1
|
Pederiva C, Biasucci G, Banderali G, Capra ME. Plant Sterols and Stanols for Pediatric Patients with Increased Cardiovascular Risk. CHILDREN (BASEL, SWITZERLAND) 2024; 11:129. [PMID: 38275439 PMCID: PMC10814923 DOI: 10.3390/children11010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The atherosclerotic process begins in childhood and progresses throughout adult age. Hypercholesterolemia, especially familial hypercholesterolemia (FH) and metabolic dysfunctions linked to weight excess and obesity, are the main atherosclerosis risk factors in pediatric patients and can be detected and treated starting from childhood. Nutritional intervention and a healthy-heart lifestyle are cornerstones and first-line treatments, with which, if necessary, drug therapy should be associated. For several years, functional foods enriched with plant sterols and stanols have been studied in the treatment of hypercholesterolemia, mainly as nutritional complements that can reduce LDL cholesterol; however, there is a lack of randomized controlled trials defining their long-term efficacy and safety, especially in pediatric age. This review aims to evaluate what the main published studies on sterols and stanols in pediatric subjects with dyslipidemia have taught us, providing an updated picture of the possible use of these dietary supplements in children and adolescents with dyslipidemia and increased cardiovascular risk. Nowadays, we can state that plant sterols and stanols should be considered as a valuable therapy in pediatric patients with hypercholesterolemia, bearing in mind that nutritional and lifestyle counseling and, when necessary, pharmacologic therapy, are the cornerstones of the treatment in developmental age.
Collapse
Affiliation(s)
- Cristina Pederiva
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy
| | - Giacomo Biasucci
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, University of Parma, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Banderali
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy
| | - Maria Elena Capra
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, University of Parma, 29121 Piacenza, Italy;
- Department of Translational Medical and Surgical Sciences, University of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
Wang LL, Zhang PH, Yan HH. Functional foods and dietary supplements in the management of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front Nutr 2023; 10:1014010. [PMID: 36866059 PMCID: PMC9971819 DOI: 10.3389/fnut.2023.1014010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Objective In this systematic review and meta-analysis, we aimed to clarify the overall effects of functional foods and dietary supplements in non-alcoholic fatty liver disease (NAFLD) patients. Methods Randomized controlled trials (RCTs) published in PubMed, ISI Web of Science, Cochrane library, and Embase from January 1, 2000 to January 31, 2022 were systematically searched to assess the effects of functional foods and dietary supplements in patients with NAFLD. The primary outcomes were liver-related measures, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic fibrosis and steatosis, while the secondary outcomes included body mass index (BMI), waist circumference (WC), triacylglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). These indexes were all continuous variables, so the mean difference (MD) was used for calculating the effect size. Random-effects or fixed-effects models were used to estimate the mean difference (MD). The risk of bias in all studies was assessed with guidance provided in the Cochrane Handbook for Systematic Reviews of Interventions. Results Twenty-nine articles investigating functional foods and dietary supplements [antioxidants (phytonutrients and coenzyme Q10) = 18, probiotics/symbiotic/prebiotic = 6, fatty acids = 3, vitamin D = 1, and whole grain = 1] met the eligibility criteria. Our results showed that antioxidants could significantly reduce WC (MD: -1.28 cm; 95% CI: -1.58, -0.99, P < 0.05), ALT (MD: -7.65 IU/L; 95% CI: -11.14, -4.16, P < 0.001), AST (MD: -4.26 IU/L; 95% CI: -5.76, -2.76, P < 0.001), and LDL-C (MD: -0.24 mg/dL; 95% CI: -0.46, -0.02, P < 0.05) increased in patients with NAFLD but had no effect on BMI, TG, and TC. Probiotic/symbiotic/prebiotic supplementation could decrease BMI (MD: -0.57 kg/m2; 95% CI: -0.72, -0.42, P < 0.05), ALT (MD: -3.96 IU/L; 95% CI: -5.24, -2.69, P < 0.001), and AST (MD: -2.76; 95% CI: -3.97, -1.56, P < 0.0001) levels but did not have beneficial effects on serum lipid levels compared to the control group. Moreover, the efficacy of fatty acids for treating NAFLD was full of discrepancies. Additionally, vitamin D had no significant effect on BMI, liver transaminase, and serum lipids, while whole grain could reduce ALT and AST but did not affect serum lipid levels. Conclusion The current study suggests that antioxidant and probiotic/symbiotic/prebiotic supplements may be a promising regimen for NAFLD patients. However, the usage of fatty acids, vitamin D, and whole grain in clinical treatment is uncertain. Further exploration of the efficacy ranks of functional foods and dietary supplements is needed to provide a reliable basis for clinical application. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier: CRD42022351763.
