniscus. This study highlights the potential of utilizing ECM-derived materials for meniscal tissue substitutes that closely mimic the mechanical and biological properties of native tissue.
Collapse
Affiliation(s)
- Soraya Salinas-Fernandez
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, California, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor T Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
4
|
Yan W, Zhu J, Wu Y, Wang Y, Du C, Cheng J, Hu X, Ao Y. Meniscal Fibrocartilage Repair Based on Developmental Characteristics: A Proof-of-Concept Study. Am J Sports Med 2023; 51:3509-3522. [PMID: 37743771 DOI: 10.1177/03635465231194028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Unlike the adult meniscus, the fetal meniscus possesses robust healing capacity. The dense and stiff matrix of the adult meniscus provides a biophysical barrier for cell migration, which is not present in the fetal meniscus. Inspired by developmental characteristics, modifying the matrix of the adult meniscus into a fetal-like, loose and soft microenvironment holds opportunity to facilitate repair, especially in the avascular zone. HYPOTHESIS Modifying the dense and stiff matrix of the adult meniscus into a fetal-like, loose and soft microenvironment could enhance cell migration to the tear interface and subsequent robust healing capacity. STUDY DESIGN Controlled laboratory study. METHODS Fresh porcine menisci were treated with hyaluronidase or collagenase. The density and arrangement of collagen fibers were assessed. The degradation of proteoglycans and collagen was evaluated histologically. Cell migration within the meniscus or the infiltration of exogenous cells into the meniscus was examined. Dendritic silica nanoparticles with relatively large pores were used to encapsulate hyaluronidase for rapid release. Mesoporous silica nanoparticles with relatively small pores were used to encapsulate transforming growth factor-beta 3 (TGF-β3) for slow release. A total of 24 mature male rabbits were included. A longitudinal vertical tear (0.5 cm in length) was prepared in the avascular zone of the medial meniscus. The tear was repaired with suture, repaired with suture in addition to blank silica nanoparticles, or repaired with suture in addition to silica nanoparticles releasing hyaluronidase and TGF-β3. Animals were sacrificed at 12 months postoperatively. Meniscal repair was evaluated macroscopically and histologically. RESULTS The gaps between collagen bundles increased after hyaluronidase treatment, while collagenase treatment resulted in collagen disruption. Proteoglycans degraded after hyaluronidase treatment in a dose-dependent manner, but collagen integrity was maintained. Hyaluronidase treatment enhanced the migration and infiltration of cells within meniscal tissue. Last, the application of fibrin gel and the delivery system of silica nanoparticles encapsulating hyaluronidase and TGF-β3 enhanced meniscal repair responses in an orthotopic longitudinal vertical tear model. CONCLUSION The gradient release of hyaluronidase and TGF-β3 removed biophysical barriers for cell migration, creating a fetal-like, loose and soft microenvironment, and enhanced the fibrochondrogenic phenotype of reparative cells, facilitating the synthesis of matrix and tissue integration. CLINICAL RELEVANCE Modifying the adult matrix into a fetal-like, loose and soft microenvironment via the local gradient release of hyaluronidase and TGF-β3 enhanced the healing capacity of the meniscus.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jingxian Zhu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yiqun Wang
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Cancan Du
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Morejon A, Dalbo PL, Best TM, Jackson AR, Travascio F. Tensile energy dissipation and mechanical properties of the knee meniscus: relationship with fiber orientation, tissue layer, and water content. Front Bioeng Biotechnol 2023; 11:1205512. [PMID: 37324417 PMCID: PMC10264653 DOI: 10.3389/fbioe.2023.1205512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The knee meniscus distributes and dampens mechanical loads. It is composed of water (∼70%) and a porous fibrous matrix (∼30%) with a central core that is reinforced by circumferential collagen fibers enclosed by mesh-like superficial tibial and femoral layers. Daily loading activities produce mechanical tensile loads which are transferred through and dissipated by the meniscus. Therefore, the objective of this study was to measure how tensile mechanical properties and extent of energy dissipation vary by tension direction, meniscal layer, and water content. Methods: The central regions of porcine meniscal pairs (n = 8) were cut into tensile samples (4.7 mm length, 2.1 mm width, and 0.356 mm thickness) from core, femoral and tibial components. Core samples were prepared parallel (circumferential) and perpendicular (radial) to the fibers. Tensile testing consisted of frequency sweeps (0.01-1Hz) followed by quasi-static loading to failure. Dynamic testing yielded energy dissipation (ED), complex modulus (E*), and phase shift (δ) while quasi-static tests yielded Young's Modulus (E), ultimate tensile strength (UTS), and strain at UTS (εUTS). To investigate how ED is influenced by the specific mechanical parameters, linear regressions were performed. Correlations between sample water content (φw) and mechanical properties were investigated. A total of 64 samples were evaluated. Results: Dynamic tests showed that increasing loading frequency significantly reduced ED (p < 0.05). Circumferential samples had higher ED, E*, E, and UTS than radial ones (p < 0.001). Stiffness was highly correlated with ED (R2 > 0.75, p < 0.01). No differences were found between superficial and circumferential core layers. ED, E*, E, and UTS trended negatively with φw (p < 0.05). Discussion: Energy dissipation, stiffness, and strength are highly dependent on loading direction. A significant amount of energy dissipation may be associated with time-dependent reorganization of matrix fibers. This is the first study to analyze the tensile dynamic properties and energy dissipation of the meniscus surface layers. Results provide new insights on the mechanics and function of meniscal tissue.
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States
| | - Pedro L. Dalbo
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, United States
- UHealth Sports Medicine Institute, Coral Gables, FL, United States
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, United States
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
6
|
Chang PS, Solon LF, Lake SP, Castile RM, Hill JR, Brophy RH. Mechanical and Microstructural Properties of Meniscus Roots Vary by Location. Am J Sports Med 2022; 50:2733-2739. [PMID: 35862621 DOI: 10.1177/03635465221106746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Despite the growing awareness of the clinical significance of meniscus root tears, there are relatively limited biomechanical and microstructural data available on native meniscus roots that could improve our understanding of why they are injured and how to best treat them. PURPOSE/HYPOTHESIS The purpose of the study was to measure the material and microstructural properties of meniscus roots using mechanical testing and quantitative polarized light imaging. The hypothesis was that these properties vary by location (medial vs lateral, anterior vs posterior) and by specific root (anteromedial vs anterolateral, posteromedial vs posterolateral). STUDY DESIGN Descriptive laboratory study. METHODS Anterior and posterior meniscus roots of the medial and lateral meniscus were isolated from 22 cadavers (10 female, 12 male; mean ± SD age, 47.1 ± 5.1 years) and loaded in uniaxial tension. Quantitative polarized light imaging was used to measure collagen fiber organization and realignment under load. Samples were subjected to preconditioning, stress-relaxation, and a ramp to failure. Time-dependent relaxation behavior was quantified. Modulus values were computed in the toe and linear regions of the stress-strain curves. The degree of linear polarization (DoLP) and angle of polarization-measures of the strength and direction of collagen alignment, respectively-were calculated during the stress-relaxation test and at specific strain values throughout the ramp to failure (zero, transition, and linear strain). RESULTS Anterior roots had larger moduli than posterior roots in the toe (P = .007) and linear (P < .0001) regions and larger average DoLP values at all points of the ramp to failure (zero, P = .016; transition, P = .004; linear, P = .002). Posterior roots had larger values across all regions in terms of standard deviation angle of polarization (P < .001). Lateral roots had greater modulus values versus medial roots in the toe (P = .027) and linear (P = .014) regions. Across all strain points, posterolateral roots had smaller mean DoLP values than posteromedial roots. CONCLUSION Posterior meniscus roots have smaller modulus values and more disorganized collagen alignment at all strain levels when compared with anterior roots. Posterolateral roots have lower strength of collagen alignment versus posteromedial roots. CLINICAL RELEVANCE These data findings may explain at least in part the relative paucity of anterior meniscus root tears and the predominance of traumatic posterolateral roots tears as compared with degenerative posteromedial root tears.
