1
|
Zhong J, Wang D, Xie S, Li M, Yin Y, Yu J, Ma C, Yu S, Qiu L. Pre-analytical stability and physiological fluctuations affect plasma steroid hormone outcomes: A real-world study. J Steroid Biochem Mol Biol 2024; 244:106596. [PMID: 39089343 DOI: 10.1016/j.jsbmb.2024.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024]
Abstract
Since steroids are crucial for diagnosing endocrine disorders, the lack of research on factors that affect hormone levels makes interpreting the results difficult. Our study aims to assess the stability of the pre-analytical procedure and the impact of hormonal physiological fluctuations using real-world data. The datasets were created using 12,418 records from individuals whose steroid hormone measurements were taken in our laboratory between September 2019 and March 2024. 22 steroid hormones in plasma by a well-validated liquid chromatography tandem mass spectrometry method were measured. After normalization transformation, outlier removal, and z-score normalization, generalized additive models were constructed to evaluate preanalytic stability and age, sex, and sample time-dependent hormonal fluctuations. Most hormones exhibit significant variability with age, particularly steroid hormone precursors, sex hormones, and certain corticosteroids such as aldosterone. 18-hydroxycortisol, 18-oxocortisol. Sex hormones varied between males and females. Levels of certain hormones, including cortisol, cortisone, 11-deoxycortisol, 18-hydroxycortisol, 18-oxocortisol, corticosterone, aldosterone, estrone, testosterone, dihydrotestosterone, dehydroepiandrosterone sulfate, 11-ketotestosterone, and 11-hydroxytestosterone, fluctuated with sampling time. Moreover, levels of pregnenolone and progesterone decreased within 1 hour of sampling, with pregnenolone becoming unstable with storage time at 4 degrees after centrifugation, while other hormone levels remained relatively stable for a short period of time without or after centrifugation of the sample. This is the first instance real-world data has been used to assess the pre-analytic stability of plasma hormones and to evaluate the impact of physiological factors on steroid hormones.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shaowei Xie
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ming Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jialei Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - SongLin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Thornton C, Panagiotopoulou M, Chowdhury FA, Diehl B, Duncan JS, Gascoigne SJ, Besne G, McEvoy AW, Miserocchi A, Smith BC, de Tisi J, Taylor PN, Wang Y. Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo. Nat Commun 2024; 15:8527. [PMID: 39358327 PMCID: PMC11447262 DOI: 10.1038/s41467-024-52769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Chronobiological rhythms, such as the circadian rhythm, have long been linked to neurological disorders, but it is currently unknown how pathological processes affect the expression of biological rhythms in the brain. Here, we use the unique opportunity of long-term, continuous intracranially recorded EEG from 38 patients (totalling 6338 hours) to delineate circadian (daily) and ultradian (minute to hourly) rhythms in different brain regions. We show that functional circadian and ultradian rhythms are diminished in pathological tissue, independent of regional variations. We further demonstrate that these diminished rhythms are persistent in time, regardless of load or occurrence of pathological events. These findings provide evidence that brain pathology is functionally associated with persistently diminished chronobiological rhythms in vivo in humans, independent of regional variations or pathological events. Future work interacting with, and restoring, these modulatory chronobiological rhythms may allow for novel therapies.
Collapse
Affiliation(s)
| | | | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | | | - Sarah J Gascoigne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Guillermo Besne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Billy C Smith
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Queen Square Institute of Neurology, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yujiang Wang
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
- UCL Queen Square Institute of Neurology, London, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Lightman SL, Conway-Campbell BL. Circadian and ultradian rhythms: Clinical implications. J Intern Med 2024; 296:121-138. [PMID: 38825772 DOI: 10.1111/joim.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The hypothalamic-pituitary-adrenal axis is an extremely dynamic system with a combination of both circadian and ultradian oscillations. This state of 'continuous dynamic equilibration' provides a platform that is able to anticipate events, is sensitive in its response to stressors, remains robust during perturbations of both the internal and external environments and shows plasticity to adapt to a changed environment. In this review, we describe these oscillations of glucocorticoid (GC) hormones and why they are so important for GC-dependent gene activation in the brain and liver, and their consequent effects on the regulation of synaptic and memory function as well as appetite control and metabolic regulation. Abnormalities of mood, appetite and metabolic regulation are well-known consequences of GC therapy, and we suggest that the pattern of GC treatment and hormone replacement should be a much higher priority for endocrinologists and the pharmaceutical industry. One of the major impediments to our research on the importance of these cortisol rhythms in our patients has been our inability to measure repeated levels of hormones across the day in patients in their home or work surroundings. We describe how new wearable methodologies now allow the measurement of 24-h cortisol profiles - including during sleep - and will enable us to define physiological normality and allow us both to develop better diagnostic tests and inform, at an individual patient level, how to improve replacement therapy.
Collapse
Affiliation(s)
- Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Rode F, Bundgaard C, Areberg J, Madsen LB, Taavoniku I, Hansen L, Weisser J, Olsen LR, Elgaard HT, Eneberg E, Didriksen M. Stress-free blood sampling in minipigs: A novel method for assessing 24-h cortisol profiles and drug effects on diurnal and ultradian rhythms. J Pharmacol Toxicol Methods 2024; 127:107504. [PMID: 38678804 DOI: 10.1016/j.vascn.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
We developed a novel, stress-free blood sampling method for minipigs, allowing continuous cortisol monitoring over 24 h. Baseline cortisol levels exhibited both ultradian and diurnal rhythms. During nighttime, smaller ultradian rhythms overlaid a lower baseline cortisol, which increased in sleeping pigs before lights were turned on. Additionally, we developed an analytical tool based on the R package "pracma" to quantify ultradian peak and circadian components of the cortisol profiles. To validate our model, we investigated the effects of Verucerfont, a CRH receptor antagonist, and Venlafaxine, a serotonin-norepinephrine reuptake inhibitor. Verucerfont reduced cortisol levels during the first 9 h without affecting diurnal rhythm. Cortisol peak parameters decreased, with a 31% reduction in overall area under the curve (AUC) and a 38% reduction in ultradian average AUC. Ultradian peaks decreased from 7 to 4.5, with 34% lower amplitude. Venlafaxine maintained plasma concentrations within the targeted human effective range. This method enables us to enhance our understanding of cortisol regulation and provide valuable insights for the impact of investigation drugs on the diurnal and ultradian rhythms of cortisol.
Collapse
|
5
|
Vignesh V, Castro-Dominguez B, James TD, Gamble-Turner JM, Lightman S, Reis NM. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Monitoring. ACS Sens 2024; 9:1666-1681. [PMID: 38551608 PMCID: PMC11059103 DOI: 10.1021/acssensors.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The hormone cortisol, released as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, has a well-characterized circadian rhythm that enables an allostatic response to external stressors. When the pattern of secretion is disrupted, cortisol levels are chronically elevated, contributing to diseases such as heart attacks, strokes, mental health disorders, and diabetes. The diagnosis of chronic stress and stress related disorders depends upon accurate measurement of cortisol levels; currently, it is quantified using mass spectroscopy or immunoassay, in specialized laboratories with trained personnel. However, these methods are time-consuming, expensive and are unable to capture the dynamic biorhythm of the hormone. This critical review traces the path of cortisol detection from traditional laboratory-based methods to decentralised cortisol monitoring biosensors. A complete picture of cortisol biology and pathophysiology is provided, and the importance of precision medicine style monitoring of cortisol is highlighted. Antibody-based immunoassays still dominate the pipeline of development of point-of-care biosensors; new capture molecules such as aptamers and molecularly imprinted polymers (MIPs) combined with technologies such as microfluidics, wearable electronics, and quantum dots offer improvements to limit of detection (LoD), specificity, and a shift toward rapid or continuous measurements. While a variety of different sensors and devices have been proposed, there still exists a need to produce quantitative tests for cortisol ─ using either rapid or continuous monitoring devices that can enable a personalized medicine approach to stress management. This can be addressed by synergistic combinations of technologies that can leverage low sample volumes, relevant limit of detection and rapid testing time, to better account for cortisol's shifting biorhythm. Trends in cortisol diagnostics toward rapid and continuous monitoring of hormones are highlighted, along with insights into choice of sample matrix.
