1
|
Zhang Z, Ke F, Wu J, Li X, Chen X, Zhang L, Jing P, Liu Z, Liu Z, Lu R, Fu S, Zhou M, Lin Y, Sun X, Zhong Z. Development of the novel formulations of perospirone for the treatment of schizophrenia. Drug Deliv Transl Res 2024:10.1007/s13346-024-01730-7. [PMID: 39480624 DOI: 10.1007/s13346-024-01730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/02/2024]
Abstract
Schizophrenia is a severe mental illness. Its clinical features include positive symptoms (hallucinations, delusions, thought disorders), negative symptoms (avolition, anhedonia, poverty of thought, social withdrawal), and cognitive dysfunction. A large number of antipsychotic drugs with traditional dosage forms are available to mitigate the symptoms of schizophrenia but the duration of action is commonly short, often requiring frequent administration. The perospirone hydrochloride hydrate (PER), as a second-generation antipsychotic drug, shows therapeutic effects on both positive and negative symptoms of schizophrenia, with less impact on cognitive function. However, it suffers from a short half-life, fluctuating blood concentration, instability in the circulating leading to peak-trough fluctuations, and poor patient compliance due to the required frequent administration. Based on the hydrophilic matrix, we developed novel formulations of PER, including the extended-release and the controlled-release tablets of PER. The resulting formulations delayed the drug release and prolonged the persistence of PER, leading to an extended half-life and reduced fluctuations in blood concentration with stable therapeutic levels and an improved absorption with higher bioavailability, thus reducing dosing frequency. These oral extended-release and controlled-release tablets promise to alleviate patients' medication discomfort and provide long-term sustained drug release. They would provide a platform with broad prospects for the clinical treatment of schizophrenia.
Collapse
Affiliation(s)
- Zijun Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
- Deyang Hospital, the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, 618000, Deyang, Sichuan, China
| | - Famin Ke
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Jili Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Xiyao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Lanxing Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Ruilin Lu
- Suining First People's Hospital, 629099, Suining, Sichuan, China
| | - Shihua Fu
- Xuyongxian People's Hospital, 646499, Xuyong, Luzhou, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China.
| | - Xiaoduan Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, Sichuan, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, 646000, Luzhou, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Kang JH, Yoo SD, Han KH, Jeong SJ, Lee HJ, Yoo JH, Shin DH, Kim DW, Park ES, Park CW. Characterization of Channeling Effects Applied to Extended-Release Matrix Tablets Containing Pirfenidone. Chem Pharm Bull (Tokyo) 2023; 71:678-686. [PMID: 37357388 DOI: 10.1248/cpb.c23-00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Pirfenidone (PRF) is an anti-fibrotic agent that has been approved by the Food and Drug Administration (FDA) for the treatment of mild to moderate idiopathic pulmonary fibrosis. However, the current oral administration dosing regimen of PRF is complex and requires high doses. Patients are instructed to take PRF three times daily, with each dose consisting of up to three capsules or tablets (600 mg/d or 1.8 g/d of PRF) taken with food. To improve the dosing regimen, efforts are being made to develop an extended-release tablet with a zero-order release pattern. In this study, two types of extended-release matrix tablets were compared: non-channeled extended-release matrix tablets (NChMT) and channeled extended-release matrix tablets (ChMT). In vitro release tests, swelling and erosion index, rheology studies, and X-ray microcomputed tomography (XRCT), were conducted. The results indicated that ChMT maintained a zero-order release pattern with a constant release rate, while NChMT exhibited a decreased release rate in the latter half of the dissolution. ChMT exhibited accelerated swelling and erosion compared to other formulations, and this was made possible by the presence of channels within the tablet. These channels allowed for thorough wetting and swelling throughout the entire depth of the tablet. The formation of channels was confirmed through XRCT images. In conclusion, the presence of channels in ChMT tablets increased the rate of swelling and erosion, resulting in a zero-order release pattern. This development offers the potential to improve the dosage of PRF and reduce its associated side effects.