Collapse
Affiliation(s)
- Lei-lei Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pian-hong Zhang
- Department of Clinical Nutrition, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui-hui Yan
- Department of Gastroenterology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Efficacy of Submicron Dispersible Free Phytosterols on Non-Alcoholic Fatty Liver Disease: A Pilot Study. J Clin Med 2023; 12:jcm12030979. [PMID: 36769628 PMCID: PMC9918217 DOI: 10.3390/jcm12030979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND No pharmacological treatment is yet approved for non-alcoholic fatty liver disease (NAFLD). Plant sterols have shown healthy properties beyond lowering LDL-cholesterol, including lowering triglycerides and lipoprotein plasma levels. Despite pre-clinical data suggesting their involvement in liver fat control, no clinical study has yet been successful. AIMS Testing a sub-micron, free, phytosterol dispersion efficacy on NAFLD. METHODS A prospective, uncontrolled pilot study was carried out on 26 patients with ≥17.4% liver steatosis quantified by magnetic resonance imaging. Subjects consumed daily a sub-micron dispersion providing 2 g of phytosterols. Liver fat, plasma lipids, lipoproteins, liver enzymes, glycemia, insulinemia, phytosterols, liposoluble vitamins and C-reactive protein were assessed at baseline and after one year of treatment. RESULTS Liver steatosis relative change was -19%, and 27% of patients reduced liver fat by more than 30%. Statistically and clinically significant improvements in plasma triglycerides, HDL-C, VLDL and HDL particle number and C-reactive protein were obtained, despite the rise of aspartate aminotransferase, glycemia and insulinemia. Though phytosterol plasma levels were raised by >30%, no adverse effects were presented, and even vitamin D increased by 23%. CONCLUSIONS Our results are the first evidence in humans of the efficacy of submicron dispersible phytosterols for the treatment of liver steatosis, dyslipidemia and inflammatory status in NAFLD.
Collapse
|
4
|
Stanasila L, Marques-Vidal P. Serum Phytosterols Are Not Associated with Inflammatory Markers in Two Cross-Sectional, Swiss Population-Based Studies (The CoLaus|PsyCoLaus Study). Nutrients 2022; 14:nu14122500. [PMID: 35745232 PMCID: PMC9229848 DOI: 10.3390/nu14122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Background: The association between inflammation and dietary sterols remains poorly assessed at the population level. Aims: To assess the possible association between serum levels of various phytosterols (PS) and inflammatory markers. Methods: Serum levels of six PS (campesterol, campestanol, stigmasterol, sitosterol, sitostanol, brassicasterol), four cholesterol synthesis markers (lathosterol, lanosterol, desmosterol, dihydroxylanosterol) and one cholesterol absorption marker (cholestanol) were measured together with levels of CRP, IL-6 and TNF-α in two cross-sectional surveys of a population-based, prospective study. Results: CRP levels were negatively associated with levels of cholestanol and of sterols of plant origin, although some associations were not statistically significant. CRP levels were positively associated with cholesterol synthesis markers in the first but not in the second follow-up. IL-6 levels were negatively associated with cholestanol in both follow-ups. No associations between IL-6 levels and PS were found in the first follow-up, while significant negative associations with campesterol, sitosterol, brassicasterol, sitostanol and campesterol:TC ratio were found in the second follow-up. TNF-α levels were negatively associated with cholestanol in both follow-ups. These associations did not withstand adjusting for sex, age, BMI and statin administration. Conclusions: In a population-based study, PS serum levels were not significantly associated with inflammatory markers.
