1
|
Luo H, Tengku Kamalden TF, Zhu X, Xiang C, Nasharuddin NA. Advantages of different dietary supplements for elite combat sports athletes: a systematic review and Bayesian network meta-analysis. Sci Rep 2025; 15:271. [PMID: 39747536 PMCID: PMC11696872 DOI: 10.1038/s41598-024-84359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
With an increasing number of studies delving into the impact of dietary supplements on combat sports performance, researchers are actively seeking a more efficient dietary supplement for use in these sports. Nonetheless, controversies persist. Hence, we undertook a systematic review and Bayesian network meta-analysis to discern the most effective dietary supplements in combat sports by synthesizing the available evidence. We conducted a comprehensive search across PubMed, Web of Science, Cochrane, Embase, and SPORTDiscus, covering the period from their establishment to November 2, 2023. Our aim was to identify randomized controlled trials that evaluated the benefits of various dietary supplements for elite combat sports athletes. The risk of bias in these trials was assessed using the revised Cochrane Risk of Bias Tool for Randomized Trials. Subsequently, we employed Bayesian network meta-analysis through R software and Stata 15.0. During the analysis, we performed subgroup analysis based on the type of combat, distinguishing between striking and grappling disciplines. The analysis is based on 67 randomized controlled trials that meet all the inclusion criteria, involving 1026 elite combat sports athletes randomly assigned to 26 different dietary supplements or placebos. Results from the 50 trials included in the network meta-analysis indicate that compared to a placebo, sodium bicarbonate combined with caffeine (SMD: 2.3, 95% CrI: 1.5, 3.2), caffeine (SMD: 0.72, 95% CrI: 0.53, 0.93), beta-alanine (SMD: 0.58, 95% CrI: 0.079, 1.1), and sodium bicarbonate (SMD: 0.54, 95% CrI: 0.30, 0.81) was associated with a statistically significant increase in blood lactate concentrations. Compared to placebo, caffeine (SMD: 0.27, 95% CrI: 0.12, 0.41) was associated with a statistically significant increase in the final heart rate. Compared to placebo, creatine combined with sodium bicarbonate (SMD: 2.2, 95% CrI: 1.5, 3.1), creatine (SMD: 1.0, 95% CrI: 0.38, 1.6), and sodium bicarbonate (SMD: 0.42, 95% CrI: 0.18, 0.66) was associated with a statistically significant increase in mean power. Compared to placebo, creatine combined with sodium bicarbonate (SMD: 1.6, 95% CrI: 0.85, 2.3), creatine (SMD: 1.1, 95% CrI: 0.45, 1.7), and sodium bicarbonate (SMD: 0.35, 95% CrI: 0.11, 0.57) was associated with a statistically significant increase in peak power. Compared to placebo, caffeine (SMD: 1.4, 95% CrI: 0.19, 2.7) was associated with a statistically significant increase in the number of kicks. Compared to placebo, caffeine (SMD: 0.35, 95% CrI: 0.081, 0.61) was associated with a statistically significant increase in the number of throws. This study suggests that a range of dietary supplements, including caffeine, sodium bicarbonate, sodium bicarbonate combined with caffeine, creatine, creatine combined with sodium bicarbonate, and beta-alanine can improve the athletic performance of elite combat sports athletes.
Collapse
Affiliation(s)
- Hua Luo
- Department of Sport Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | | | - Xiaolin Zhu
- College of Sport and Art, Shenzhen Technology University, Shenzhen, China
| | - Changqing Xiang
- Faculty of Physical Education, Hubei University of Arts and Science, Xiangyang, China
| | - Nurul Amelina Nasharuddin
- Department of Multimedia, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia.
| |
Collapse
|
2
|
Anthony R, Macartney MJ, Heileson JL, McLennan PL, Peoples GE. A review and evaluation of study design considerations for omega-3 fatty acid supplementation trials in physically trained participants. Nutr Res Rev 2024; 37:1-13. [PMID: 36620998 DOI: 10.1017/s095442242300001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) supplements, rich in eicosapentaenoic acid and/or docosahexaenoic acid, are increasingly being recommended within athletic institutions. However, the wide range of doses, durations and study designs implemented across trials makes it difficult to provide clear recommendations. The importance of study design characteristics in LC n-3 PUFA trials has been detailed in cardiovascular disease research, and these considerations may guide LC n-3 PUFA study design in healthy cohorts. This systematic review examined the quality of studies and study design considerations used in evaluating the evidence for LC n-3 PUFA improving performance in physically trained adults. SCOPUS, PubMed and Web of Science electronic databases were searched to identify studies that supplemented LC n-3 PUFA in physically trained participants. Forty-six (n = 46) studies met inclusion. Most studies used a randomised control design. Risk of bias, assessed using the design-appropriate Cochrane Collaboration tool, revealed that studies had a predominant judgment of 'some concerns', 'high risk' or 'moderate risk' in randomised controlled, randomised crossover or non-randomised studies, respectively. A custom five-point quality assessment scale demonstrated that no study satisfied all recommendations for LC n-3 PUFA study design. This review has highlighted that the disparate range of study designs is likely contributing to the inconclusive state of outcomes pertaining to LC n-3 PUFA as a potential ergogenic aid. Further research must adequately account for the specific LC n-3 PUFA study design considerations, underpinned by a clear hypothesis, to achieve evidence-based dose, duration and composition recommendations for physically trained individuals.