Collapse
Affiliation(s)
- Peter S Chang
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Lorenzo F Solon
- Department of Mechanical Engineering, and Material Science, Washington University in St. Louis, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering, and Material Science, Washington University in St. Louis, St Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering, and Material Science, Washington University in St. Louis, St Louis, Missouri, USA
| | - J Ryan Hill
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| |
Collapse
|
7
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|
8
|
Yoshioka NK, Young GM, Khajuria DK, Karuppagounder V, Pinamont WJ, Fanburg-Smith JC, Abraham T, Elbarbary RA, Kamal F. Structural changes in the collagen network of joint tissues in late stages of murine OA. Sci Rep 2022; 12:9159. [PMID: 35650306 PMCID: PMC9160297 DOI: 10.1038/s41598-022-13062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, resulting in joint pain, impaired movement, and structural changes. As the ability of joint tissue to resist stress is mainly imparted by fibrillar collagens in the extracellular matrix, changes in the composition and structure of collagen fibers contribute to the pathological remodeling observed in OA joints that includes cartilage degeneration, subchondral bone (SCB) sclerosis, and meniscal damage. Using the established OA model of destabilization of the medial meniscus (DMM) in C57BL/6J mice, we performed a comprehensive analysis of the content and structure of collagen fibers in the articular cartilage, subchondral bone, and menisci using complementary techniques, which included second harmonic generation microscopy and immunofluorescence staining. We found that regions exposed to increased mechanical stress in OA mice, typically closest to the site of injury, had increased collagen fiber thickness, dysregulated fiber formation, and tissue specific changes in collagen I and II (Col I and Col II) expression. In cartilage, OA was associated with decreased Col II expression in all regions, and increased Col I expression in the anterior and posterior regions. Col I fiber thickness was increased in all regions with disorganization in the center region. In the superficial SCB, all regions exhibited increased Col I expression and fiber thickness in OA mice; no changes were detected in the deeper regions of the subchondral bone except for increased Col I fiber thickness. In the menisci, OA led to increased Col I and Col II expression in the vascular and avascular regions of the anterior meniscus with increased Col I fiber thickness in these regions. Similar changes were observed only in the vascular region of the posterior meniscus. Our findings provide, for the first time, comprehensive insights into the microarchitectural changes of extracellular matrix in OA and serve as guidelines for studies investigating therapies that target collagenous changes as means to impede the progression of osteoarthritis.
Collapse
Affiliation(s)
- Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Gregory M Young
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Deepak Kumar Khajuria
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Julie C Fanburg-Smith
- Department of Pathology, Penn State Health/Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Science, Penn State University College of Medicine, Hershey, PA, USA
- Microscopy Imaging Facility, Penn State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA.
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA.
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
9
|
Bian Y, Wang H, Zhao X, Weng X. Meniscus repair: up-to-date advances in stem cell-based therapy. Stem Cell Res Ther 2022; 13:207. [PMID: 35578310 PMCID: PMC9109379 DOI: 10.1186/s13287-022-02863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
The meniscus is a semilunar fibrocartilage between the tibia and femur that is essential for the structural and functional integrity of the keen joint. In addition to pain and knee joint dysfunction, meniscus injuries can also lead to degenerative changes of the knee joint such as osteoarthritis, which further affect patient productivity and quality of life. However, with intrinsic avascular property, the tearing meniscus tends to be nonunion and the augmentation of post-injury meniscus repair has long time been a challenge. Stem cell-based therapy with potent regenerative properties has recently attracted much attention in repairing meniscus injuries, among which mesenchymal stem cells were most explored for their easy availability, trilineage differentiation potential, and immunomodulatory properties. Here, we summarize the advances and achievements in stem cell-based therapy for meniscus repair in the last 5 years. We also highlight the obstacles before their successful clinical translation and propose some perspectives for stem cell-based therapy in meniscus repair.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Implantation of autogenous meniscal fragments wrapped with a fascia sheath induces fibrocartilage regeneration in a large meniscal defect in sheep: A histological and biomechanical study. Orthop Traumatol Surg Res 2022; 108:103225. [PMID: 35104627 DOI: 10.1016/j.otsr.2022.103225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Currently, various studies have been reported to regenerate the meniscus tissue in a large defect after partial meniscectomy using biological or synthetic scaffolds with or without fibrochondrocytes. However, the clinical utility of those treatments has not been established as of yet. HYPOTHESIS Purposes of this study were to develop a sheep model to evaluate feasibility of this new surgical strategy to treat the irreparable meniscus injury, and to test the hypothesis that implantation of autogenous meniscal fragments wrapped with a fascia sheath may significantly induce fibrocartilage regeneration in a large meniscal defect in the sheep model. METHODS AND METHODS Twenty Suffolk sheep were used. In each animal, an anterior 10-mm width of the right medial meniscus was resected. Then, the animals were divided into the following 2 groups. In Group I, the defect was enveloped with a fascia from the left thigh. In Group II, the resected meniscus fragmented into small pieces was grafted into the defect. Then the defect was enveloped with a fascia. In each group, 5 of 10 sheep were used for histological and biomechanical evaluations, respectively, at 12 weeks after surgery. RESULTS In Group I, the defect was incompletely filled with thin fibrous tissues, while fibrocartilage tissues rarely regenerated in the tissue. In Group II, all defects were completely filled with thick fibrocartilage tissues, which were richly stained with the safranin O staining. Both the gross and histological observation score of Group II was significantly (p=0.0005, p=0.0005) greater than that of Group I. Concerning the cross-sectional area of the regenerated tissue, Group II was significantly (p=0.0002) greater than Group I. In the biomechanical evaluation, the maximal load and the linear stiffness of the meniscus-tibia complex were significantly (p=0.0015, p=0.0283) greater in Group II than in Group I. DISCUSSION Implantation of autogenous meniscal fragments wrapped with a fascia sheath significantly induces fibrocartilage regeneration into a large meniscal defect in the sheep model. LEVEL OF EVIDENCE Not applicable; Controlled Laboratory Study, Experimental in vivo study.