Collapse
Affiliation(s)
- Visesh Vignesh
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| | - Bernardo Castro-Dominguez
- Department
of Chemical and Engineering and Digital Manufacturing and Design University
of Bath, BA2 7AY Bath, U.K.
| | - Tony D. James
- Department
of Chemistry, University of Bath, BA2 7AY Bath, U.K.
| | | | - Stafford Lightman
- Translational
Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, U.K.
| | - Nuno M. Reis
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| |
Collapse
|
6
|
Russell G, Kalafatakis K, Durant C, Marchant N, Thakrar J, Thirard R, King J, Bowles J, Upton T, Thai NJ, Brooks JCW, Wilson A, Phillips K, Ferguson S, Grabski M, Rogers CA, Lampros T, Wilson S, Harmer C, Munafo M, Lightman SL. Ultradian hydrocortisone replacement alters neuronal processing, emotional ambiguity, affect and fatigue in adrenal insufficiency: The PULSES trial. J Intern Med 2024; 295:51-67. [PMID: 37857352 PMCID: PMC10952319 DOI: 10.1111/joim.13721] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND Primary adrenal insufficiency (PAI) mortality and morbidity remain unacceptably high, possibly arising as glucocorticoid replacement does not replicate natural physiology. A pulsatile subcutaneous pump can closely replicate cortisol's circadian and ultradian rhythm. OBJECTIVES To assess the effect of pump therapy on quality of life, mood, functional neuroimaging, behavioural/cognitive responses, sleep and metabolism. METHODS A 6-week randomised, crossover, double-blinded and placebo-controlled feasibility study of usual dose hydrocortisone in PAI administered as either pulsed subcutaneous or standard care in Bristol, United Kingdom (ISRCTN67193733). Participants were stratified by adrenal insufficiency type. All participants who received study drugs are included in the analysis. The primary outcome, the facial expression recognition task (FERT), occurred at week 6. RESULTS Between December 2014 and 2017, 22 participants were recruited - 20 completed both arms, and 21 were analysed. The pump was well-tolerated. No change was seen in the FERT primary outcome; however, there were subjective improvements in fatigue and mood. Additionally, functional magnetic resonance imaging revealed differential neural processing to emotional cues and visual stimulation. Region of interest analysis identified the left amygdala and insula, key glucocorticoid-sensitive regions involved in emotional ambiguity. FERT post hoc analysis confirmed this response. There were four serious adverse events (AE): three intercurrent illnesses requiring hospitalisation (1/3, 33.3% pump) and a planned procedure (1/1, 100% pump). There was a small number of expected AEs: infusion site bruising/itching (3/5, 60% pump), intercurrent illness requiring extra (3/7, 42% pump) and no extra (4/6, 66% pump) steroid. CONCLUSIONS These findings support the administration of hormone therapy that mimics physiology.
Collapse
Affiliation(s)
- Georgina Russell
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
- University Hospital Bristol and Weston NHS Foundation TrustBristolUK
- North Bristol NHS TrustBristolUK
| | - Konstantinos Kalafatakis
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
- Department of Informatics and Telecommunications, Human‐Computer Interaction LaboratoryUniversity of IoanninaArtaGreece
- Clinical Research and Imaging CentreUniversity of BristolBristolUK
- Faculty of Medicine and Dentistry (Malta Campus)Queen Mary University of LondonVictoriaMalta
| | - Claire Durant
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| | - Nicola Marchant
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
- University Hospital Bristol and Weston NHS Foundation TrustBristolUK
| | - Jamini Thakrar
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
- Clinical Research and Imaging CentreUniversity of BristolBristolUK
| | - Russell Thirard
- Bristol Trials CentreBristol Medical SchoolUniversity of BristolBristolUK
| | - Jade King
- University Hospital Bristol and Weston NHS Foundation TrustBristolUK
- North Bristol NHS TrustBristolUK
| | - Jane Bowles
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
- University Hospital Bristol and Weston NHS Foundation TrustBristolUK
| | - Thomas Upton
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
| | - Ngoc Jade Thai
- Clinical Research and Imaging CentreUniversity of BristolBristolUK
- Neurosciences and Mental HealthLiverpool Health PartnersLiverpoolUK
| | | | - Aileen Wilson
- Clinical Research and Imaging CentreUniversity of BristolBristolUK
| | - Kirsty Phillips
- University Hospital Bristol and Weston NHS Foundation TrustBristolUK
| | - Stuart Ferguson
- School of MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | | | - Chris A. Rogers
- Bristol Trials CentreBristol Medical SchoolUniversity of BristolBristolUK
| | - Theodoros Lampros
- Department of Informatics and Telecommunications, Human‐Computer Interaction LaboratoryUniversity of IoanninaArtaGreece
| | - Sue Wilson
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| | - Catherine Harmer
- Department of PsychiatryOxford University and Oxford Health NHS Foundation TrustOxfordUK
| | - Marcus Munafo
- MRC Integrative Epidemiology UnitSchool of Psychological ScienceUniversity of BristolBristolUK
| | - Stafford L. Lightman
- Laboratories of Integrative Neuroscience and EndocrinologyBristol Medical SchoolUniversity of BristolBristolUK
- University Hospital Bristol and Weston NHS Foundation TrustBristolUK
| |
Collapse
|
7
|
Knezevic E, Nenic K, Milanovic V, Knezevic NN. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023; 12:2726. [PMID: 38067154 PMCID: PMC10706127 DOI: 10.3390/cells12232726] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Cortisol, a critical glucocorticoid hormone produced by the adrenal glands, plays a pivotal role in various physiological processes. Its release is finely orchestrated by the suprachiasmatic nucleus, governing the circadian rhythm and activating the intricate hypothalamic-pituitary-adrenal (HPA) axis, a vital neuroendocrine system responsible for stress response and maintaining homeostasis. Disruptions in cortisol regulation due to chronic stress, disease, and aging have profound implications for multiple bodily systems. Animal models have been instrumental in elucidating these complex cortisol dynamics during stress, shedding light on the interplay between physiological, neuroendocrine, and immune factors in the stress response. These models have also revealed the impact of various stressors, including social hierarchies, highlighting the role of social factors in cortisol regulation. Moreover, chronic stress is closely linked to the progression of neurodegenerative diseases, like Alzheimer's and Parkinson's, driven by excessive cortisol production and HPA axis dysregulation, along with neuroinflammation in the central nervous system. The relationship between cortisol dysregulation and major depressive disorder is complex, characterized by HPA axis hyperactivity and chronic inflammation. Lastly, chronic pain is associated with abnormal cortisol patterns that heighten pain sensitivity and susceptibility. Understanding these multifaceted mechanisms and their effects is essential, as they offer insights into potential interventions to mitigate the detrimental consequences of chronic stress and cortisol dysregulation in these conditions.
Collapse
Affiliation(s)
- Emilija Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Katarina Nenic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- Department of Psychology, University of Central Florida, Orlando, FL 32826, USA
| | - Vladislav Milanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- College of Medicine Rockford, University of Illinois, Rockford, IL 61107, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (E.K.); (K.N.); (V.M.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Raju V, Gibbison B, Klerman EB, Faghih RT. Characterizing Alterations in Cortisol Secretion During Cardiac Surgery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083379 PMCID: PMC10863901 DOI: 10.1109/embc40787.2023.10340220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cortisol is a neuroendocrine hormone of the hypothalamus-pituitary-adrenal (HPA) axis secreted from adrenal glands in response to stimulation by adrenocorticotropic hormone (ACTH) from the anterior pituitary and corticotropin releasing hormone (CRH) from the hypothalamus. Cortisol has multiple functionalities in maintaining bodily homeostasis - including anti-inflammatory influences - through its diurnal secretion pattern (which has been studied extensively); its secretion is also increased in response to major traumatic events such as surgery. Due to the adverse health consequences of an abnormal immune response, it is crucial to understand the effect of cortisol in modulating inflammation. To address this physiological issue, we characterize the secretion of cortisol using a high temporal resolution dataset of ten patients undergoing coronary arterial bypass grafting (CABG) surgery, in comparison with a control group not undergoing surgery. We find that cortisol exhibits different pulsatile dynamics in those undergoing cardiac surgery compared to the control subjects. We also summarize the causality of cortisol's relationship with different cytokines (which are one type of inflammatory markers) by performing Granger causality analysis.Clinical relevance- This work documents time-varying patterns of the HPA axis hormone cortisol in the inflammatory response to cardiac surgery and may eventually help improve patients' prognosis post-surgery (or in other conditions) by enabling early detection of an abnormal cortisol or inflammatory response and enabling patient specific remedial interventions.
Collapse
|
9
|
Upton TJ, Zavala E, Methlie P, Kämpe O, Tsagarakis S, Øksnes M, Bensing S, Vassiliadi DA, Grytaas MA, Botusan IR, Ueland G, Berinder K, Simunkova K, Balomenaki M, Margaritopoulos D, Henne N, Crossley R, Russell G, Husebye ES, Lightman SL. High-resolution daily profiles of tissue adrenal steroids by portable automated collection. Sci Transl Med 2023; 15:eadg8464. [PMID: 37343084 DOI: 10.1126/scitranslmed.adg8464] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Rhythms are intrinsic to endocrine systems, and disruption of these hormone oscillations occurs at very early stages of the disease. Because adrenal hormones are secreted with both circadian and ultradian periods, conventional single-time point measurements provide limited information about rhythmicity and, crucially, do not provide information during sleep, when many hormones fluctuate from nadir to peak concentrations. If blood sampling is attempted overnight, then this necessitates admission to a clinical research unit, can be stressful, and disturbs sleep. To overcome this problem and to measure free hormones within their target tissues, we used microdialysis, an ambulatory fraction collector, and liquid chromatography-tandem mass spectrometry to obtain high-resolution profiles of tissue adrenal steroids over 24 hours in 214 healthy volunteers. For validation, we compared tissue against plasma measurements in a further seven healthy volunteers. Sample collection from subcutaneous tissue was safe, well tolerated, and allowed most normal activities to continue. In addition to cortisol, we identified daily and ultradian variation in free cortisone, corticosterone, 18-hydroxycortisol, aldosterone, tetrahydrocortisol and allo-tetrahydrocortisol, and the presence of dehydroepiandrosterone sulfate. We used mathematical and computational methods to quantify the interindividual variability of hormones at different times of the day and develop "dynamic markers" of normality in healthy individuals stratified by sex, age, and body mass index. Our results provide insight into the dynamics of adrenal steroids in tissue in real-world settings and may serve as a normative reference for biomarkers of endocrine disorders (ULTRADIAN, NCT02934399).