Collapse
Affiliation(s)
- Ryan Anthony
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Michael J Macartney
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Jeffery L Heileson
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Texas, USA
| | - Peter L McLennan
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|
3
|
Safari S, Mirazi N, Ahmadi N, Asadbegi M, Nourian A, Ghaderi S, Rashno M, Komaki A. The Protective Effects of Policosanol on Learning and Memory Impairments in a Male Rat Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:2507-2519. [PMID: 36680733 DOI: 10.1007/s12035-023-03225-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by a progressive decline in cognitive performance and memory formation. The present study was designed to investigate the effect of policosanol (PCO) on cognitive function, oxidative-antioxidative status, and amyloid-beta (Aβ) plaque formation in an AD rat model induced by intracerebroventricular (ICV) injection of Aβ1-40. Healthy adult male Wistar rats were randomly divided into seven groups: control, sham (5 μL, ICV injection of phosphate-buffered saline), AD model (5 μL, ICV injection of Aβ), acacia gum (50 mg/kg, 8 weeks, gavage), PCO (50 mg/kg, 8 weeks, gavage), AD + acacia gum (50 mg/kg, 8 weeks, gavage), and AD + PCO (50 mg/kg, 8 weeks, gavage). During the ninth and tenth weeks of the study, the cognitive function of the rats was assessed by commonly used behavioral paradigms. Subsequently, oxidative-antioxidative status was examined in the serum. Moreover, compact Aβ plaques were detected by Congo red staining. The results showed that injection of Aβ impaired recognition memory in the novel object recognition test, reduced the spatial cognitive ability in the Morris water maze, and alleviated retention and recall capability in the passive avoidance task. Additionally, injection of Aβ resulted in increased total oxidant status, decreased total antioxidant capacity, and enhanced Aβ plaque formation in the rats. Intriguingly, PCO treatment improved all the above-mentioned neuropathological changes in the Aβ-induced AD rats. The results suggest that PCO improves Aβ-induced cognitive decline, possibly through modulation of oxidative-antioxidative status and inhibition of Aβ plaque formation.
Collapse
Affiliation(s)
- Samaneh Safari
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Nesa Ahmadi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Gonzalez DE, McAllister MJ, Waldman HS, Ferrando AA, Joyce J, Barringer ND, Dawes JJ, Kieffer AJ, Harvey T, Kerksick CM, Stout JR, Ziegenfuss TN, Zapp A, Tartar JL, Heileson JL, VanDusseldorp TA, Kalman DS, Campbell BI, Antonio J, Kreider RB. International society of sports nutrition position stand: tactical athlete nutrition. J Int Soc Sports Nutr 2022; 19:267-315. [PMID: 35813846 PMCID: PMC9261739 DOI: 10.1080/15502783.2022.2086017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
Abstract
This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN). General Recommendations Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness. Military Recommendations Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions. First Responder Recommendations Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| | - Matthew J. McAllister
- Texas State University, Metabolic and Applied Physiology Laboratory, Department of Health & Human Performance, San Marcos, TX, USA
| | - Hunter S. Waldman
- University of North Alabama, Department of Kinesiology, Florence, AL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jill Joyce
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK, USA
| | - Nicholas D. Barringer
- US. Army-Baylor Master’s Program in Nutrition, Department of Nutrition, San Antonio, TX, USA
| | - J. Jay Dawes
- Oklahoma State University, Department of Kinesiology, Applied Health, and Recreation, Stillwater, OK, USA
| | - Adam J. Kieffer
- Brooke Army Medical Center, Department of Nutritional Medicine, San Antonio, TX, USA
| | - Travis Harvey
- United States Special Operations Command, Preservation of the Force and Family, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Jeffrey R. Stout
- University of Central Florida, Institute of Exercise Physiology and Rehabilitation Sciences, School of Kinesiology and Physical Therapy, Orlando, FL, USA
| | | | | | - Jamie L. Tartar
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| | - Jeffery L. Heileson
- Baylor University, Department of Health, Human Performance, and Recreation, Waco, TX, USA
| | | | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Jose Antonio