Collapse
|
11
|
Lopez SG, Bonassar LJ. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis, extracellular matrix assembly, and mechanical function of fibrocartilage. Connect Tissue Res 2022; 63:269-286. [PMID: 33726572 DOI: 10.1080/03008207.2021.1903887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Proteoglycans, especially small leucine rich proteoglycans (SLRPs), play major roles in facilitating the development and regulation of collagen fibers and other extracellular matrix components. However, their roles in fibrocartilage have not been widely reviewed. Here, we discuss both SLRP and large aggregating proteoglycan's roles in collagen fibrillogenesis and extracellular matrix assembly in fibrocartilage tissues such as the meniscus, annulus fibrosus (AF), and TMJ disc. We also discuss their expression levels throughout development, aging and degeneration, as well as repair. METHODS A review of literature discussing proteoglycans and collagen fibrillogenesis in fibrocartilage was conducted and data from these manuscripts were analyzed and grouped to discuss trends throughout the tissue's architectural zones and developmental stage. RESULTS The spatial collagen architecture of these fibrocartilaginous tissues is reflected in the distribution of proteoglycans expressed, suggesting that each proteoglycan plays an important role in the type of architecture presented and associated mechanical function. CONCLUSION The unique structure-function relationship of fibrocartilage makes the varied architectures throughout the tissues imperative for their success and understanding the functions of these proteoglycans in developing and maintaining the fiber structure could inform future work in fibrocartilage replacement using tissue engineered constructs.
Collapse
Affiliation(s)
- Serafina G Lopez
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Park DY, Yin XY, Chung JY, Jin YJ, Kwon HJ, Lee GB, Park JH, Min BH. Circumferential Rim Augmentation Suture Around the Perimeniscal Capsule Decreases Meniscal Extrusion and Progression of Osteoarthritis in Rabbit Meniscus Root Tear Model. Am J Sports Med 2022; 50:689-698. [PMID: 35289232 DOI: 10.1177/03635465211064297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND We recently analyzed the joint capsule adjacent to the medial meniscus and found that the perimeniscal joint capsule has collagen fiber orientation similar to that of circumferential meniscal fibers, potentially playing a role in preventing extrusion. PURPOSE To analyze the meniscal extrusion prevention potential of the circumferential rim augmentation suture around the perimeniscal capsule in a rabbit root tear model and analyze the biomechanical function in a porcine cadaveric knee. STUDY DESIGN Controlled laboratory study. METHODS Rabbit medial meniscus root tear models were divided into 3 experimental groups: root tear, root tear and suture repair, and root tear and circumferential rim augmentation suture. As for the circumferential rim augmentation suture procedure, a suture was placed to circumscribe the outer rim of the medial meniscus and passed through bone tunnels located at the tibial insertion of each root. After 4 and 8 weeks, meniscal extrusion was analyzed by micro-computed tomography, gross morphology, and histologic analysis of the medial femoral cartilage. For biomechanical analysis, porcine knees were divided into groups similar to rabbit experiments. Tibiofemoral contact parameters were assessed using a pressure mapping sensor system after applying a load of 200 N on the knee joint. RESULTS The root tear and circumferential rim augmentation suture group showed less meniscal extrusion, less gap within the tear site, and less cartilage degeneration compared with other groups after 4 and 8 weeks of surgery in the rabbit root tear model. Biomechanical analysis showed the root tear and circumferential rim augmentation suture group had larger contact area and lower peak contact pressure compared with root tear and root tear and suture repair groups. CONCLUSION The circumferential rim augmentation suture reduced the degree of meniscal extrusion while restoring meniscal function, potentially preventing progression of arthritis in a rabbit root tear model and porcine knee biomechanical analysis. CLINICAL RELEVANCE The circumferential rim augmentation suture may be a novel augmentation option during root tear treatment.
Collapse
Affiliation(s)
- Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Hyeon Jae Kwon
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ga Bin Lee
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jin Ho Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Chang PS, Radtke L, Ward P, Brophy RH. Midterm Outcomes of Posterior Medial Meniscus Root Tear Repair: A Systematic Review. Am J Sports Med 2022; 50:545-553. [PMID: 33780278 DOI: 10.1177/0363546521998297] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Whereas there has been growing interest in surgical repair of posterior medial meniscus root tears (PMMRTs), our understanding of the medium- and long-term results of this procedure is still evolving. PURPOSE To report midterm clinical outcomes from PMMRT repairs. STUDY DESIGN Systematic review. METHODS A literature review for this systematic analysis was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We identified studies that reported the results of arthroscopic repair of PMMRTs. Functional and imaging outcomes were reviewed and summarized. RESULTS In total, 28 studies with a total of 994 patients (83% female) with an overall mean age of 57.1 were included in this review. Clinical outcomes (Lysholm, International Knee Documentation Committee, Hospital for Special Surgery, and Tegner scores) were improved at final follow-up in all studies. Of patients, 49% had radiographic progression of at least 1 grade in the Kellgren-Lawrence scale at a mean follow-up of 4.0 years in 11 studies. Cartilage degeneration had progressed at least 1 grade on magnetic resonance imaging scans in 23% of patients at a mean follow-up of 31.6 months in 4 studies. CONCLUSION PMMRT repairs provide a functional benefit with consistent improvements in clinical outcome scores. There is some evidence that PMMRT repair slows the progression of osteoarthritis but does not prevent it at midterm follow-up.
Collapse
Affiliation(s)
- Peter S Chang
- Department of Orthopaedic Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Logan Radtke
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Patrick Ward
- Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| |
Collapse
|
14
|
Szojka ARA, Liang Y, Marqueti RDC, Moore CN, Erkut EJN, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. J Orthop Res 2022; 40:495-503. [PMID: 33788325 DOI: 10.1002/jor.25046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Adult human meniscus fibrocartilage is avascular and nonhealing after injury. Meniscus tissue engineering aims to replace injured meniscus with lab-grown fibrocartilage. Dynamic culture systems may be necessary to generate fibrocartilage of sufficient mechanical properties for implantation; however, the optimal static preculture conditions before initiation of dynamic culture are unknown. This study thus investigated the time course of fibrocartilage formation by human meniscus fibrochondrocytes on a three-dimensional biomaterial scaffold under various static conditions. Human meniscus fibrochondrocytes from partial meniscectomy were expanded to passage 1 (P1) or P2 (3.0 ± 0.4 and 6.5 ± 0.6 population doublings), seeded onto type I collagen scaffolds, and grown in hypoxia (HYP, 3% O2 ) or normoxia (NRX, 20% O2 ) for 3, 6, and 9 weeks. Mechanical properties were not different between P1 and P2 cell-based constructs. Mechanical properties were lower in HYP, increased continually in NRX only, and were positively correlated with glycosaminoglycan content and accumulation of hyaline cartilage-like matrix components. The most mechanically competent tissues (NRX/9 weeks) reached 1/5 of the native meniscus instantaneous compression modulus but had an increasingly hypertrophic matrix-forming phenotype. HYP consistently suppressed the hypertrophic phenotype. The results provide baselines of engineered meniscus fibrocartilage properties under static conditions, which can be used to select a preculture strategy for dynamic culture depending on the desired combination of mechanical properties, hyaline cartilage-like matrix abundance, and hypertrophic phenotype.