Collapse
Affiliation(s)
- Thomas J Upton
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Eder Zavala
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Edgbaston B15 2TT, UK
| | - Paal Methlie
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen N-5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway
| | - Olle Kämpe
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Marianne Øksnes
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen N-5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway
| | - Sophie Bensing
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Marianne A Grytaas
- Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway
| | - Ileana R Botusan
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Grethe Ueland
- Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway
| | - Katarina Berinder
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Katerina Simunkova
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen N-5021, Norway
| | - Maria Balomenaki
- Department of Endocrinology, Evangelismos Hospital, Athens 106 76, Greece
| | | | - Nina Henne
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen N-5021, Norway
| | | | - Georgina Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Eystein S Husebye
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen N-5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen N-5021, Norway
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
10
|
Schumacher MM, Santambrogio J. Cortisol and the Dexamethasone Suppression Test as a Biomarker for Melancholic Depression: A Narrative Review. J Pers Med 2023; 13:jpm13050837. [PMID: 37241007 DOI: 10.3390/jpm13050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The dexamethasone suppression test (DST) assesses the functionality of the HPA axis and can be regarded as the first potential biomarker in psychiatry. In 1981, a group of researchers at the University of Michigan published a groundbreaking paper regarding its use for diagnosing melancholic depression, reporting a diagnostic sensitivity of 67% and a specificity of 95%. While this study generated much enthusiasm and high expectations in the field of biological psychiatry, subsequent studies produced equivocal results, leading to the test being rejected by the American Psychiatric Association. The scientific reasons leading to the rise and fall of the DST are assessed in this review, suggestions are provided as to how the original test can be improved, and its potential applications in clinical psychiatry are discussed. An improved, standardized, and validated version of the DST would be a biologically meaningful and useful biomarker in psychiatry, providing a tool for clinicians caring for depressed patients in the areas of diagnosis, treatment, and prognosis, and predicting the risk of suicide. Additionally, such a test could be a crucial part in the generation of biologically homogenous patient cohorts, necessary for the successful development of new psychotropic medications.
Collapse
Affiliation(s)
| | - Jacopo Santambrogio
- Adele Bonolis AS.FRA. Onlus Foundation, 20854 Vedano al Lambro, Italy
- Presidio Corberi, ASST Brianza, 20812 Limbiate, Italy
| |
Collapse
|
11
|
Churilov AN, Milton JG. Modeling pulsativity in the hypothalamic-pituitary-adrenal hormonal axis. Sci Rep 2022; 12:8480. [PMID: 35589935 PMCID: PMC9120490 DOI: 10.1038/s41598-022-12513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
A new mathematical model for biological rhythms in the hypothalamic–pituitary–adrenal (HPA) axis is proposed. This model takes the form of a system of impulsive time-delay differential equations which include pulsatile release of adrenocorticotropin (ACTH) by the pituitary gland and a time delay for the release of glucocorticoid hormones by the adrenal gland. Numerical simulations demonstrate that the model’s response to periodic and circadian inputs from the hypothalamus are consistent with those generated by recent models which do not include a pulsatile pituitary. In contrast the oscillatory phenomena generated by the impulsive delay equation mode occur even if the time delay is zero. The observation that the time delay merely introduces a small phase shift suggesting that the effects of the adrenal gland are “downstream” to the origin of pulsativity. In addition, the model accounts for the occurrence of ultradian oscillations in an isolated pituitary gland. These observations suggest that principles of pulse modulated control, familiar to control engineers, may have an increasing role to play in understanding the HPA axis.
Collapse
Affiliation(s)
- Alexander N Churilov
- Faculty of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg, Russia
| | - John G Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, USA.
| |
Collapse
|
12
|
Galvis D, Zavala E, Walker JJ, Upton T, Lightman SL, Angelini GD, Evans J, Rogers CA, Phillips K, Gibbison B. Modelling the dynamic interaction of systemic inflammation and the hypothalamic-pituitary-adrenal (HPA) axis during and after cardiac surgery. J R Soc Interface 2022; 19:20210925. [PMID: 35472267 PMCID: PMC9042572 DOI: 10.1098/rsif.2021.0925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Major surgery and critical illness produce a potentially life-threatening systemic inflammatory response. The hypothalamic-pituitary-adrenal (HPA) axis is one of the key physiological systems that counterbalances this systemic inflammation through changes in adrenocorticotrophic hormone (ACTH) and cortisol. These hormones normally exhibit highly correlated ultradian pulsatility with an amplitude modulated by circadian processes. However, these dynamics are disrupted by major surgery and critical illness. In this work, we characterize the inflammatory, ACTH and cortisol responses of patients undergoing cardiac surgery and show that the HPA axis response can be classified into one of three phenotypes: single-pulse, two-pulse and multiple-pulse dynamics. We develop a mathematical model of cortisol secretion and metabolism that predicts the physiological mechanisms responsible for these different phenotypes. We show that the effects of inflammatory mediators are important only in the single-pulse pattern in which normal pulsatility is lost-suggesting that this phenotype could be indicative of the greatest inflammatory response. Investigating whether and how these phenotypes are correlated with clinical outcomes will be critical to patient prognosis and designing interventions to improve recovery.
Collapse
Affiliation(s)
- Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine (SMQB), University of Birmingham, Edgbaston B15 2TT, UK
| | - Eder Zavala
- Centre for Systems Modelling and Quantitative Biomedicine (SMQB), University of Birmingham, Edgbaston B15 2TT, UK
| | - Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Thomas Upton
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK
| | - Gianni D Angelini
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Jon Evans
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Chris A Rogers
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Kirsty Phillips
- Department of Pathology, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Ben Gibbison
- Department of Anaesthesia, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| |
Collapse
|
13
|
Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD. Intact circadian rhythm despite cortisol hypersecretion in Alzheimer's disease: A meta-analysis. Psychoneuroendocrinology 2021; 132:105367. [PMID: 34340133 DOI: 10.1016/j.psyneuen.2021.105367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Hypersecretion of the glucocorticoid steroid hormone cortisol by individuals with Alzheimer's disease (AD) has been suspected for several decades, during which time dozens of examinations of this phenomenon have been conducted and published. The goals of this investigation were to summarize this sizeable body of literature, test whether participant and methodological characteristics modify the magnitude of the AD-associated basal cortisol hypersecretion, and examine whether cortisol circadian rhythmicity is maintained among individuals with AD. To this end, the present meta-analysis and systematic review examined over 300 comparisons of indices of basal HPA-axis functioning between individuals with AD and cognitively normal older adults. AD was associated with basal cortisol elevations (g = 0.45) but the magnitude of the effect was not systematically impacted by any of the participant characteristics considered or the time-of-day of the cortisol sampling. Further, there was no evidence of group differences among direct indices of circadian rhythmicity such as the cortisol awakening response or the diurnal cortisol slope. These results suggest that basal hypersecretion of cortisol, but not circadian dysrhythmia, is characteristic of individuals with AD. Mechanistically, the observed hypersecretion is consistent with the theorized AD-driven deterioration of the hippocampus and subsequent reduction in hypothalamic-pituitary-adrenal axis inhibition. Further investigation is warranted to elucidate the role and timing of cortisol elevations in the progression of AD.
Collapse
Affiliation(s)
- Ursula G Saelzler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA 92093, USA.
| | - Paul Verhaeghen
- Department of Psychology, Georgia Institute of Technology, 648 Cherry St. NW, Atlanta GA 30313, USA.