- Fight Science Laboratory, Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Direct and Indirect Effects of Blood Levels of Omega-3 and Omega-6 Fatty Acids on Reading and Writing (Dis)abilities. Brain Sci 2022; 12:brainsci12020169. [PMID: 35203933 PMCID: PMC8870518 DOI: 10.3390/brainsci12020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of the present study was to investigate whether there are associations between polyunsaturated fatty acid (PUFA) blood levels, reading/writing performance and performance in neuropsychological tasks. Moderate to strong correlations were found between PUFA levels (specific omega-6/omega-3 ratios) and reading/writing abilities, and the former and neuropsychological test scores. Mediation models analyzing the direct and indirect effects of PUFA on reading and writing scores showed that the effects of fatty acids on learning measures appear to be direct rather than mediated by the investigated visual and auditory neuropsychological mechanisms. The only significant indirect effect was found for the difference in accuracy between the left and right visual fields in visual-spatial cueing tasks, acting as a mediator for the effect of PUFA ratios on writing accuracy. Regression analyses, by contrast, confirmed the roles of phonological awareness and other visual attentional factors as predictors of reading and writing skills. Such results confirm the crucial role of visual-spatial attention mechanisms in reading and writing, and suggest that visual low-level mechanisms may be more sensitive to the effects of favorable conditions related to the presence of higher omega-3 blood levels.
Collapse
|
6
|
Oliver LS, Sullivan JP, Russell S, Peake JM, Nicholson M, McNulty C, Kelly VG. Effects of Nutritional Interventions on Accuracy and Reaction Time with Relevance to Mental Fatigue in Sporting, Military, and Aerospace Populations: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:307. [PMID: 35010566 PMCID: PMC8744602 DOI: 10.3390/ijerph19010307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
Background: Research in sport, military, and aerospace populations has shown that mental fatigue may impair cognitive performance. The effect of nutritional interventions that may mitigate such negative effects has been investigated. This systematic review and meta-analysis aimed to quantify the effects of nutritional interventions on cognitive domains often measured in mental fatigue research. Methods: A systematic search for articles was conducted using key terms relevant to mental fatigue in sport, military, and aerospace populations. Two reviewers screened 11,495 abstracts and 125 full texts. A meta-analysis was conducted whereby effect sizes were calculated using subgroups for nutritional intervention and cognitive domains. Results: Fourteen studies were included in the meta-analysis. The consumption of energy drinks was found to have a small positive effect on reaction time, whilst the use of beta-alanine, carbohydrate, and caffeine had no effect. Carbohydrate and caffeine use had no effect on accuracy. Conclusions: The results of this meta-analysis suggest that consuming energy drinks may improve reaction time. The lack of effect observed for other nutritional interventions is likely due to differences in the type, timing, dosage, and form of administration. More rigorous randomized controlled trials related to the effect of nutrition interventions before, during, and after induced mental fatigue are required.
Collapse
Affiliation(s)
- Liam S. Oliver
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
| | | | - Suzanna Russell
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD 4014, Australia;
| | - Jonathan M. Peake
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mitchell Nicholson
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
| | - Craig McNulty
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
| | - Vincent G. Kelly
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.S.O.); (J.M.P.); (M.N.); (C.M.)
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4059, Australia
| |
Collapse
|
7
|
Martínez-Díaz IC, Carrasco L. Neurophysiological Stress Response and Mood Changes Induced by High-Intensity Interval Training: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147320. [PMID: 34299775 PMCID: PMC8304833 DOI: 10.3390/ijerph18147320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
This pilot study, conducted in advance of a future definitive randomized controlled trial, aimed to investigate the feasibility of using a HIIT-based intervention to induce neurophysiological stress responses that could be associated with possible changes in mood. Twenty-five active male college students with an average age of 21.7 ± 2.1 years, weight 72.6 ± 8.4 kg, height 177 ± 6.1 cm, and BMI: 23.1 ± 1.4 kg/m2 took part in this quasi-experimental pilot study in which they were evaluated in two different sessions. In the first session, subjects performed a graded exercise test to determine the cycling power output corresponding to VO2peak. The second session consisted of (a) pre-intervention assessment (collection of blood samples for measuring plasma corticotropin and cortisol levels, and application of POMS questionnaire to evaluate mood states); (b) exercise intervention (10 × 1-min of cycling at VO2peak power output); (c) post-intervention assessment, and (d) 30-min post-intervention evaluation. Significant post-exercise increases in corticotropin and cortisol plasma levels were observed whereas mood states decreased significantly at this assessment time-point. However, a significant increase in mood was found 30-min after exercise. Finally, significant relationships between increases in stress hormones concentrations and changes in mood states after intense exercise were observed. In conclusion, our HIIT-based intervention was feasible to deliver and acceptable to participants. A single bout of HIIT induced acute changes in mood states that seems to be associated with hypothalamic-pituitary-adrenal axis activation.