Collapse
Affiliation(s)
- Alexander R A Szojka
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Rita de Cássia Marqueti
- Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Colleen N Moore
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Esra J N Erkut
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Yin XY, Chung JY, Park DY, Song HK, Kim BK, Bae HW, Park KH, Min BH. The Perimensical Capsule: Potential Supporting Structure Surrounding Meniscus. Cartilage 2021; 13:208S-215S. [PMID: 31810381 PMCID: PMC8808842 DOI: 10.1177/1947603519892316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study analyzed the morphological and biomechanical characteristics of perimeniscal capsule in knee joint thus establishing the roles of these tissues. A total of 10 human cadaver knees were used in this study. Medial meniscus and the adjacently surrounding joint capsules were harvested then sectioned both axially and coronally, followed by scanning electron microscopy analysis. The medial meniscus (anterior, middle, posterior) and the adjacent perimeniscal capsules (superior, peripheral) were biomechanically assessed to ascertain the tensile modulus. Among the perimeniscal capsules, the peripherally located capsules were morphologically different from the superiorly located capsules: The peripheral perimeniscal capsule was thicker and showed circumferentially oriented fibers whereas the superior perimeniscal capsule fibers were thinner and arranged in vertical orientation. The peripheral capsule also yielded significantly greater tensile modulus compared with the superior capsule biomechanically. We conclude that depending on its anatomical location, the perimeniscal capsule consists of fibers of varying orientations. This may be important in maintaining the circumferential hoop tension of the meniscus especially in the presence of circumferentially oriented and thick peripheral capsule fibers, which coincidentally have higher tensile modulus.
Collapse
Affiliation(s)
- Xiang Yun Yin
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea,Cell Therapy Center, Ajou University Medical
Center, Suwon, Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea
| | - Do Young Park
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea,Cell Therapy Center, Ajou University Medical
Center, Suwon, Korea
| | - Hyung Keun Song
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea
| | - Byeong Kook Kim
- Department of Biomedical Engineering, Pukyong
National University, Busan, Korea
| | - Hee Won Bae
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea
| | - Ki Hoon Park
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, Ajou
University School of Medicine, Suwon, Korea,Cell Therapy Center, Ajou University Medical
Center, Suwon, Korea,Department of Molecular Science and
Technology, Ajou University College of Engineering, Suwon, Korea,Byoung-Hyun Min, Department of Orthopedic Surgery,
Ajou University School of Medicine, 164 Worldcup-ro, Yongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
16
|
Hart DA, Nakamura N, Shrive NG. Perspective: Challenges Presented for Regeneration of Heterogeneous Musculoskeletal Tissues that Normally Develop in Unique Biomechanical Environments. Front Bioeng Biotechnol 2021; 9:760273. [PMID: 34650964 PMCID: PMC8505961 DOI: 10.3389/fbioe.2021.760273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Perspective: Musculoskeletal (MSK) tissues such as articular cartilage, menisci, tendons, and ligaments are often injured throughout life as a consequence of accidents. Joints can also become compromised due to the presence of inflammatory diseases such as rheumatoid arthritis. Thus, there is a need to develop regenerative approaches to address such injuries to heterogeneous tissues and ones that occur in heterogeneous environments. Such injuries can compromise both the biomechanical integrity and functional capability of these tissues. Thus, there are several challenges to overcome in order to enhance success of efforts to repair and regenerate damaged MSK tissues. Challenges: 1. MSK tissues arise during development in very different biological and biomechanical environments. These early tissues serve as a template to address the biomechanical requirements evolving during growth and maturation towards skeletal maturity. Many of these tissues are heterogeneous and have transition points in their matrix. The heterogeneity of environments thus presents a challenge to replicate with regard to both the cells and the ECM. 2. Growth and maturation of musculoskeletal tissues occurs in the presence of anabolic mediators such as growth hormone and the IGF-1 family of proteins which decline with age and are low when there is a greater need for the repair and regeneration of injured or damaged tissues with advancing age. Thus, there is the challenge of re-creating an anabolic environment to enhance incorporation of implanted constructs. 3. The environments associated with injury or chronic degeneration of tissues are often catabolic or inflammatory. Thus, there is the challenge of creating a more favorable in vivo environment to facilitate the successful implantation of in vitro engineered constructs to regenerate damaged tissues. Conclusions: The goal of regenerating MSK tissues has to be to meet not only the biological requirements (components and structure) but also the heterogeneity of function (biomechanics) in vivo. Furthermore, for many of these tissues, the regenerative approach has to overcome the site of injury being influenced by catabolism/inflammation. Attempts to date using both endogenous cells, exogenous cells and scaffolds of various types have been limited in achieving long term outcomes, but progress is being made.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Norimasa Nakamura
- Institute for Medical Science in Sport, Osaka Health Science University, Osaka, Japan
| | - Nigel G Shrive
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Gecelter RC, Ilyaguyeva Y, Thompson NE. The menisci are not shock absorbers: A biomechanical and comparative perspective. Anat Rec (Hoboken) 2021; 305:1051-1064. [PMID: 34486236 DOI: 10.1002/ar.24752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 01/22/2023]
Abstract
The lateral and medial menisci are fibrocartilaginous structures in the knee that play a crucial role in normal knee biomechanics. However, one commonly cited role of the menisci is that they function as "shock absorbers." Here we provide a critique of this notion, drawing upon a review of comparative anatomical and biomechanical data from humans and other tetrapods. We first review those commonly, and often exclusively, cited studies in support of a shock absorption function and show that evidence for a shock absorptive function is dubious. We then review the evolutionary and comparative evidence to show that (1) the human menisci are unremarkable in morphology compared with most other tetrapods, and (2) "shock" during locomotion is uncommon, with humans standing out as one of the only tetrapods that regularly experiences high levels of shock during locomotion. A shock-absorption function does not explain the origin of menisci, nor are human menisci specialized in any way that would explain a unique shock-absorbing function during human gait. Finally, we show that (3) the material properties of menisci are distinctly poorly suited for energy dissipation and that (4) estimations of meniscal energy absorption based on published data are negligible, both in their absolute amount and in comparison to other well-accepted structures which mitigate shock during locomotion. The menisci are evolutionarily ancient structures crucial for joint congruity, load distribution, and stress reduction, among a number of other functions. However, the menisci are not meaningful shock absorbers, neither in tetrapods broadly, nor in humans.