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA 92093, USA.
| | - Scott D Moffat
- Department of Psychology, Georgia Institute of Technology, 648 Cherry St. NW, Atlanta GA 30313, USA.
| |
Collapse
|
14
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? Feedback Inhibition and Other Modulating Factors of Glucocorticoid Signaling Dynamics. Int J Mol Sci 2021; 22:ijms22116050. [PMID: 34205191 PMCID: PMC8200046 DOI: 10.3390/ijms22116050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Previously, we found that basal corticosterone pulsatility significantly impacts the vulnerability for developing post-traumatic stress disorder (PTSD). Rats that exhibited PTSD-phenotype were characterized by blunted basal corticosterone pulsatility amplitude and a blunted corticosterone response to a stressor. This study sought to identify the mechanisms underlining both the loss of pulsatility and differences in downstream responses. Serial blood samples were collected manually via jugular vein cannula at 10-min intervals to evaluate suppression of corticosterone following methylprednisolone administration. The rats were exposed to predator scent stress (PSS) after 24 h, and behavioral responses were assessed 7 days post-exposure for retrospective classification into behavioral response groups. Brains were harvested for measurements of the glucocorticoid receptor, mineralocorticoid receptor, FK506-binding protein-51 and arginine vasopressin in specific brain regions to assess changes in hypothalamus–pituitary–adrenal axis (HPA) regulating factors. Methylprednisolone produced greater suppression of corticosterone in the PTSD-phenotype group. During the suppression, the PTSD-phenotype rats showed a significantly more pronounced pulsatile activity. In addition, the PTSD-phenotype group showed distinct changes in the ventral and dorsal CA1, dentate gyrus as well as in the paraventricular nucleus and supra-optic nucleus. These results demonstrate a pre-trauma vulnerability state that is characterized by an over-reactivity of the HPA and changes in its regulating factors.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
- Correspondence: ; Tel.: +972-544-369106
| |
Collapse
|
15
|
Violaris IG, Kalafatakis K, Zavala E, Tsoulos IG, Lampros T, Lightman SL, Tsipouras MG, Giannakeas N, Tzallas A, Russell GM. Modelling Hydrocortisone Pharmacokinetics on a Subcutaneous Pulsatile Infusion Replacement Strategy in Patients with Adrenocortical Insufficiency. Pharmaceutics 2021; 13:pharmaceutics13060769. [PMID: 34064165 PMCID: PMC8224376 DOI: 10.3390/pharmaceutics13060769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of glucocorticoid (GC) therapeutics, recent studies have utilised a subcutaneous hydrocortisone (HC) infusion pump programmed to deliver multiple HC pulses throughout the day, with the purpose of restoring normal circadian and ultradian GC rhythmicity. A key challenge for the advancement of novel HC replacement therapies is the calibration of infusion pumps against cortisol levels measured in blood. However, repeated blood sampling sessions are enormously labour-intensive for both examiners and examinees. These sessions also have a cost, are time consuming and are occasionally unfeasible. To address this, we developed a pharmacokinetic model approximating the values of plasma cortisol levels at any point of the day from a limited number of plasma cortisol measurements. The model was validated using the plasma cortisol profiles of 9 subjects with disrupted endogenous GC synthetic capacity. The model accurately predicted plasma cortisol levels (mean absolute percentage error of 14%) when only four plasma cortisol measurements were provided. Although our model did not predict GC dynamics when HC was administered in a way other than subcutaneously or in individuals whose endogenous capacity to produce GCs is intact, it was found to successfully be used to support clinical trials (or practice) involving subcutaneous HC delivery in patients with reduced endogenous capacity to synthesize GCs.
Collapse
Affiliation(s)
- Ioannis G. Violaris
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece; (I.G.V.); (M.G.T.)
| | - Konstantinos Kalafatakis
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK; (S.L.L.); (G.M.R.)
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
- Correspondence: or ; Tel.: +30-2107288264
| | - Eder Zavala
- Centre for Systems Modelling and Quantitative Biomedicine, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Ioannis G. Tsoulos
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Theodoros Lampros
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Stafford L. Lightman
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK; (S.L.L.); (G.M.R.)
| | - Markos G. Tsipouras
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece; (I.G.V.); (M.G.T.)
| | - Nikolaos Giannakeas
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Alexandros Tzallas
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Georgina M. Russell
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK; (S.L.L.); (G.M.R.)
| |
Collapse
|
16
|
English KA, Chikani V, Jang C, Dimeski G, Olson S, Inder WJ. The relationship between early post-operative ACTH / cortisol following pituitary surgery and long-term glucocorticoid requirement - Do ultradian rhythms matter? Clin Endocrinol (Oxf) 2021; 94:636-644. [PMID: 33369760 DOI: 10.1111/cen.14404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 12/06/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether early (4-8h) post-operative ACTH after trans-sphenoidal surgery (TSS) predicts long-term hypothalamic-pituitary-adrenal (HPA) axis function and to investigate early morning day 1 ACTH/cortisol variability using rapid sampling. DESIGN Prospective observational study. METHODS Participants undergoing TSS were included; those treated with glucocorticoids pre-operatively received 100 mg intravenous hydrocortisone on anaesthetic induction. ACTH and cortisol were measured post-operatively at + 4h and + 8h after induction and on day 1 every 10 minutes between 0700h and 0900h. PRIMARY OUTCOME glucocorticoid requirement at 6 months. RESULTS Nineteen participants (10F, 9M): 6/19 (32%) were treated with replacement glucocorticoids pre-operatively; 4 had ceased by 6 weeks post-operatively. One patient developed new hypopituitarism post-operatively meaning 3/19 (16%) required glucocorticoids at 6 months. Post-operative + 4h ACTH < 14.3 pmol/L (65 ng/L) predicted secondary adrenal insufficiency (SAI) (sensitivity 100%, specificity 75%), whilst no participant with a post-operative + 4h ACTH ≥ 14.3 pmol/L (65 ng/L) required glucocorticoids at 6 months. Day 1 ACTH and cortisol showed a significant circadian fall between 0700h-0900h; ACTH 4.2 pmol/L (IQR 2.9-5.9) to 3.7 pmol/L (IQR 2.9-5.1) P = .006 and cortisol 549 nmol/L (IQR 337-618) to 439 nmol/L (IQR 315-606) P < .001, with clinically insignificant ultradian secretory pulses. CONCLUSIONS No participant with a post-operative + 4h ACTH ≥ 14.3 pmol/L (65 ng/L) required glucocorticoids at 6 months; however, given only 3/19 participants had the primary outcome of interest, this must be confirmed in a larger cohort. The timing of a day 1 morning cortisol between 0700h and 0900h influences the accuracy of a single cut-off to diagnose SAI after pituitary surgery.
Collapse
Affiliation(s)
- Katherine A English
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Viral Chikani
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Qld, Australia
- Faculty of Medicine, the University of Queensland, Brisbane, Qld, Australia
- Greenslopes Private Hospital, Brisbane, Qld, Australia
| | - Christina Jang
- Faculty of Medicine, the University of Queensland, Brisbane, Qld, Australia
- Greenslopes Private Hospital, Brisbane, Qld, Australia
| | - Goce Dimeski
- Faculty of Medicine, the University of Queensland, Brisbane, Qld, Australia
- Department of Chemical Pathology, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Sarah Olson
- Greenslopes Private Hospital, Brisbane, Qld, Australia
- Department of Neurosurgery, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Warrick J Inder
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Qld, Australia
- Faculty of Medicine, the University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
17
|
Ivell R, Anand-Ivell R. The Physiology of Reproduction - Quo vadis? Front Physiol 2021; 12:650550. [PMID: 33859571 PMCID: PMC8042151 DOI: 10.3389/fphys.2021.650550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
The reproductive system in males and females reflects a highly dynamic underlying physiology. Yet our current understanding of this system is still largely based upon relatively simplistic snapshots of individual component cells and tissues. Gamete production as well as gonadal hormone synthesis and its influence are the manifestations of dynamic and redundant informational networks and processes, whose qualitative and quantitative dimensions, especially through development from embryo through puberty and adulthood into ageing, are still largely uncharted. Whilst the recent huge advances in molecular science have helped to describe the components of the reproductive system in ever greater detail, how these interact and function in space and time dimensions is still largely obscure. Recent developments in microfluidics, stem cell biology, and the integration of single-cell transcriptomics with tissue dynamics are offering possible methodological solutions to this issue. Such knowledge is essential if we are to understand not only the normal healthy functioning of this system, but also how and why it is affected in disease or by external impacts such as those from environmental endocrine disruptors, or in ageing. Moreover, operating within a complex network of other physiological systems, its integrational capacity is much more than the generation of male and female gametes and their roles in fertility and infertility; rather, it represents the underpinning support for health and well-being across the lifespan, through pregnancy, puberty, and adulthood, into old age.
Collapse
Affiliation(s)
- Richard Ivell
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
18
|
Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int J Mol Sci 2020; 21:ijms21197394. [PMID: 33036411 PMCID: PMC7582658 DOI: 10.3390/ijms21197394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Aptamers are a novel technology enabling the continuous measurement of analytes in blood and other body compartments, without the need for repeated sampling and the associated reagent costs of traditional antibody-based methodologies. Aptamers are short single-stranded synthetic RNA or DNA that recognise and bind to specific targets. The conformational changes that can occur upon aptamer–ligand binding are transformed into chemical, fluorescent, colour changes and other readouts. Aptamers have been developed to detect and measure a variety of targets in vitro and in vivo. Gonadotropin-releasing hormone (GnRH) is a pulsatile hypothalamic hormone that is essential for normal fertility but difficult to measure in the peripheral circulation. However, pulsatile GnRH release results in pulsatile luteinizing hormone (LH) release from the pituitary gland. As such, LH pulsatility is the clinical gold standard method to determine GnRH pulsatility in humans. Aptamers have recently been shown to successfully bind to and measure GnRH and LH, and this review will focus on this specific area. However, due to the adaptability of aptamers, and their suitability for incorporation into portable devices, aptamer-based technology is likely to be used more widely in the future.