Collapse
Affiliation(s)
- Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University
| | | | - Ki-Hun Han
- College of Pharmacy, Chungbuk National University
| | | | - Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University
| | - Je Hwa Yoo
- College of Pharmacy, Chungbuk National University
| | | | | | | | | |
Collapse
|
3
|
Kang JH, Yang MS, Kwon TK, Kim DW, Park CW. Inhaled deep eutectic solvent based-nanoemulsion of pirfenidone in idiopathic pulmonary fibrosis. J Control Release 2022; 352:570-585. [PMID: 36341935 DOI: 10.1016/j.jconrel.2022.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Pirfenidone (PRF), the first FDA-approved drug to treat idiopathic pulmonary fibrosis (IPF) and formulated as an oral dosage form, has many side effects. To enhance the therapeutic effect, we discovered a high-load nanoemulsion using a novel deep eutectic solvent (DES) and developed an inhalation drug with improved bioavailability. The DES of PRF and N-acetylcysteine were discovered, and their physicochemical properties were evaluated in this study. The mechanism of DES formation was confirmed by FT-IR and 1H NMR and suggested to involve hydrogen bonding. The DES nanoemulsion in which the nano-sized droplets were dispersed is optimized by mixing the DES and distilled water in a ratio. The in vivo pharmacokinetic study showed that the pulmonary route of administration is superior to that of the oral route, and the DES nanoemulsion is superior to that of the PRF solution in achieving better bioavailability and lung distribution. The therapeutic effect of PRF for IPF could be confirmed through in vivo pharmacodynamics studies, including lung function assessment, enzyme-linked immunosorbent assay, histology, and micro-computed tomography using the bleomycin-induced IPF rat model. In addition, the pulmonary route administration of PRF is advantageous in reducing the toxicity risk.
Collapse
Affiliation(s)
- Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Seok Yang
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Taek Kwan Kwon
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
4
|
Suk Kim J, ud Din F, Jin Choi Y, Ran Woo M, Cheon S, Hun Ji S, Park S, Oh Kim J, Seok Youn Y, Lim SJ, Giu Jin S, Choi HG. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: A prospective alternative to conventional solid dispersion. Int J Pharm 2022; 628:122286. [DOI: 10.1016/j.ijpharm.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
5
|
Formulation of a Gastroretentive In Situ Oral Gel Containing Metformin HCl Based on DoE. Pharmaceutics 2022; 14:pharmaceutics14091777. [PMID: 36145525 PMCID: PMC9504191 DOI: 10.3390/pharmaceutics14091777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
A gastroretentive in situ oral gel containing metformin hydrochloride (Met HCl) was prepared based on sodium alginate (Sod ALG), calcium carbonate, and hydroxyethylcellulose (HEC). The optimal composition of the formulation was explored based on the design of experiments (DoE). First, a 32 full factorial design was used for formulation E1 to determine proper composition of Sod ALG and calcium carbonate. Second, a circumscribed central composite design was employed to add HEC as a thickening agent (formulation E2). The dissolution rates at 15, 30, 60, 120, and 240 min were used as responses. Partial least squares regression analysis indicated the effect of each component in delaying the release of Met HCl in the oral gel formulation. The optimized formulation E2-08 consisting of 1.88% Sod ALG, 0.63% HEC, and 1.00% calcium carbonate and two more formulations, E2-10 and E2-12 conformed to USP monograph for extended release. Other physicochemical properties, including floating lag time and duration, viscosity, and pH, measured for each batch and FT-IR spectrometry analysis showed no unexpected interaction between Met HCl and excipients. The current study suggests the potential use of a gastroretentive in situ oral gel for Met HCl helping patient compliance. This study highlights that a systematic approach based on DoE allows the formulation optimization.
Collapse
|
6
|
Xu H, Xu X, Li S, Song WL, Yu DG, Annie Bligh SW. The Effect of Drug Heterogeneous Distributions within Core-Sheath Nanostructures on Its Sustained Release Profiles. Biomolecules 2021; 11:1330. [PMID: 34572545 PMCID: PMC8469915 DOI: 10.3390/biom11091330] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
The sustained release of a water-soluble drug is always a key and important issue in pharmaceutics. In this study, using cellulose acetate (CA) as a biomacromolecular matrix, core-sheath nanofibers were developed for providing a sustained release of a model drug-metformin hydrochloride (MET). The core-sheath nanofibers were fabricated using modified tri-axial electrospinning, in which a detachable homemade spinneret was explored. A process-nanostructure-performance relationship was demonstrated through a series of characterizations. The prepared nanofibers F2 could release 95% of the loaded MET through a time period of 23.4 h and had no initial burst effect. The successful sustained release performances of MET can be attributed to the following factors: (1) the reasonable application of insoluble CA as the filament-forming carrier, which determined that the drug was released through a diffusion manner; (2) the core-sheath nanostructure provided the possibility of both encapsulating the drug completely and realizing the heterogeneous distributions of MET in the nanofibers with a higher drug load core than the sheath; (3) the thickness of the sheath sections were able to be exploited for further manipulating a better drug extended release performance. The mechanisms for manipulating the drug sustained release behaviors are proposed. The present proof-of-concept protocols can pave a new way to develop many novel biomolecule-based nanostructures for extending the release of water-soluble drugs.
Collapse
Affiliation(s)
- Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Xizi Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Siyu Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Wen-Liang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (X.X.); (S.L.); (W.-L.S.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - S. W. Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|