Collapse
Affiliation(s)
| | - Yaffa Ilyaguyeva
- NYIT College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
18
|
Tsinman TK, Jiang X, Han L, Koyama E, Mauck RL, Dyment NA. Intrinsic and growth-mediated cell and matrix specialization during murine meniscus tissue assembly. FASEB J 2021; 35:e21779. [PMID: 34314047 DOI: 10.1096/fj.202100499r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022]
Abstract
The incredible mechanical strength and durability of mature fibrous tissues and their extremely limited turnover and regenerative capacity underscores the importance of proper matrix assembly during early postnatal growth. In tissues with composite extracellular matrix (ECM) structures, such as the adult knee meniscus, fibrous (Collagen-I rich), and cartilaginous (Collagen-II, proteoglycan-rich) matrix components are regionally segregated to the outer and inner portions of the tissue, respectively. While this spatial variation in composition is appreciated to be functionally important for resisting complex mechanical loads associated with gait, the establishment of these specialized zones is poorly understood. To address this issue, the following study tracked the growth of the murine meniscus from its embryonic formation through its first month of growth, encompassing the critical time-window during which animals begin to ambulate and weight bear. Using histological analysis, region specific high-throughput qPCR, and Col-1, and Col-2 fluorescent reporter mice, we found that matrix and cellular features defining specific tissue zones were already present at birth, before continuous weight-bearing had occurred. These differences in meniscus zones were further refined with postnatal growth and maturation, resulting in specialization of mature tissue regions. Taken together, this work establishes a detailed timeline of the concurrent spatiotemporal changes that occur at both the cellular and matrix level throughout meniscus maturation. The findings of this study provide a framework for investigating the reciprocal feedback between cells and their evolving microenvironments during assembly of a mechanically robust fibrocartilage tissue, thus providing insight into mechanisms of tissue degeneration and effective regenerative strategies.
Collapse
Affiliation(s)
- Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eiki Koyama
- Division of Orthopaedic Surgery, Department of Surgery, Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Engineered human meniscus' matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions. PLoS One 2021; 16:e0248292. [PMID: 33690647 PMCID: PMC7946300 DOI: 10.1371/journal.pone.0248292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Low oxygen and mechanical loading may play roles in regulating the fibrocartilaginous phenotype of the human inner meniscus, but their combination in engineered tissues remains unstudied. Here, we investigated how continuous low oxygen (“hypoxia”) combined with dynamic compression would affect the fibrocartilaginous “inner meniscus-like” matrix-forming phenotype of human meniscus fibrochondrocytes (MFCs) in a porous type I collagen scaffold. Freshly-seeded MFC scaffolds were cultured for 4 weeks in either 3 or 20% O2 or pre-cultured for 2 weeks in 3% O2 and then dynamically compressed for 2 weeks (10% strain, 1 Hz, 1 h/day, 5 days/week), all with or without TGF-β3 supplementation. TGF-β3 supplementation was found necessary to induce matrix formation by MFCs in the collagen scaffold regardless of oxygen tension and application of the dynamic compression loading regime. Neither hypoxia under static culture nor hypoxia combined with dynamic compression had significant effects on expression of specific protein and mRNA markers for the fibrocartilaginous matrix-forming phenotype. Mechanical properties significantly increased over the two-week loading period but were not different between static and dynamic-loaded tissues after the loading period. These findings indicate that 3% O2 applied immediately after scaffold seeding and dynamic compression to 10% strain do not affect the fibrocartilaginous matrix-forming phenotype of human MFCs in this type I collagen scaffold. It is possible that a delayed hypoxia treatment and an optimized pre-culture period and loading regime combination would have led to different outcomes.
Collapse
|
20
|
Szojka AR, Marqueti RDC, Li DX, Molter CW, Liang Y, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. J Tissue Eng 2021; 12:2041731421990842. [PMID: 33613959 PMCID: PMC7874349 DOI: 10.1177/2041731421990842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigates the transcriptome response of meniscus fibrochondrocytes (MFCs) to the low oxygen and mechanical loading signals experienced in the knee joint using a model system. We hypothesized that short term exposure to the combined treatment would promote a matrix-forming phenotype supportive of inner meniscus tissue formation. Human MFCs on a collagen scaffold were stimulated to form fibrocartilage over 6 weeks under normoxic (NRX, 20% O2) conditions with supplemented TGF-β3. Tissues experienced a delayed 24h hypoxia treatment (HYP, 3% O2) and then 5 min of dynamic compression (DC) between 30 and 40% strain. Delayed HYP induced an anabolic and anti-catabolic expression profile for hyaline cartilage matrix markers, while DC induced an inflammatory matrix remodeling response along with upregulation of both SOX9 and COL1A1. There were 41 genes regulated by both HYP and DC. Overall, the combined treatment supported a unique gene expression profile favouring the hyaline cartilage aspect of inner meniscus matrix and matrix remodeling.
Collapse
Affiliation(s)
- Alexander Ra Szojka
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Rita de Cássia Marqueti
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - David Xinzheyang Li
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Clayton W Molter
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| |
Collapse
|
21
|
Ohori T, Mae T, Shino K, Fujie H, Hirose T, Tachibana Y, Yoshikawa H, Nakata K. Different effects of the lateral meniscus complete radial tear on the load distribution and transmission functions depending on the tear site. Knee Surg Sports Traumatol Arthrosc 2021; 29:342-351. [PMID: 32152692 DOI: 10.1007/s00167-020-05915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/24/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE To compare the effect of the lateral meniscus (LM) complete radial tear at different tear sites on the load distribution and transmission functions. METHODS A compressive load of 300 N was applied to the intact porcine knees (n = 30) at 15°, 30°, 60°, 90°, and 120° of flexion. The LM complete radial tears were created at the middle portion (group M), the posterior portion (group P), or the posterior root (group R) (n = 10, each group), and the same loading procedure was followed. Finally, the recorded three-dimensional paths were reproduced on the LM-removed knees. The peak contact pressure (contact area) in the lateral compartment and the calculated in situ force of the LM under the principle of superposition were compared among the four groups (intact, group M, group P, and group R). RESULTS At all the flexion angles, the peak contact pressure (contact area) was significantly higher (lower) after creating the LM complete radial tear as compared to that in the intact state (p < 0.01). At 120° of flexion, group R represented the highest peak contact pressure (lowest contact area), followed by group P and group M (p < 0.05). The results of the in situ force carried by the LM were similar to those of the tibiofemoral contact mechanics. CONCLUSION The detrimental effect of the LM complete radial tear on the load distribution and transmission functions was greatest in the posterior root tear, followed by the posterior portion tear and the middle portion tear in the deep-flexed position. Complete radial tars of the meniscus, especially at the posterior root, should be repaired to restore the biomechanical function.