Collapse
|
8
|
Acosta-Estrada BA, Reyes A, Rosell CM, Rodrigo D, Ibarra-Herrera CC. Benefits and Challenges in the Incorporation of Insects in Food Products. Front Nutr 2021; 8:687712. [PMID: 34277684 PMCID: PMC8277915 DOI: 10.3389/fnut.2021.687712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Edible insects are being accepted by a growing number of consumers in recent years not only as a snack but also as a side dish or an ingredient to produce other foods. Most of the edible insects belong to one of these groups of insects such as caterpillars, butterflies, moths, wasps, beetles, crickets, grasshoppers, bees, and ants. Insect properties are analyzed and reported in the articles reviewed here, and one common feature is nutrimental content, which is one of the most important characteristics mentioned, especially proteins, lipids, fiber, and minerals. On the other hand, insects can be used as a substitute for flour of cereals for the enrichment of snacks because of their high content of proteins, lipids, and fiber. Technological properties are not altered when these insects-derived ingredients are added and sensorial analysis is satisfactory, and only in some cases, change in color takes place. Insects can be used as substitute ingredients in meat products; the products obtained have higher mineral content than traditional ones, and some texture properties (like elasticity) can be improved. In extruded products, insects are an alternative source of proteins to feed livestock, showing desirable characteristics. Isolates of proteins of insects have demonstrated bioactive activity, and these can be used to improve food formulations. Bioactive compounds, as antioxidant agents, insulin regulators, and anti-inflammatory peptides, are high-value products that can be obtained from insects. Fatty acids that play a significant role in human health and lipids from insects have showed positive impacts on coronary disease, inflammation, and cancer. Insects can be a vector for foodborne microbial contamination, but the application of good manufacturing practices and effective preservation techniques jointly with the development of appropriate safety regulations will decrease the appearance of such risks. However, allergens presented in some insects are a hazard that must be analyzed and taken into account. Despite all the favorable health-promoting characteristics present in insects and insects-derived ingredients, willingness to consume them has yet to be generalized.
Collapse
Affiliation(s)
- Beatriz A. Acosta-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Alicia Reyes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Puebla, Mexico
| | - Cristina M. Rosell
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), Valencia, Spain
| | - Dolores Rodrigo
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA-CSIC), Valencia, Spain
| | - Celeste C. Ibarra-Herrera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Puebla, Mexico
| |
Collapse
|
9
|
Lewis NA, Daniels D, Calder PC, Castell LM, Pedlar CR. Are There Benefits from the Use of Fish Oil Supplements in Athletes? A Systematic Review. Adv Nutr 2020; 11:1300-1314. [PMID: 32383739 PMCID: PMC7490155 DOI: 10.1093/advances/nmaa050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023] Open
Abstract
Despite almost 25 y of fish oil supplementation (FS) research in athletes and widespread use by the athletic community, no systematic reviews of FS in athletes have been conducted. The objectives of this systematic review are to: 1) provide a summary of the effect of FS on the athlete's physiology, health, and performance; 2) report on the quality of the evidence; 3) document any side effects as reported in the athlete research; 4) discuss any risks associated with FS use; and 5) provide guidance for FS use and highlight gaps for future research. Electronic databases (PubMed, Embase, Web of Science, Google Scholar) were searched up until April 2019. Only randomized placebo-controlled trials (RCTs) in athletes, assessing the effect of FS on a health, physiological/biochemical, or performance variable were included. Of the 137 papers identified through searches, 32 met inclusion criteria for final analysis. Athletes varied in classification from recreational to elite, and from Olympic to professional sports. Mean age for participants was 24.9 ± 4.5 y, with 70% of RCTs in males. We report consistent effects for FS on reaction time, mood, cardiovascular dynamics in cyclists, skeletal muscle recovery, the proinflammatory cytokine TNF-α, and postexercise NO responses. No clear effects on endurance performance, lung function, muscle force, or training adaptation were evident. Methodological quality, applying the Physiotherapy Evidence Database (PEDro) scale, ranged from 6 to a maximum of 11, with only 4 RCTs reporting effect sizes. Few negative outcomes were reported. We report various effects for FS on the athlete's physiology; the most consistent findings were on the central nervous system, cardiovascular system, proinflammatory cytokines, and skeletal muscle. We provide recommendations for future research and discuss the potential risks with FS use.