Collapse
|
19
|
Al-Kofahi M, Ahmed MA, Jaber MM, Tran TN, Willis BA, Zimmerman CL, Gonzalez-Bolanos MT, Brundage RC, Sarafoglou K. An integrated PK-PD model for cortisol and the 17-hydroxyprogesterone and androstenedione biomarkers in children with congenital adrenal hyperplasia. Br J Clin Pharmacol 2020; 87:1098-1110. [PMID: 32652643 PMCID: PMC9328191 DOI: 10.1111/bcp.14470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
Aims The aim of this study was to characterize the pharmacokinetic/pharmacodynamic relationships of cortisol and the adrenal biomarkers 17‐hydroxyprogesterone and androstenedione in children with congenital adrenal hyperplasia (CAH). Methods A nonlinear mixed‐effect modelling approach was used to analyse cortisol, 17‐hydroxyprogesterone and androstenedione concentrations obtained over 6 hours from children with CAH (n = 50). A circadian rhythm was evident and the model leveraged literature information on circadian rhythm in untreated children with CAH. Indirect response models were applied in which cortisol inhibited the production rate of all three compounds using an Imax model. Results Cortisol was characterized by a one‐compartment model with apparent clearance and volume of distribution estimated at 22.9 L/h/70 kg and 41.1 L/70 kg, respectively. The IC50 values of cortisol concentrations for cortisol, 17‐hydroxyprogesterone and androstenedione were estimated to be 1.36, 0.45 and 0.75 μg/dL, respectively. The inhibitory effect was found to be more potent on 17OHP than D4A, and the IC50 values were higher in salt‐wasting subjects than simple virilizers. Production rates of cortisol, 17‐hydroxyprogesterone and androstenedione were higher in simple‐virilizer subjects. Half‐lives of cortisol, 17‐hydroxyprogesterone and androstenedione were 60, 47 and 77 minutes, respectively. Conclusion Rapidly changing biomarker responses to cortisol concentrations highlight that single measurements provide volatile information about a child's disease control. Our model closely captured observed cortisol, 17‐hydroxyprogesterone and androstenedione concentrations. It can be used to predict concentrations over 24 hours and allows many novel exposure metrics to be calculated, e.g., AUC, AUC‐above‐threshold, time‐within‐range, etc. Our long‐range goal is to uncover dose–exposure–outcome relationships that clinicians can use in adjusting hydrocortisone dose and timing.
Collapse
Affiliation(s)
- Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Mariam A Ahmed
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.,College of Pharmacy, Helwan University, Egypt
| | - Mutaz M Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Thang N Tran
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Brian A Willis
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Cheryl L Zimmerman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Maria T Gonzalez-Bolanos
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Kyriakie Sarafoglou
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| |
Collapse
|
20
|
Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr Rev 2020; 41:bnaa002. [PMID: 32060528 PMCID: PMC7240781 DOI: 10.1210/endrev/bnaa002] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
The past decade has seen several critical advances in our understanding of hypothalamic-pituitary-adrenal (HPA) axis regulation. Homeostatic physiological circuits need to integrate multiple internal and external stimuli and provide a dynamic output appropriate for the response parameters of their target tissues. The HPA axis is an example of such a homeostatic system. Recent studies have shown that circadian rhythmicity of the major output of this system-the adrenal glucocorticoid hormones corticosterone in rodent and predominately cortisol in man-comprises varying amplitude pulses that exist due to a subhypothalamic pulse generator. Oscillating endogenous glucocorticoid signals interact with regulatory systems within individual parts of the axis including the adrenal gland itself, where a regulatory network can further modify the pulsatile release of hormone. The HPA axis output is in the form of a dynamic oscillating glucocorticoid signal that needs to be decoded at the cellular level. If the pulsatile signal is abolished by the administration of a long-acting synthetic glucocorticoid, the resulting disruption in physiological regulation has the potential to negatively impact many glucocorticoid-dependent bodily systems. Even subtle alterations to the dynamics of the system, during chronic stress or certain disease states, can potentially result in changes in functional output of multiple cells and tissues throughout the body, altering metabolic processes, behavior, affective state, and cognitive function in susceptible individuals. The recent development of a novel chronotherapy, which can deliver both circadian and ultradian patterns, provides great promise for patients on glucocorticoid treatment.
Collapse
Affiliation(s)
- Stafford L Lightman
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew T Birnie
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
21
|
Gibbison B, Keenan DM, Roelfsema F, Evans J, Phillips K, Rogers CA, Angelini GD, Lightman SL. Dynamic Pituitary-Adrenal Interactions in the Critically Ill after Cardiac Surgery. J Clin Endocrinol Metab 2020; 105:dgz206. [PMID: 31738827 PMCID: PMC7089849 DOI: 10.1210/clinem/dgz206] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/15/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with critical illness are thought to be at risk of adrenal insufficiency. There are no models of dynamic hypothalamic-pituitary-adrenal (HPA) axis function in this group of patients and thus current methods of diagnosis are based on aggregated, static models. OBJECTIVE To characterize the secretory dynamics of the HPA axis in the critically ill (CI) after cardiac surgery. DESIGN Mathematical modeling of cohorts. SETTING Cardiac critical care unit. PATIENTS 20 male patients CI at least 48 hours after cardiac surgery and 19 healthy (H) male volunteers. INTERVENTIONS None. MAIN OUTCOME MEASURES Measures of hormone secretory dynamics were generated from serum adrenocorticotrophic hormone (ACTH) sampled every hour and total cortisol every 10 min for 24 h. RESULTS All CI patients had pulsatile ACTH and cortisol profiles. CI patients had similar ACTH secretion (1036.4 [737.6] pg/mL/24 h) compared to the H volunteers (1502.3 [1152.2] pg/mL/24 h; P = .20), but increased cortisol secretion (CI: 14 447.0 [5709.3] vs H: 5915.5 [1686.7)] nmol/L/24 h; P < .0001). This increase in cortisol was due to nonpulsatile (CI: 9253.4 [3348.8] vs H: 960 [589.0] nmol/L/24 h, P < .0001), rather than pulsatile cortisol secretion (CI: 5193.1 [3018.5] vs H: 4955.1 [1753.6] nmol/L/24 h; P = .43). Seven (35%) of the 20 CI patients had cortisol pulse nadirs below the current international guideline threshold for critical illness-related corticosteroid insufficiency, but an overall secretion that would not be considered deficient. CONCLUSIONS This study supports the premise that current tests of HPA axis function are unhelpful in the diagnosis of adrenal insufficiency in the CI. The reduced ACTH and increase in nonpulsatile cortisol secretion imply that the secretion of cortisol is driven by factors outside the HPA axis in critical illness.
Collapse
Affiliation(s)
- Ben Gibbison
- Department of Anaesthesia, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniel M Keenan
- Department of Statistics, University of Virginia, Charlottesville, VA, US
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology, University of Leiden, Leiden, The Netherlands
| | - Jon Evans
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Kirsty Phillips
- Department of Pathology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Chris A Rogers
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Department of Cardiac Surgery, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Bhake R, Russell GM, Kershaw Y, Stevens K, Zaccardi F, Warburton VEC, Linthorst ACE, Lightman SL. Continuous Free Cortisol Profiles in Healthy Men. J Clin Endocrinol Metab 2020; 105:5570194. [PMID: 31529059 DOI: 10.1210/clinem/dgz002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/08/2019] [Indexed: 12/26/2022]
Abstract
CONTEXT In humans, approximately 95% of circulating cortisol is bound to corticosteroid-binding globulin and albumin. It is only the free fraction that is biologically active and can activate signaling pathways via glucocorticoid hormone receptors in cells. Microdialysis is a well-established technique that enables the sampling of molecules in different compartments of the body, including extracellular fluid. This is the first study validating a rapid sampling microdialysis method measuring free cortisol in the subcutaneous and blood compartments of healthy volunteers. METHODS Healthy nonsmoking volunteers (42 men, aged 18-24 years; body mass index 18-25 kg/m2) received placebo (saline), 250 μg Synacthen, or 1 mg dexamethasone with 10-minute sampling to measure total and free cortisol (subcutaneous, intravenous, and saliva) for an hour before and 4 hours after administration. RESULTS Following stimulation by Synacthen, total serum cortisol and free cortisol in both compartments rose significantly, achieving and maintaining maximum levels between 2 and 3 hours following the stimulus. A decline in cortisol levels was evident after the administration of dexamethasone or placebo, but there was a clear pulsatile activity around lunchtime in the latter group, which was prominent in the blood compartment (total and free cortisol). There was good correlation between serum total and free cortisol (subcutaneous and intravenous) in the Synacthen and dexamethasone groups with no significant delay (less than 5 minutes) between total and free cortisol. CONCLUSIONS This seminal study demonstrated the dynamic responses of total blood cortisol and microdialysis derived free cortisol in blood, subcutaneous tissue, and saliva in men.