Collapse
Affiliation(s)
- Tomoki Ohori
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuo Mae
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Konsei Shino
- Sports Orthopaedic Surgery Center, Yukioka Hospital, Osaka, Japan
| | - Hiromichi Fujie
- Biomechanics Laboratory, Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Takehito Hirose
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuta Tachibana
- Department of Sports Orthopaedics, Osaka Rosai Hospital, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
22
|
Kuhi L, Tamm AE, Tamm AO, Kisand K. Cartilage collagen neoepitope C2C in urine as an integrative diagnostic marker for early knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100096. [DOI: 10.1016/j.ocarto.2020.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
|
23
|
Anderson-Baron M, Kunze M, Mulet-Sierra A, Adesida AB. Effect of cell seeding density on matrix-forming capacity of meniscus fibrochondrocytes and nasal chondrocytes in meniscus tissue engineering. FASEB J 2020; 34:5538-5551. [PMID: 32090374 DOI: 10.1096/fj.201902559r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
The presence of intact menisci is imperative for the proper function of the knee joint. Meniscus injuries are often treated by the surgical removal of the damaged tissue, which increases the likelihood of post-traumatic osteoarthritis. Tissue engineering holds great promise in producing viable engineered meniscal tissue for implantation using the patient's own cells; however, the cell source for producing the engineered tissue is unclear. Nasal chondrocytes (NC) possess many attractive features for engineering meniscus. However, in order to validate the use of NC for engineering meniscus fibrocartilage, a thorough comparison of NC and meniscus fibrochondrocytes (MFC) must be considered. Our study presents an analysis of the relative features of NC and MFC and their respective chondrogenic potential in a pellet culture model. We showed considerable differences in the cartilage tissue formed by the two different cell types. Our data showed that NC were more proliferative in culture, deposited more extracellular matrix, and showed higher expression of chondrogenic genes than MFC. Overall, our data suggest that NC produce superior cartilage tissue to MFC in a pellet culture model. In addition, NCs produce higher quality cartilage tissue at higher cell seeding densities during cell expansion.
Collapse
Affiliation(s)
- Matthew Anderson-Baron
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| |
Collapse
|
24
|
|
25
|
Jacob G, Shimomura K, Krych AJ, Nakamura N. The Meniscus Tear: A Review of Stem Cell Therapies. Cells 2019; 9:E92. [PMID: 31905968 PMCID: PMC7016630 DOI: 10.3390/cells9010092] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023] Open
Abstract
Meniscal injuries have posed a challenging problem for many years, especially considering that historically the meniscus was considered to be a structure with no important role in the knee joint. This led to earlier treatments aiming at the removal of the entire structure in a procedure known as a meniscectomy. However, with the current understanding of the function and roles of the meniscus, meniscectomy has been identified to accelerate joint degradation significantly and is no longer a preferred treatment option in meniscal tears. Current therapies are now focused to regenerate, repair, or replace the injured meniscus to restore its native function. Repairs have improved in technique and materials over time, with various implant devices being utilized and developed. More recently, strategies have applied stem cells, tissue engineering, and their combination to potentiate healing to achieve superior quality repair tissue and retard the joint degeneration associated with an injured or inadequately functioning meniscus. Accordingly, the purpose of this current review is to summarize the current available pre-clinical and clinical literature using stem cells and tissue engineering for meniscal repair and regeneration.
Collapse
Affiliation(s)
- George Jacob
- Department and Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; (G.J.); (K.S.)
| | - Kazunori Shimomura
- Department and Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; (G.J.); (K.S.)
| | - Aaron J. Krych
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 530-0043, Japan
- Global Centre for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Vetri V, Dragnevski K, Tkaczyk M, Zingales M, Marchiori G, Lopomo NF, Zaffagnini S, Bondi A, Kennedy JA, Murray DW, Barrera O. Advanced microscopy analysis of the micro-nanoscale architecture of human menisci. Sci Rep 2019; 9:18732. [PMID: 31822796 PMCID: PMC6904744 DOI: 10.1038/s41598-019-55243-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/13/2019] [Indexed: 12/05/2022] Open
Abstract
The complex inhomogeneous architecture of the human meniscal tissue at the micro and nano scale in the absence of artefacts introduced by sample treatments has not yet been fully revealed. The knowledge of the internal structure organization is essential to understand the mechanical functionality of the meniscus and its relationship with the tissue’s complex structure. In this work, we investigated human meniscal tissue structure using up-to-date non-invasive imaging techniques, based on multiphoton fluorescence and quantitative second harmonic generation microscopy complemented with Environmental Scanning Electron Microscopy measurements. Observations on 50 meniscal samples extracted from 6 human menisci (3 lateral and 3 medial) revealed fundamental features of structural morphology and allowed us to quantitatively describe the 3D organisation of elastin and collagen fibres bundles. 3D regular waves of collagen bundles are arranged in “honeycomb-like” cells that are comprised of pores surrounded by the collagen and elastin network at the micro-scale. This type of arrangement propagates from macro to the nanoscale.
Collapse
Affiliation(s)
- V Vetri
- Università degli Studi di Palermo, Palermo, Italy
| | | | | | - M Zingales
- Università degli Studi di Palermo, Palermo, Italy
| | - G Marchiori
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Biomeccanica e Innovazione Tecnologica, Bologna, Italy
| | - N F Lopomo
- Università degli Studi of Brescia, Brescia, Italy
| | - S Zaffagnini
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Biomeccanica e Innovazione Tecnologica, Bologna, Italy
| | - A Bondi
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Biomeccanica e Innovazione Tecnologica, Bologna, Italy
| | | | | | - O Barrera
- University of Oxford, Oxford, UK. .,University of Luxembourg, Luxembourg, Luxembourg. .,Oxford Brookes University, Oxford, UK.
| |
Collapse
|
27
|
Maturation of the Meniscal Collagen Structure Revealed by Polarization-Resolved and Directional Second Harmonic Generation Microscopy. Sci Rep 2019; 9:18448. [PMID: 31804577 PMCID: PMC6895152 DOI: 10.1038/s41598-019-54942-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022] Open
Abstract
We report Polarization-resolved Second Harmonic Generation (P-SHG) and directional SHG (forward and backward, F/B) measurements of equine foetal and adult collagen in meniscus, over large field-of-views using sample-scanning. Large differences of collagen structure and fibril orientation with maturation are revealed, validating the potential for this novel methodology to track such changes in meniscal structure. The foetal menisci had a non-organized and more random collagen fibrillar structure when compared with adult using P-SHG. For the latter, clusters of homogeneous fibril orientation (inter-fibrillar areas) were revealed, separated by thick fibers. F/B SHG showed numerous different features in adults notably, in thick fibers compared to interfibrillar areas, unlike foetal menisci that showed similar patterns for both directions. This work confirms previous studies and improves the understanding of meniscal collagen structure and its maturation, and makes F/B and P-SHG good candidates for future studies aiming at revealing structural modifications to meniscus due to pathologies.