Collapse
Affiliation(s)
- Nathan A Lewis
- English Institute of Sport, Sports Training Village, University of Bath, United Kingdom,Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,Address correspondence to NAL (e-mail: )
| | - Diarmuid Daniels
- Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,School of Medicine, National University of Ireland, Galway, Ireland
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Lindy M Castell
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Charles R Pedlar
- Faculty of Sport, Health and Applied Science, St Mary's University, London, United Kingdom,Orreco, Research & Innovation Centre, National University of Ireland, Galway, Ireland,Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| |
Collapse
|
10
|
Eshaghi S, Morteza T, Khadijeh I, Knechtle B, Nikolaidis PT, Chtourou H. The effect of aerobic training and vitamin D supplements on the neurocognitive functions of elderly women with sleep disorders. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1579884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shahrian Eshaghi
- Sport Sciences Department, Imam Khomeini International University, Qazvin, Iran
| | - Taheri Morteza
- Sport Sciences Department, Imam Khomeini International University, Qazvin, Iran
| | - Irandoust Khadijeh
- Sport Sciences Department, Imam Khomeini International University, Qazvin, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | | - Hamdi Chtourou
- Activité Physique: Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie
- Institut Supérieur du Sport et de l’éducation physique de Sfax, Université de Sfax, Tunisie
| |
Collapse
|
11
|
Shearer J, Graham TE, Skinner TL. Nutra-ergonomics: influence of nutrition on physical employment standards and the health of workers. Appl Physiol Nutr Metab 2017; 41:S165-74. [PMID: 27277565 DOI: 10.1139/apnm-2015-0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The importance of ergonomics across several scientific domains, including biomechanics, psychology, sociology, and physiology, have been extensively explored. However, the role of other factors that may influence the health and productivity of workers, such as nutrition, is generally overlooked. Nutra-ergonomics describes the interface between workers, their work environment, and performance in relation to their nutritional status. It considers nutrition to be an integral part of a safe and productive workplace that encompasses physical and mental health as well as the long-term wellbeing of workers. This review explores the knowledge, awareness, and common practices of nutrition, hydration, stimulants, and fortified product use employed prior to physical employment standards testing and within the workplace. The influence of these nutra-ergonomic strategies on physical employment standards, worker safety, and performance will be examined. Further, the roles, responsibilities, and implications for the applicant, worker, and the employer will be discussed within the context of nutra-ergonomics, with reference to the provision and sustainability of an environment conducive to optimize worker health and wellbeing. Beyond physical employment standards, workplace productivity, and performance, the influence of extended or chronic desynchronization (irregular or shift work) in the work schedule on metabolism and long-term health, including risk of developing chronic and complex diseases, is discussed. Finally, practical nutra-ergonomic strategies and recommendations for the applicant, worker, and employer alike will be provided to enhance the short- and long-term safety, performance, health, and wellbeing of workers.
Collapse
Affiliation(s)
- Jane Shearer
- a Department of Biochemistry and Molecular Biology, Cumming School of Medicine. Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Terry E Graham
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tina L Skinner
- c Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland QLD 4072, Australia
| |
Collapse
|
12
|
Liao K, McCandliss BD, Carlson SE, Colombo J, Shaddy DJ, Kerling EH, Lepping RJ, Sittiprapaporn W, Cheatham CL, Gustafson KM. Event-related potential differences in children supplemented with long-chain polyunsaturated fatty acids during infancy. Dev Sci 2016; 20. [PMID: 27747986 DOI: 10.1111/desc.12455] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/20/2016] [Indexed: 02/04/2023]
Abstract
Long-chain polyunsaturated fatty acids (LCPUFA) have been shown to be necessary for early retinal and brain development, but long-term cognitive benefits of LCPUFA in infancy have not been definitively established. The present study sought to determine whether LCPUFA supplementation during the first year of life would result in group differences in behavior and event-related potentials (ERPs) while performing a task requiring response inhibition (Go/No-Go) at 5.5 years of age. As newborns, 69 children were randomly assigned to infant formulas containing either no LCPUFA (control) or formula with 0.64% of total fatty acids as arachidonic acid (ARA; 20:4n6) and various concentrations of docosahexaenoic acid (DHA; 22:6n3) (0.32%, 0.64% or 0.96%) for the first 12 months of life. At 5.5 years of age, a task designed to test the ability to inhibit a prepotent response (Go/No-Go) was administered, yielding both event-related potentials (ERPs) and behavioral data. Behavioral measures did not differ between groups, although reaction times of supplemented children were marginally faster. Unsupplemented children had lower P2 amplitude than supplemented children to both Go and No-Go conditions. N2 amplitude was significantly higher on No-Go trials than Go trials, but only for supplemented children, resulting in a significant Group × Condition interaction. Topographical analysis of the ERPs revealed that the LCPUFA-supplemented group developed a novel period of synchronous activation (microstate) involving wider anterior brain activation around 200 ms; this microstate was not present in controls. These findings suggest that LCPUFA supplementation during the first 12 months of life exerts a developmental programming effect that is manifest in brain electrophysiology. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=oM2leg4sevs.