Collapse
Affiliation(s)
- Ragini Bhake
- University Hospitals Leicester NHS Trust, Leicester, UK
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yvonne Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kara Stevens
- Medical Statistics, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Francesco Zaccardi
- Leicester Real World Evidence Unit, Leicester Diabetes Centre, University of Leicester, Leicester, UK
| | | | - Astrid C E Linthorst
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
23
|
Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology 2020; 114:104599. [PMID: 32045797 DOI: 10.1016/j.psyneuen.2020.104599] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Acute psychological stress activates the sympatho-adrenal medullary (SAM) system and hypothalamo-pituitary adrenal (HPA) axis. The relevance of this stress reactivity to long-term health and disease outcomes is of great importance. We examined prospective studies in apparently healthy adults to test the hypothesis that the magnitude of the response to acute psychological stress in healthy adults is related to future health and disease outcomes. METHODS We searched Medline Complete, PsycINFO, CINAHL Complete and Embase up to 15 Aug 2019. Included studies were peer-reviewed, English-language, prospective studies in apparently healthy adults. The exposure was acute psychological stress reactivity (SAM system or HPA axis) at baseline. The outcome was any health or disease outcome at follow-up after ≥1 year. RESULTS We identified 1719 papers through database searching and 1 additional paper through other sources. Forty-seven papers met our criteria including 32,866 participants (range 30-4100) with 1-23 years of follow-up. Overall, one third (32 %; 83/263) of all reported findings were significant and two thirds (68 %; 180/263) were null. With regard to the significant findings, both exaggerated (i.e. high) and blunted (i.e. low) stress reactivity of both the SAM system and the HPA axis at baseline were related to health and disease outcomes at follow-up. Exaggerated stress reactivity at baseline predicted an increase in risk factors for cardiovascular disease and decreased telomere length at follow-up. In contrast, blunted stress reactivity predicted future increased adiposity and obesity, more depression, anxiety and PTSD symptoms, greater illness frequency, musculoskeletal pain and regulatory T-Cell percentage, poorer cognitive ability, poorer self-reported health and physical disability and lower bone mass. CONCLUSION Exaggerated and blunted SAM system and HPA axis stress reactivity predicted distinct physical and mental health and disease outcomes over time. Results from prospective studies consistently indicate stress reactivity as a predictor for future health and disease outcomes. Dysregulation of stress reactivity may represent a mechanism by which psychological stress contributes to the development of future health and disease outcomes.
Collapse
|
24
|
Focke CMB, Iremonger KJ. Rhythmicity matters: Circadian and ultradian patterns of HPA axis activity. Mol Cell Endocrinol 2020; 501:110652. [PMID: 31738971 DOI: 10.1016/j.mce.2019.110652] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Oscillations are a fundamental feature of neural and endocrine systems. The hypothalamic-pituitary-adrenal (HPA) axis dynamically controls corticosteroid secretion in basal conditions and in response to stress. Across the 24-h day, HPA axis activity oscillates with both an ultradian and circadian rhythm. These rhythms have been shown to be important for regulating metabolism, inflammation, mood, cognition and stress responsiveness. Here we will discuss the neural and endocrine mechanisms driving these rhythms, the physiological importance of these rhythms and health consequences when they are disrupted.
Collapse
Affiliation(s)
- Caroline M B Focke
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
25
|
Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF, Soni V, McGowan A, Williams G, Huynh A, Palangat M, Schiltz RL, Johnson TA, Presman DM, Ferguson ML, Pegoraro G, Upadhyaya A, Hager GL. Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Mol Cell 2019; 75:1161-1177.e11. [PMID: 31421980 PMCID: PMC6754282 DOI: 10.1016/j.molcel.2019.06.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA; Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Prabhakar R Gudla
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - George F Zaki
- High Performance Computing Group, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vikas Soni
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Geneva Williams
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Anh Huynh
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Matthew L Ferguson
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Arpita Upadhyaya
- Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| |
Collapse
|
26
|
Optimal Sampling Frequency of Serum Cortisol Concentrations After Cardiac Surgery. Crit Care Med 2019; 45:e1103-e1104. [PMID: 28915200 DOI: 10.1097/ccm.0000000000002534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Hazell G, Horn G, Lightman SL, Spiga F. Dynamics of ACTH-Mediated Regulation of Gene Transcription in ATC1 and ATC7 Adrenal Zona Fasciculata Cell Lines. Endocrinology 2019; 160:587-604. [PMID: 30768667 PMCID: PMC6380881 DOI: 10.1210/en.2018-00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that mouse ATC1 and ATC7 cells, the first adrenocortical cell lines to exhibit a complete zona fasciculata (ZF) cell phenotype, respond to dynamic ACTH stimulation in a similar manner as the adrenal gland in vivo. Exploiting our previous in vivo observations that gene transcription within the steroidogenic pathway is dynamically regulated in response to a pulse of ACTH, we exposed ATC1 and ATC7 cells to various patterns of ACTH, including pulsatile and constant, and measured the transcriptional activation of this pathway. We show that pulses of ACTH administered to ATC7 cells can reliably stimulate a pulsatile pattern of transcriptional activity that is comparable to that observed in adrenal ZF cells in vivo. Hourly pulses of ACTH stimulate dynamic increases in CREB phosphorylation (pCREB) and transcription of genes involved in critical steps of steroidogenesis including signal transduction (e.g., MRAP), cholesterol delivery (e.g., StAR), and steroid biosynthesis (e.g., CYP11A1), as well as those relating to transcriptional regulation of steroidogenic factors (e.g., SF-1 and Nur-77). In contrast, constant ACTH stimulation results in a prolonged and exaggerated pCREB and steroidogenic gene transcriptional response. We also show that when a large dose of ACTH (100 nM) is applied after these treatment regimens, a significant increase in steroidogenic transcriptional responsiveness is achieved only in cells that have been exposed to pulsatile, rather than constant, ACTH. Our data support our in vivo observations that pulsatile ACTH is important for the optimal transcriptional responsiveness of the adrenal. Importantly, our data suggest that ATC7 cells respond to dynamic ACTH stimulation.
Collapse
Affiliation(s)
- Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Liang S, Kinghorn AB, Voliotis M, Prague JK, Veldhuis JD, Tsaneva-Atanasova K, McArdle CA, Li RHW, Cass AEG, Dhillo WS, Tanner JA. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat Commun 2019; 10:852. [PMID: 30787284 PMCID: PMC6382769 DOI: 10.1038/s41467-019-08799-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/28/2019] [Indexed: 11/23/2022] Open
Abstract
Normal reproductive functioning is critically dependent on pulsatile secretion of luteinising hormone (LH). Assessment of LH pulsatility is important for the clinical diagnosis of reproductive disorders, but current methods are hampered by frequent blood sampling coupled to expensive serial immunochemical analysis. Here, we report the development and application of a Robotic APTamer-enabled Electrochemical Reader (RAPTER) electrochemical analysis system to determine LH pulsatility. Through selective evolution of ligands by exponential enrichment (SELEX), we identify DNA aptamers that bind specifically to LH and not to related hormones. The aptamers are integrated into electrochemical aptamer-based (E-AB) sensors on a robotic platform. E-AB enables rapid, sensitive and repeatable determination of LH concentration profiles. Bayesian Spectrum Analysis is applied to determine LH pulsatility in three distinct patient cohorts. This technology has the potential to transform the clinical care of patients with reproductive disorders and could be developed to allow real-time in vivo hormone monitoring.
Collapse
Affiliation(s)
- Shaolin Liang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, SW7 2AZ, UK
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Julia K Prague
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN 55905, MN, USA
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony E G Cass
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, SW7 2AZ, UK.
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
30
|
Vargas I, Vgontzas AN, Abelson JL, Faghih RT, Morales KH, Perlis ML. Altered ultradian cortisol rhythmicity as a potential neurobiologic substrate for chronic insomnia. Sleep Med Rev 2018; 41:234-243. [PMID: 29678398 PMCID: PMC6524148 DOI: 10.1016/j.smrv.2018.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
Abstract
Chronic insomnia is highly prevalent and associated with significant morbidity (i.e., confers risk for multiple psychiatric and medical disorders, such as depression and hypertension). Therefore, it is essential to identify factors that perpetuate this disorder. One candidate factor in the neurobiology of chronic insomnia is hypothalamic-pituitary-adrenal-axis dysregulation, and in particular, alterations in circadian cortisol rhythmicity. Cortisol secretory patterns, however, fluctuate with both a circadian and an ultradian rhythm (i.e., pulses every 60-120 min). Ultradian cortisol pulses are thought to be involved in the maintenance of wakefulness during the day and their relative absence at night may allow for the consolidation of sleep and/or shorter nocturnal awakenings. It is possible that the wakefulness that occurs in chronic insomnia may be associated with the aberrant occurrence of cortisol pulses at night. While cortisol pulses naturally occur with transient awakenings, it may also be the case that cortisol pulsatility becomes a conditioned phenomenon that predisposes one to awaken and/or experience prolonged nocturnal awakenings. The current review summarizes the literature on cortisol rhythmicity in subjects with chronic insomnia, and proffers the suggestion that it may be abnormalities in the ultradian rather than circadian cortisol that is associated with the pathophysiology of insomnia.