Collapse
|
28
|
The Importance of the Knee Joint Meniscal Fibrocartilages as Stabilizing Weight Bearing Structures Providing Global Protection to Human Knee-Joint Tissues. Cells 2019; 8:cells8040324. [PMID: 30959928 PMCID: PMC6523218 DOI: 10.3390/cells8040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.
Collapse
|
29
|
Szojka ARA, Lyons BD, Moore CN, Liang Y, Kunze M, Idrees E, Mulet-Sierra A, Jomha NM, Adesida AB. Hypoxia and TGF-β3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Eng Part A 2019; 25:446-456. [PMID: 30343640 DOI: 10.1089/ten.tea.2018.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interactions of hypoxia and TGF-β3 in aggregates of human meniscus fibrochondrocytes are synergistic in nature, suggesting combinatorial strategies using these factors are promising for tissue engineering the inner meniscus regions. Hypoxia alone in the absence of TGF-β supplementation may be insufficient to initiate an inner meniscus-like extracellular matrix-forming response in this model.
Collapse
Affiliation(s)
- Alexander R A Szojka
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Brayden D Lyons
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Colleen N Moore
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
- 2 Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Melanie Kunze
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Enaam Idrees
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, Wang Z, Li X, Jing X, Zhang X, Yuan Z, Wang M, Zhang Y, Peng J, Wang A, Wang Y, Sui X, Liu S, Guo Q. Biomechanical Stimulus Based Strategies for Meniscus Tissue Engineering and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:392-402. [PMID: 29897012 DOI: 10.1089/ten.teb.2017.0508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meniscus injuries are very common in the knee joint. Treating a damaged meniscus continues to be a scientific challenge in sport medicine because of its poor self-healing potential and few clinical therapeutic options. Tissue engineering strategies are very promising solutions for repairing and regenerating a damaged meniscus. Meniscus is exposed to a complex biomechanical microenvironment, and it plays a crucial role in meniscal development, growth, and repairing. Over the past decades, increasing attention has been focused on the use of biomechanical stimulus to enhance biomechanical properties of the engineered meniscus. Further understanding the influence of mechanical stimulation on cell proliferation and differentiation, metabolism, relevant gene expression, and pro/anti-inflammatory responses may be beneficial to enhance meniscal repair and regeneration. On the one hand, this review describes some basic information about meniscus; on the other hand, we sum up the various biomechanical stimulus based strategies applied in meniscus tissue engineering and how these factors affect meniscal regeneration. We hope this review will provide researchers with inspiration on tissue engineering strategies for meniscus regeneration in the future.
Collapse
Affiliation(s)
- Mingxue Chen
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,2 Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, 100035 Beijing, People's Republic of China
| | - Weimin Guo
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shunag Gao
- 3 Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing, People's Republic of China
| | - Chunxiang Hao
- 4 Institute of Anesthesiology , Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shi Shen
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,5 Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University , Luzhou, People's Republic of China
| | - Zengzeng Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,6 First Department of Orthopedics, First Affiliated Hospital of Jiamusi University , Jiamusi, People's Republic of China
| | - Zehao Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xu Li
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,7 School of Medicine, Nankai University , Tianjin, People's Republic of China
| | - Xiaoguang Jing
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,6 First Department of Orthopedics, First Affiliated Hospital of Jiamusi University , Jiamusi, People's Republic of China
| | - Xueliang Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China .,8 Shanxi Traditional Chinese Hospital , Taiyuan, People's Republic of China
| | - Zhiguo Yuan
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yu Zhang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Jiang Peng
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Aiyuan Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yu Wang
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xiang Sui
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- 1 Institute of Orthopedics , Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| |
Collapse
|
31
|
Shimomura K, Rothrauff BB, Hart DA, Hamamoto S, Kobayashi M, Yoshikawa H, Tuan RS, Nakamura N. Enhanced repair of meniscal hoop structure injuries using an aligned electrospun nanofibrous scaffold combined with a mesenchymal stem cell-derived tissue engineered construct. Biomaterials 2018; 192:346-354. [PMID: 30471629 DOI: 10.1016/j.biomaterials.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Damage to the meniscal hoop structure results in loss of biomechanical function, which potentially leads to the extrusion of the meniscus from the weight bearing area. However, there have been no established, effective treatments for such injuries. The purpose of this study was to investigate the applicability of cell-seeded nanofibrous scaffolds to repair the damaged meniscal hoop structure along with the prevention of subsequent cartilage degeneration using a rabbit model. Meniscal radial defects (5 mm width) in the medial meniscus were treated by wrapping and suturing with either an aligned electrospun nanofibrous scaffold alone or a scaffold combined with a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells (MSCs), with the scaffold fiber direction matching that of the meniscal circumferential fibers. The MSC-based TEC-combined nanofibrous scaffolds contributed significantly to the prevention of meniscal extrusion and exerted a chondroprotective effect, compared with either scaffold alone or the untreated control groups. Also, meniscal defects treated with such TEC-combined nanofibrous scaffolds were consistently repaired with a fibrocartilaginous tissue. In this study, we have demonstrated the feasibility of a combined TEC-nanofibrous scaffold to repair the meniscal hoop structure, and prevent the progression to cartilage degeneration, as a potential tissue engineering method.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 221, Pittsburgh, PA, 15219-3143, USA.
| | - David A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, T2N 4N1, Canada.
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Masato Kobayashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 221, Pittsburgh, PA, 15219-3143, USA.
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan; Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan; Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
Wu IT, Hevesi M, Desai VS, Camp CL, Dahm DL, Levy BA, Stuart MJ, Krych AJ. Comparative Outcomes of Radial and Bucket-Handle Meniscal Tear Repair: A Propensity-Matched Analysis. Am J Sports Med 2018; 46:2653-2660. [PMID: 30070592 DOI: 10.1177/0363546518786035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Full-thickness radial meniscal tears render the meniscus nonfunctional and have historically been treated with partial meniscectomy. As preservative techniques evolve for radial repair, comparisons with other tear patterns are necessary to evaluate repair efficacy and prognosis. PURPOSE To assess clinical outcomes and reoperation rates of radial meniscal repair and to compare them to bucket-handle meniscal repair. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS Radial and bucket-handle meniscal tears without concurrent root injuries undergoing surgical repair at a single institution between 2007 and 2015 were analyzed, including both all-inside and inside-out suturing techniques. Propensity matching was performed on the basis of age at surgery, sex, meniscus laterality, body mass index (BMI), and concomitant anterior cruciate ligament reconstruction (ACLR) using a comparison pool of 70 bucket-handle repairs. Reoperation-free survival rates and Tegner, visual analog scale (VAS) for pain, and International Knee Documentation Committee (IKDC) scores were analyzed. RESULTS Twenty-four patients (18 male, 6 female; mean age, 22.8 ± 11.9 years) who underwent repair of a radial meniscal tear were followed for a mean of 3.5 years (range, 2.0-6.3 years). Significant postoperative improvements in VAS scores at rest and with use and IKDC scores were noted postoperatively ( P < .001). Five patients (20.8%) required a reoperation. Subsequently, 18 patients with radial tears (mean age, 19.1 ± 9.1 years; 12 male; mean BMI, 27.0 ± 6.2 kg/m2; 3 medial; 11 ACLR) were propensity matched to 18 patients with bucket-handle tears (mean age, 20.8 ± 5.1 years; 13 male; mean BMI, 25.0 ± 3.5 kg/m2; 3 medial; 11 ACLR). The matched radial and bucket-handle groups demonstrated similar ( P = .17) reoperation-free survival rates at 2 years (88.9% and 94.4%, respectively) and 5 years (77.8% and 87.7%, respectively). VAS and IKDC scores improved significantly after surgery ( P < .001), with no difference noted between the groups ( P ≥ .17). Patients with radial and bucket-handle meniscal repairs achieved mean postoperative Tegner scores (6.6 and 6.6, respectively) not significantly different from their preinjury levels (6.9 and 6.7, respectively) ( P ≥ .32). CONCLUSION Satisfactory clinical outcomes are achievable for radial meniscal tear repair at short-term follow-up. In a robustly matched comparison, radial and bucket-handle meniscal tears demonstrate similar improvements in VAS and IKDC scores, restoration of preoperative Tegner scores, and acceptable reoperation rates. Full-thickness radial meniscal tears should be considered for repair.