Collapse
Affiliation(s)
- Ke Liao
- Hoglund Brain Imaging Center, University of Kansas Medical Center, USA
| | | | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, USA
| | - John Colombo
- Department of Psychology, University of Kansas, USA
| | - D Jill Shaddy
- Department of Dietetics and Nutrition, University of Kansas Medical Center, USA
| | - Elizabeth H Kerling
- Department of Dietetics and Nutrition, University of Kansas Medical Center, USA
| | - Rebecca J Lepping
- Hoglund Brain Imaging Center, University of Kansas Medical Center, USA
| | - Wichian Sittiprapaporn
- Hoglund Brain Imaging Center, University of Kansas Medical Center, USA.,School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok, Thailand
| | - Carol L Cheatham
- Department of Psychology, University of North Carolina at Chapel Hill, USA
| | - Kathleen M Gustafson
- Hoglund Brain Imaging Center, University of Kansas Medical Center, USA.,Department of Neurology, University of Kansas Medical Center, USA
| |
Collapse
|
13
|
Liao K, McCandliss BD, Carlson SE, Colombo J, Shaddy DJ, Kerling EH, Lepping RJ, Sittiprapaporn W, Cheatham CL, Gustafson KM. Event-related potential differences in children supplemented with long-chain polyunsaturated fatty acids during infancy. Dev Sci 2016. [DOI: 10.1111/desc.12455 10.1111/desc.12455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ke Liao
- Hoglund Brain Imaging Center; University of Kansas Medical Center; USA
| | | | - Susan E. Carlson
- Department of Dietetics and Nutrition; University of Kansas Medical Center; USA
| | - John Colombo
- Department of Psychology; University of Kansas; USA
| | - D. Jill Shaddy
- Department of Dietetics and Nutrition; University of Kansas Medical Center; USA
| | | | | | - Wichian Sittiprapaporn
- Hoglund Brain Imaging Center; University of Kansas Medical Center; USA
- School of Anti-Aging and Regenerative Medicine; Mae Fah Luang University; Bangkok Thailand
| | - Carol L. Cheatham
- Department of Psychology; University of North Carolina at Chapel Hill; USA
| | - Kathleen M. Gustafson
- Hoglund Brain Imaging Center; University of Kansas Medical Center; USA
- Department of Neurology; University of Kansas Medical Center; USA
| |
Collapse
|
14
|
|
15
|
Policosanol attenuates statin-induced increases in serum proprotein convertase subtilisin/kexin type 9 when combined with atorvastatin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:926087. [PMID: 25478000 PMCID: PMC4247936 DOI: 10.1155/2014/926087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022]
Abstract
Objective. Statin treatment alone has been demonstrated to significantly increase plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels. The effect of policosanol combined with statin on PCSK9 is unknown. Methods. Protocol I: 26 patients with atherosclerosis were randomly assigned to receive either atorvastatin 20 mg/d or policosanol 20 mg/d + atorvastatin 20 mg/d for 8 weeks. Protocol II: 15 healthy volunteers were randomly assigned to either policosanol 20 mg/d or a control group for 12 weeks. Serum levels of PCSK9 were determined at day 0 and the end of each protocol. Results. Protocol I: atorvastatin 20 mg/d significantly increased serum PCSK9 level by 39.4% (256 ± 84 ng/mL versus 357 ± 101 ng/mL, P = 0.002). However, policosanol 20 mg/d + atorvastatin 20 mg/d increased serum PCSK9 level by only 17.4% without statistical significance (264 ± 60 ng/mL versus 310 ± 86 ng/mL, P = 0.184). Protocol II: there was a trend toward decreasing serum PCSK9 levels in the policosanol group (289 ± 71 ng/mL versus 235 ± 46 ng/mL, P = 0.069). Conclusion. Policosanol combined with statin attenuated the statin-induced increase in serum PCSK9 levels. This finding indicates that policosanol might have a modest effect of lowering serum PCSK9 levels.