Collapse
Affiliation(s)
- Ivan Vargas
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Behavioral Sleep Medicine Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James L Abelson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, USA
| | - Rose T Faghih
- Computational Medicine Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Knashawn H Morales
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Perlis
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Behavioral Sleep Medicine Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is the major neuroendocrine axis regulating homeostasis in mammals. Glucocorticoid hormones are rapidly synthesized and secreted from the adrenal gland in response to stress. In addition, under basal conditions glucocorticoids are released rhythmically with both a circadian and an ultradian (pulsatile) pattern. These rhythms are important not only for normal function of glucocorticoid target organs, but also for the HPA axis responses to stress. Several studies have shown that disruption of glucocorticoid rhythms is associated with disease both in humans and in rodents. In this review, we will discuss our knowledge of the negative feedback mechanisms that regulate basal ultradian synthesis and secretion of glucocorticoids, including the role of glucocorticoid and mineralocorticoid receptors and their chaperone protein FKBP51. Moreover, in light of recent findings, we will also discuss the importance of intra-adrenal glucocorticoid receptor signaling in regulating glucocorticoid synthesis.
Collapse
Affiliation(s)
- Julia K Gjerstad
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- CONTACT Francesca SpigaUniversity of Bristol, Translational Health Sciences, Bristol Medical School, Dorothy Hodgkin Building, Whitson Street, BristolBS1 3NY, UK
| |
Collapse
|
32
|
Grant AD, Wilsterman K, Smarr BL, Kriegsfeld LJ. Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms. J Biol Rhythms 2018; 33:475-496. [PMID: 30132387 DOI: 10.1177/0748730418791423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas long-period temporal structures in endocrine dynamics have been well studied, endocrine rhythms on the scale of hours are relatively unexplored. The study of these ultradian rhythms (URs) has remained nascent, in part, because a theoretical framework unifying ultradian patterns across systems has not been established. The present overview proposes a conceptual coupled oscillator network model of URs in which oscillating hormonal outputs, or nodes, are connected by edges representing the strength of node-node coupling. We propose that variable-strength coupling exists both within and across classic hormonal axes. Because coupled oscillators synchronize, such a model implies that changes across hormonal systems could be inferred by surveying accessible nodes in the network. This implication would at once simplify the study of URs and open new avenues of exploration into conditions affecting coupling. In support of this proposed framework, we review mammalian evidence for (1) URs of the gut-brain axis and the hypothalamo-pituitary-thyroid, -adrenal, and -gonadal axes, (2) UR coupling within and across these axes; and (3) the relation of these URs to body temperature. URs across these systems exhibit behavior broadly consistent with a coupled oscillator network, maintaining both consistent URs and coupling within and across axes. This model may aid the exploration of mammalian physiology at high temporal resolution and improve the understanding of endocrine system dynamics within individuals.
Collapse
Affiliation(s)
- Azure D Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, California
| | - Benjamin L Smarr
- Department of Psychology, University of California, Berkeley, California
| | - Lance J Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Department of Psychology, University of California, Berkeley, California
| |
Collapse
|
33
|
Gibbison B. Diagnosing adrenal insufficiency in critical illness: Time to go back to the start. Resuscitation 2018; 129:A11-A12. [PMID: 29906499 DOI: 10.1016/j.resuscitation.2018.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Ben Gibbison
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, United Kingdom.
| |
Collapse
|
34
|
Sahlabadi M, Hutapea P. Novel design of honeybee-inspired needles for percutaneous procedure. BIOINSPIRATION & BIOMIMETICS 2018; 13:036013. [PMID: 29261096 DOI: 10.1088/1748-3190/aaa348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The focus of this paper is to present new designs of innovative bioinspired needles to be used during percutaneous procedures. Insect stingers have been known to easily penetrate soft tissues. Bioinspired needles mimicking the barbs in a honeybee stinger were developed for a smaller insertion force, which can provide a less invasive procedure. Decreasing the insertion force will decrease the tissue deformation, which is essential for more accurate targeting. In this study, some design parameters, in particular, barb shape and geometry (i.e. front angle, back angle, and height) were defined, and their effects on the insertion force were investigated. Three-dimensional printing technology was used to manufacture bioinspired needles. A specially-designed insertion test setup using tissue mimicking polyvinyl chloride (PVC) gels was developed to measure the insertion and extraction forces. The barb design parameters were then experimentally modified through detailed experimental procedures to further reduce the insertion force. Different scales of the barbed needles were designed and used to explore the size-scale effect on the insertion force. To further investigate the efficacy of the proposed needle design in real surgeries, preliminary ex vivo insertion tests into bovine liver tissue were performed. Our results show that the insertion force of the needles in different scales decreased by 21-35% in PVC gel insertion tests, and by 46% in bovine liver tissue insertion tests.
Collapse
Affiliation(s)
- Mohammad Sahlabadi
- Department of Mechanical Engineering, Temple University, Philadelphia, PA 19027, United States of America
| | | |
Collapse
|
35
|
The emerging importance of ultradian glucocorticoid rhythms within metabolic pathology. ANNALES D'ENDOCRINOLOGIE 2018; 79:112-114. [PMID: 29627070 PMCID: PMC5984398 DOI: 10.1016/j.ando.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid (GC) hormones play significant roles within homeostasis and the chrono-dynamics of their regulatory role has become increasingly recognised within dysregulated GC pathology, particularly with metabolic phenotypes. Within this article, we will discuss the relevance of the ultradian homeostatic rhythm, how its dysregulation effects glucocorticoid receptor and RNA polymeraseII recruitment and may play a significant role within aberrant metabolic action.
Collapse
|
36
|
Brown S, Hadlow N, Badshah I, Henley D. A time-adjusted cortisol cut-off can reduce referral rate for Synacthen stimulation test whilst maintaining diagnostic performance. Clin Endocrinol (Oxf) 2017; 87:418-424. [PMID: 28653409 DOI: 10.1111/cen.13405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/12/2017] [Accepted: 06/17/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Cortisol cut-offs can predict requirement for Synacthen stimulation tests (SST). We assessed the performance of a standard cortisol cut-off (375 nmol/L) across the morning and compared this with a time-adjusted cut-off. DESIGN Retrospective audit PATIENTS: Community reference set (n=12 550) and SST patients (n=757). MEASUREMENTS In the reference population, time-specific cortisol medians were calculated and used to convert cortisol to time-adjusted Multiples of the Median (MoM). In 757 SST patients, the predictive performance of a standard cortisol cut-off (375 nmol/L) and its time-adjusted MoM equivalent were compared. RESULTS Median cortisol decreased by ~30 nmol/L per hour between 0700 and 1200h. In the reference population, proportions below the 375 nmol/L cut-off increased throughout the morning (range 35%-64%), whereas using the time-adjusted MoM cut-off proportions were consistent (range 46%-50%), with a 17% maximal difference in referral rates between the two cut-offs after 1100h. A similar pattern was noted in the SST cohort. When a cortisol MoM cut-off was used to predict SST success, the excess proportion of patients tested and misclassification rates were lower and more consistent than when the standard cut-off was used. A median cortisol of 375 nmol/L equated to 444 and 313 nmol/L before 0800 and after 1100 h, respectively. CONCLUSION The use of a standard cortisol cut-off results in 17% more patients being referred for SST later in the morning. A time-adjusted cortisol cut-off provides consistent and lower referral rates, whilst maintaining similar or better performance than a standard single cut-off in predicting outcome of SST.
Collapse
Affiliation(s)
- Suzanne Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Narelle Hadlow
- Department of Biochemistry, PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Imran Badshah
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - David Henley
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
37
|
Abstract
The hypothalamic-pituitary-adrenal axis is a dynamic system regulating glucocorticoid hormone synthesis in the adrenal glands. Many key factors within the adrenal steroidogenic pathway have been identified and studied, but little is known about how these factors function collectively as a dynamic network of interacting components. To investigate this, we developed a mathematical model of the adrenal steroidogenic regulatory network that accounts for key regulatory processes occurring at different timescales. We used our model to predict the time evolution of steroidogenesis in response to physiological adrenocorticotropic hormone (ACTH) perturbations, ranging from basal pulses to larger stress-like stimulations (e.g., inflammatory stress). Testing these predictions experimentally in the rat, our results show that the steroidogenic regulatory network architecture is sufficient to respond to both small and large ACTH perturbations, but coupling this regulatory network with the immune pathway is necessary to explain the dissociated dynamics between ACTH and glucocorticoids observed under conditions of inflammatory stress.