Collapse
Affiliation(s)
- Isabella T Wu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Vishal S Desai
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Camp
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane L Dahm
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bruce A Levy
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J Stuart
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Proteoglycans contribute locally to swelling, but globally to compressive mechanics, in intact cervine medial meniscus. J Biomech 2018; 74:86-91. [PMID: 29705348 DOI: 10.1016/j.jbiomech.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Loss of charged proteoglycans in the knee meniscus, which aid in the support of compressive loads by entraining water, is an effect of degeneration and is often associated with osteoarthritis. In healthy menisci, proteoglycan content is highest in the inner white zone and decreases towards the peripheral red zone. We hypothesized that loss of proteoglycans would reduce both osmotic swelling and compressive stiffness, spatially localized to the avascular white zone of the meniscus. This hypothesis was tested by targeted enzymatic digestion of proteoglycans using hyaluronidase in intact cervine medial menisci. Mechanics were quantified by creep indentation on the femoral surface. Osmotic swelling changes were assessed by measuring collagen fiber crimp period in the radial-axial plane in the lamellar layer along both the tibial and femoral contacting surfaces. All measurements were made in the inner, middle, and outer zones of the anterior, central, and posterior regions. Mechanical measurements showed variation in creep behavior with anatomical location, along with spatially uniform decreases in viscosity (average of 21%) and creep stiffness (average of 15%) with hyaluronidase treatment. Lamellar collagen crimp period was significantly decreased (average of 27%) by hyaluronidase, indicating a decrease in osmotic swelling, with the largest decreases seen in locations with the highest proteoglycan content. Taken together, these results suggest that while proteoglycans have localized effects on meniscus swelling, the resulting effect on compressive properties is distributed throughout the tissue.
Collapse
|
34
|
Shimomura K, Hamamoto S, Hart DA, Yoshikawa H, Nakamura N. Meniscal repair and regeneration: Current strategies and future perspectives. J Clin Orthop Trauma 2018; 9:247-253. [PMID: 30202157 PMCID: PMC6128795 DOI: 10.1016/j.jcot.2018.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/30/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
The management of meniscal injuries remains difficult and challenging. Although several clinical options exist for the treatment of such injuries, complete regeneration of the damaged meniscus has proved difficult due to the limited healing capacity of the tissue. With the advancements in tissue engineering and cell-based technologies, new therapeutic options for patients with currently incurable meniscal lesions now potentially exist. This review will discuss basic anatomy, current repair techniques and treatment options for loss of meniscal integrity. Specifically, we focus on the possibility and feasibility of the latest tissue engineering approaches, including 3D printing technologies. Therefore, this discussion will facilitate a better understanding of the latest trends in meniscal repair and regeneration, and contribute to the future application of such clinical therapies for patients with meniscal injuries.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, T2N 4N1, Canada
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan,Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Corresponding author. Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan.
| |
Collapse
|
35
|
Szojka A, Lalh K, Andrews SH, Jomha NM, Osswald M, Adesida AB. Biomimetic 3D printed scaffolds for meniscus tissue engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bprint.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. NPJ Microgravity 2017; 3:28. [PMID: 29147680 PMCID: PMC5681589 DOI: 10.1038/s41526-017-0032-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023] Open
Abstract
Simulated microgravity has been shown to enhance cartilaginous matrix formation by chondrocytes and chondrogenesis of mesenchymal stem cells (MSCs). Similarly, coculture of primary chondrocytes with MSCs has been shown as a strategy to simultaneously retain the differentiated phenotype of chondrocytes and enhance cartilaginous matrix formation. In this study, we investigated the effect of simulated microgravity on cocultures of primary human meniscus cells and adipose-derived MSCs. We used biochemical, qPCR, and immunofluorescence assays to conduct our investigation. Simulated microgravity significantly enhanced cartilaginous matrix formation in cocultures of primary meniscus cells and adipose-derived MSCs. The enhancement was accompanied by increased hypertrophic differentiation markers, COL10A1 and MMP-13, and suppression of hypertrophic differentiation inhibitor, gremlin 1 (GREM1). Co-culture of meniscal cartilage-forming cells with fat-derived stem cells can lead to enhanced cartilage matrix production when cultured under simulated microgravity. Adetola Adesida from the University of Alberta in Edmonton, Canada, and colleagues cultured two types of cells found together in the knee—cartilage-forming chondrocyte cells (taken from the meniscus) and mesenchymal stem cells (isolated from the infrapatellar fat pad)—in a rotary cell culture system designed to model weightlessness on Earth. Simulated microgravity enhanced the synergistic interaction between the two types of cells in culture, resulting in more matrix production, but it also prompted the cartilage-forming cells to differentiate towards bone-forming cells, as evidenced by gene expression analysis. These findings suggest that microgravity and simulated microgravity-based culture technologies could help bioengineers grow knee replacements for people with meniscus tears, but increased bone-directed differentiation could pose a possible problem for astronauts on prolonged missions.
Collapse
|
37
|
Rai MF, McNulty AL. Meniscus beyond mechanics: Using biology to advance our understanding of meniscus injury and treatment. Connect Tissue Res 2017; 58:221-224. [PMID: 28355098 DOI: 10.1080/03008207.2017.1312921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Muhammad Farooq Rai
- a Assistant Professor of Orthopaedic Surgery, Assistant Professor of Cell Biology & Physiology , Washington University School of Medicine
| | - Amy L McNulty
- b Assistant Professor of Orthopaedic Surgery, Assistant Professor of Pathology , Duke University Medical Center
| |
Collapse
|