Collapse
|
16
|
Gammone MA, Gemello E, Riccioni G, D'Orazio N. Marine bioactives and potential application in sports. Mar Drugs 2014; 12:2357-82. [PMID: 24796298 PMCID: PMC4052294 DOI: 10.3390/md12052357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/27/2022] Open
Abstract
An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.
Collapse
Affiliation(s)
- Maria Alessandra Gammone
- Human and Clinical Nutrition Unit, Department of Biomedical Science, Via Dei Vestini, University G. D'Annunzio, Chieti 66013, Italy.
| | - Eugenio Gemello
- Human and Clinical Nutrition Unit, Department of Biomedical Science, Via Dei Vestini, University G. D'Annunzio, Chieti 66013, Italy.
| | - Graziano Riccioni
- Human and Clinical Nutrition Unit, Department of Biomedical Science, Via Dei Vestini, University G. D'Annunzio, Chieti 66013, Italy.
| | - Nicolantonio D'Orazio
- Human and Clinical Nutrition Unit, Department of Biomedical Science, Via Dei Vestini, University G. D'Annunzio, Chieti 66013, Italy.
| |
Collapse
|
17
|
Bauer I, Hughes M, Rowsell R, Cockerell R, Pipingas A, Crewther S, Crewther D. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum Psychopharmacol 2014; 29:133-44. [PMID: 24470182 DOI: 10.1002/hup.2379] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The current study aimed to investigate the effects of eicosapentaenoic acid (EPA)-rich and docosahexaenoic acid (DHA)-rich supplementations on cognitive performance and functional brain activation. DESIGN A double-blind, counterbalanced, crossover design, with a 30-day washout period between two supplementation periods (EPA-rich and DHA-rich) was employed. Functional magnetic resonance imaging scans were obtained during performance of Stroop and Spatial Working Memory tasks prior to supplementation and after each 30-day supplementation period. RESULTS Both supplementations resulted in reduced ratio of arachidonic acid to EPA levels. Following the EPA-rich supplementation, there was a reduction in functional activation in the left anterior cingulate cortex and an increase in activation in the right precentral gyrus coupled with a reduction in reaction times on the colour-word Stroop task. By contrast, the DHA-rich supplementation led to a significant increase in functional activation in the right precentral gyrus during the Stroop and Spatial Working Memory tasks, but there was no change in behavioural performance. CONCLUSIONS By extending the theory of neural efficiency to the within-subject neurocognitive effects of supplementation, we concluded that following the EPA-rich supplementation, participants' brains worked 'less hard' and achieved a better cognitive performance than prior to supplementation. Conversely, the increase in functional activation and lack of improvement in time or accuracy of cognitive performance following DHA-rich supplementation may indicate that DHA-rich supplementation is less effective than EPA-rich supplementation in enhancing neurocognitive functioning after a 30-day supplementation period in the same group of individuals.
Collapse
Affiliation(s)
- Isabelle Bauer
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Matthew Hughes
- Brain and Psychological Sciences Research Centre; Swinburne University of Technology; Hawthorn Australia
| | - Renee Rowsell
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Robyn Cockerell
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| | - Sheila Crewther
- School of Psychological Sciences; La Trobe University; Bundoora Australia
| | - David Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Australia
| |
Collapse
|
18
|
Bauer I, Crewther S, Pipingas A, Sellick L, Crewther D. Does omega-3 fatty acid supplementation enhance neural efficiency? A review of the literature. Hum Psychopharmacol 2014; 29:8-18. [PMID: 24285504 DOI: 10.1002/hup.2370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/19/2013] [Accepted: 10/20/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE While the cardiovascular, anti-inflammatory and mood benefits of omega-3 supplementation containing long chain fatty acids (LCPUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, there is no scientific consensus regarding their effects on neurocognitive functioning. This review aimed to examine the current literature on LCPUFAs by assessing their effects on cognition, neural functioning and metabolic activity. In order to view these findings together, the principle of neural efficiency as established by Richard Haier ("smart brains work less hard") was extended to apply to the neurocognitive effects of omega-3 supplementation. METHODS We reviewed multiple databases from 2000 up till 2013 using a systematic approach and focused our search to papers employing both neurophysiological techniques and cognitive measures. RESULTS Eight studies satisfied the criteria for consideration. We established that studies using brain imaging techniques show consistent changes in neurochemical substances, brain electrical activity, cerebral metabolic activity and brain oxygenation following omega-3 supplementation. CONCLUSIONS We conclude that, where comparison is available, an increase in EPA intake is more advantageous than DHA in reducing "brain effort" relative to cognitive performance.