Collapse
|
38
|
Bangsgaard EO, Ottesen JT. Patient specific modeling of the HPA axis related to clinical diagnosis of depression. Math Biosci 2017; 287:24-35. [DOI: 10.1016/j.mbs.2016.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/15/2022]
|
39
|
Gibbison B, López-López JA, Higgins JPT, Miller T, Angelini GD, Lightman SL, Annane D. Corticosteroids in septic shock: a systematic review and network meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:78. [PMID: 28351429 PMCID: PMC5371269 DOI: 10.1186/s13054-017-1659-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Background Multiple corticosteroids and treatment regimens have been used as adjuncts in the treatment of septic shock. Qualitative and quantitative differences exist at cellular and tissular levels between the different drugs and their patterns of delivery. The objective of this study was to elucidate any differences between the drugs and their treatment regimens regarding outcomes for corticosteroid use in adult patients with septic shock. Methods Network meta-analysis of the data used for the recently conducted Cochrane review was performed. Studies that included children and were designed to assess respiratory function in pneumonia and acute respiratory distress syndrome, as well as cross-over studies, were excluded. Network plots were created for each outcome, and all analyses were conducted using a frequentist approach assuming a random-effects model. Results Complete data from 22 studies and partial data from 1 study were included. Network meta-analysis provided no clear evidence that any intervention or treatment regimen is better than any other across the spectrum of outcomes. There was strong evidence of differential efficacy in only one area: shock reversal. Hydrocortisone boluses and infusions were more likely than methylprednisolone boluses and placebo to result in shock reversal. Conclusions There was no clear evidence that any one corticosteroid drug or treatment regimen is more likely to be effective in reducing mortality or reducing the incidence of gastrointestinal bleeding or superinfection in septic shock. Hydrocortisone delivered as a bolus or as an infusion was more likely than placebo and methylprednisolone to result in shock reversal. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ben Gibbison
- Cardiac Anaesthesia and Intensive Care, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK.
| | - José A López-López
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Julian P T Higgins
- Centre for Research Synthesis and Decision Analysis, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Tom Miller
- Cardiac Anaesthesia and Intensive Care, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Cardiac Surgery, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Metabolism, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Djillali Annane
- Medicine: Critical Care Medicine, Hôpital Raymond Poincaré, Assistance Publique Hôpitaux de Paris (APHP), Garches, France.,School of Medicine, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
40
|
David Hopper L. Automated Microsampling Technologies and Enhancements in the 3Rs. ILAR J 2017; 57:166-177. [DOI: 10.1093/ilar/ilw020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023] Open
|
41
|
Miller T, Gibbison B, Russell GM. Hypothalamic–pituitary–adrenal function during health, major surgery, and critical illness. BJA Educ 2017. [DOI: 10.1093/bjaed/mkw042] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Du Y, Chen YJ, He B, Wang YW. The Effects of Single-Dose Etomidate Versus Propofol on Cortisol Levels in Pediatric Patients Undergoing Urologic Surgery: A Randomized Controlled Trial. Anesth Analg 2016; 121:1580-5. [PMID: 26496368 DOI: 10.1213/ane.0000000000000981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The effects of general anesthetics on the hypothalamus-pituitary-adrenal axis and cortisol release in children are poorly characterized. Normal, daily fluctuation of cortisol levels complicates assessment of these effects. This study aimed to characterize the effects of etomidate compared with propofol on the normal cortisol secretory pattern in children undergoing urologic surgery by using a salivary cortisol assay. METHODS In this prospective, randomized, double-blind, controlled study, we recruited 80 children aged 3 to 12 years assigned ASA physical status I who were scheduled for urologic surgery and 11 healthy child volunteers. Before surgery, cortisol levels of the 11 volunteers and 15 study patients were tested from 7:00 AM to 9:00 PM every hour for 1 day. The study patients were then randomly allocated into an etomidate group and a propofol group, receiving etomidate 0.3 mg/kg (n = 38) or propofol 2 mg/kg (n = 39) and midazolam 0.1 mg/kg, fentanyl 2 μg/kg, and rocuronium 0.6 mg/kg for induction, respectively. The cortisol levels of the patients were assessed continuously for 2 days postoperatively. RESULTS The cortisol levels of the etomidate group were continuously and significantly lower than those of the propofol group from the time of discharge from the postanesthesia care unit (approximately 2:00 PM) until 8:00 AM the next morning (all P < 0.0001) and were significantly lower than before surgery at the same time points (all P < 0.0001). Except at 11:00 AM just before the operation, no significant differences in cortisol levels were detected before and after the operation in the propofol group (P max = 0.476, P min = 0.002). Also, no significant differences in clinical outcomes were detected between the 2 groups undergoing surgery (all P > 0.070). CONCLUSIONS Compared with propofol, a single induction dose of etomidate suppressed postoperative cortisol levels in healthy children undergoing urologic surgery. This suppression lasted approximately 24 hours and was not associated with any changes in clinical outcomes.
Collapse
Affiliation(s)
- Yi Du
- From the Department of Anesthesiology and Critical Care Medicine, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
43
|
Lightman S. Rhythms Within Rhythms: The Importance of Oscillations for Glucocorticoid Hormones. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Kalafatakis K, Russell GM, Zarros A, Lightman SL. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics. Neurosci Biobehav Rev 2015; 61:12-25. [PMID: 26656793 DOI: 10.1016/j.neubiorev.2015.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Apostolos Zarros
- Research Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| |
Collapse
|
45
|
Spiga F, Walker JJ, Gupta R, Terry JR, Lightman SL. 60 YEARS OF NEUROENDOCRINOLOGY: Glucocorticoid dynamics: insights from mathematical, experimental and clinical studies. J Endocrinol 2015; 226:T55-66. [PMID: 26148724 DOI: 10.1530/joe-15-0132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 02/03/2023]
Abstract
A pulsatile pattern of secretion is a characteristic of many hormonal systems, including the glucocorticoid-producing hypothalamic-pituitary-adrenal (HPA) axis. Despite recent evidence supporting its importance for behavioral, neuroendocrine and transcriptional effects of glucocorticoids, there has been a paucity of information regarding the origin of glucocorticoid pulsatility. In this review we discuss the mechanisms regulating pulsatile dynamics of the HPA axis, and how these dynamics become disrupted in disease. Our recent mathematical, experimental and clinical studies show that glucocorticoid pulsatility can be generated and maintained by dynamic processes at the level of the pituitary-adrenal axis, and that an intra-adrenal negative feedback may contribute to these dynamics.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Rita Gupta
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - John R Terry
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| |
Collapse
|
46
|
Spiga F, Lightman SL. Dynamics of adrenal glucocorticoid steroidogenesis in health and disease. Mol Cell Endocrinol 2015; 408:227-34. [PMID: 25662280 DOI: 10.1016/j.mce.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterized by an ultradian (pulsatile) pattern of hormone secretion. Pulsatility of glucocorticoids has been found critical for optimal transcriptional, neuroendocrine and behavioral responses. This review will focus on the mechanisms underlying the origin of the glucocorticoid ultradian rhythm. Our recent research shows that the ultradian rhythm of glucocorticoids depends on highly dynamic processes within adrenocortical steroidogenic cells. Furthermore, we have evidence that disruption of these dynamics leads to abnormal glucocorticoid secretion observed in disease and critical illness in both humans and rats.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
47
|
Russell GM, Kalafatakis K, Lightman SL. The importance of biological oscillators for hypothalamic-pituitary-adrenal activity and tissue glucocorticoid response: coordinating stress and neurobehavioural adaptation. J Neuroendocrinol 2015; 27:378-88. [PMID: 25494867 PMCID: PMC4539599 DOI: 10.1111/jne.12247] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 12/28/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is critical for life. It has a circadian rhythm that anticipates the metabolic, immunoregulatory and cognitive needs of the active portion of the day, and retains an ability to react rapidly to perceived stressful stimuli. The circadian variation in glucocorticoids is very 'noisy' because it is made up from an underlying approximately hourly ultradian rhythm of glucocorticoid pulses, which increase in amplitude at the peak of circadian secretion. We have shown that these pulses emerge as a consequence of the feedforward-feedback relationship between the actions of corticotrophin hormone (ACTH) on the adrenal cortex and of endogenous glucocorticoids on pituitary corticotrophs. The adrenal gland itself has adapted to respond preferentially to a digital signal of ACTH and has its own feedforward-feedback system that effectively amplifies the pulsatile characteristics of the incoming signal. Glucocorticoid receptor signalling in the body is also adapted to respond in a tissue-specific manner to oscillating signals of glucocorticoids, and gene transcriptional and behavioural responses depend on the pattern (i.e. constant or pulsatile) of glucocorticoid presentation. During major stressful activation of the HPA, there is a marked remodelling of the pituitary-adrenal interaction. The link between ACTH and glucocorticoid pulses is maintained, although there is a massive increase in the adrenal responsiveness to the ACTH signals.
Collapse
Affiliation(s)
- G M Russell
- Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - K Kalafatakis
- Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - S L Lightman
- Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Kolbe I, Dumbell R, Oster H. Circadian Clocks and the Interaction between Stress Axis and Adipose Function. Int J Endocrinol 2015; 2015:693204. [PMID: 26000016 PMCID: PMC4426660 DOI: 10.1155/2015/693204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 01/21/2023] Open
Abstract
Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
- *Henrik Oster:
| |
Collapse
|
49
|
Gudmand-Hoeyer J, Timmermann S, Ottesen JT. Patient-specific modeling of the neuroendocrine HPA-axis and its relation to depression: Ultradian and circadian oscillations. Math Biosci 2014; 257:23-32. [DOI: 10.1016/j.mbs.2014.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
|
50
|
Russell GM, Lightman SL. Can side effects of steroid treatments be minimized by the temporal aspects of delivery method? Expert Opin Drug Saf 2014; 13:1501-13. [DOI: 10.1517/14740338.2014.965141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|