Collapse
Affiliation(s)
- Isabelle Bauer
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
- University of Texas, Health Science Center at Houston; Department of Psychiatry and Behavioral Sciences; Houston TX USA
| | - Sheila Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
- School of Psychological Science; La Trobe University; Bundoora Victoria Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
| | - Laura Sellick
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
| | - David Crewther
- Centre for Human Psychopharmacology; Swinburne University of Technology; Hawthorn Victoria Australia
| |
Collapse
|
19
|
Petit E, Bourdin H, Mougin F, Tio G, Haffen E. Time-of-Day Effects on Psychomotor and Physical Performances in Highly Trained Cyclists. Percept Mot Skills 2013; 117:376-88. [DOI: 10.2466/30.25.pms.117x23z0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to examine, in trained young cyclists, whether psychomotor performances were dependent on time of day and fluctuated similarly to changes in athletic performance. 14 highly trained male cyclists ( M age = 17.3 yr., SD = 1.6; M height = 179.0 cm, SD = 0.1; M body weight = 67.4 kg, SD = 4.5) voluntarily took part in 6 test sessions, at 08:30, 10:30, 12:30, 14:30, 16:30 and 18:30. Each test session comprised a maximal-intensity exercise consisting of 2 × 10-sec. sprints (all-out exercise) preceded by an attentional performance test including 4 fields of attention performed in a randomized order at different times throughout the same day, every 2 hr. between 08:30 and 18:30. The main results indicated that attentional and physical performances depended on the time of day, with an improvement in reaction times in phasic alertness, visual scanning, flexibility, Go/No-go, and an increase in maximum power throughout the day. This study shows the daily variations in physical performances and that fluctuations are reflected in psychomotor performances. These findings suggest that cyclists' training sessions cannot be programmed throughout the day without taking into consideration the effects of the time of day, with several practical applications for coaches and athletes.
Collapse
Affiliation(s)
- Elisabeth Petit
- Integrative Neurosciences and Comportment, UPFR of Sports, University of Franche-Comte
| | - Hubert Bourdin
- Integrative Neurosciences and Comportment, CHRU, Sleep Disorder Unit
| | - Fabienne Mougin
- UPFR of Sports, University of Franche-Comte, Department of Cardiovascular, Physiopathology and Prevention
| | | | - Emmanuel Haffen
- Integrative Neurosciences and Comportment, CHRU, Department of Clinical Psychiatry, Clinical Investigation Center University Hospital of Besançon
| |
Collapse
|
20
|
Abstract
The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.
Collapse
|
21
|
Bauer I, Crewther DP, Pipingas A, Rowsell R, Cockerell R, Crewther SG. Omega-3 fatty acids modify human cortical visual processing--a double-blind, crossover study. PLoS One 2011; 6:e28214. [PMID: 22174778 PMCID: PMC3235106 DOI: 10.1371/journal.pone.0028214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/03/2011] [Indexed: 12/14/2022] Open
Abstract
While cardiovascular and mood benefits of dietary omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, direct neurophysiological evidence of their effects on cortical activity is still limited. Hence we chose to examine the effects of two proprietary fish oil products with different EPA:DHA ratios (EPA-rich, high EPA:DHA; DHA-rich) on mental processing speed and visual evoked brain activity. We proposed that nonlinear multifocal visual evoked potentials (mfVEP) would be sensitive to any alteration of the neural function induced by omega-3 fatty acid supplementation, because the higher order kernel responses directly measure the degree of recovery of the neural system as a function of time following stimulation. Twenty-two healthy participants aged 18-34, with no known neurological or psychiatric disorder and not currently taking any nutritional supplementation, were recruited. A double-blind, crossover design was utilized, including a 30-day washout period, between two 30-day supplementation periods of the EPA-rich and DHA-rich diets (with order of diet randomized). Psychophysical choice reaction times and multi-focal nonlinear visual evoked potential (VEP) testing were performed at baseline (No Diet), and after each supplementation period. Following the EPA-rich supplementation, for stimulation at high luminance contrast, a significant reduction in the amplitude of the first slice of the second order VEP kernel response, previously related to activation in the magnocellular pathway, was observed. The correlations between the amplitude changes of short latency second and first order components were significantly different for the two supplementations. Significantly faster choice reaction times were observed psychophysically (compared with baseline performance) under the EPA-rich (but not DHA-rich) supplementation, while simple reaction times were not affected. The reduced nonlinearities observed under the EPA-rich diet suggest a mechanism involving more efficient neural recovery of magnocellular-like visual responses following cortical activation.
Collapse
Affiliation(s)
- Isabelle Bauer
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - David P. Crewther
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- * E-mail:
| | - Andrew Pipingas
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Renee Rowsell
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Robyn Cockerell
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Sheila G. Crewther
- School of Psychological Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|