Collapse
|
5
|
The Role of Phytosterols in Nonalcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14112187. [PMID: 35683987 PMCID: PMC9182996 DOI: 10.3390/nu14112187] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease is now recognized as the most common cause of chronic liver disease with an increasing prevalence in both adults and children. Although the symptoms are absent or poorly expressed in most cases, some patients may progress to end-stage liver disease. The pathogenesis of NAFLD is known to be multifactorial. Current therapeutic recommendations focus on lifestyle changes in order to reduce the incidence of risk factors and drugs targeting major molecular pathways potentially involved in the development of this disease. Given that a pharmacological treatment, completely safe and effective, is not currently known in recent years more research has been done on the effects that some bio-active natural compounds, derived from plants, have in preventing the onset and progression of NAFLD. Numerous studies, in animals and humans, have shown that phytosterols (PSs) play an important role in this pathology. Phytosterols are natural products that are found naturally in plant. More than 250 phytosterols have been identified, but the most common in the diet are stigmasterol, β-sitosterol, and campesterol. Consumption of dietary PSs can reduce serum cholesterol levels. Due to these properties, most studies have focused on their action on lipid metabolism and the evolution of NAFLD. PSs may reduce steatosis, cytotoxicity oxidative stress, inflammation, and apoptosis. The purpose of this review is to provide an overview of the importance of dietary phytosterols, which are a window of opportunity in the therapeutic management of NAFLD.
Collapse
|
6
|
Li X, Xin Y, Mo Y, Marozik P, He T, Guo H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020523. [PMID: 35056839 PMCID: PMC8781140 DOI: 10.3390/molecules27020523] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Phytosterols are natural sterols widely found in plants that have a variety of physiological functions, and their role in reducing cholesterol absorption has garnered much attention. Although the bioavailability of phytosterols is only 0.5–2%, they can still promote cholesterol balance in the body. A mechanism of phytosterols for lowering cholesterol has now been proposed. They not only reduce the uptake of cholesterol in the intestinal lumen and affect its transport, but also regulate the metabolism of cholesterol in the liver. In addition, phytosterols can significantly reduce the plasma concentration of total cholesterol, triglycerides, and low-density lipoprotein cholesterol (LDL-C), with a dose-response relationship. Ingestion of 3 g of phytosterols per day can reach the platform period, and this dose can reduce LDL-C by about 10.7%. On the other hand, phytosterols can also activate the liver X receptor α-CPY7A1 mediated bile acids excretion pathway and accelerate the transformation and metabolism of cholesterol. This article reviews the research progress of phytosterols as a molecular regulator of cholesterol and the mechanism of action for this pharmacological effect.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang 524023, China;
| | - Yan Xin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Y.X.); (Y.M.)
| | - Yuqian Mo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Y.X.); (Y.M.)
| | - Pavel Marozik
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Taiping He
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang 524023, China;
- Correspondence: (T.H.); (H.G.); Tel.: +86-759-2388-523 (T.H.); +86-769-2289-6576 (H.G.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang 524023, China;
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Y.X.); (Y.M.)
- Correspondence: (T.H.); (H.G.); Tel.: +86-759-2388-523 (T.H.); +86-769-2289-6576 (H.G.)
| |
Collapse
|
7
|
Nattagh-Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, Khosravi M, Talebi S, Arzhang P, Ziaei R, Ghavami A. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother Res 2021; 36:299-322. [PMID: 34729825 DOI: 10.1002/ptr.7312] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Phytosterols (PSs), classified into plant sterols and stanols, are bioactive compounds found in foods of plant origin. PSs have been proposed to exert a wide number of pharmacological properties, including the potential to reduce total and low-density lipoprotein (LDL) cholesterol levels and thereby decreasing the risk of cardiovascular diseases. Other health-promoting effects of PSs include anti-obesity, anti-diabetic, anti-microbial, anti-inflammatory, and immunomodulatory effects. Also, anticancer effects have been strongly suggested, as phytosterol-rich diets may reduce the risk of cancer by 20%. The aim of this review is to provide a general overview of the available evidence regarding the beneficial physiological and pharmacological activities of PSs, with special emphasis on their therapeutic potential for human health and safety. Also, we will explore the factors that influence the physiologic response to PSs.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naseh Pahlavani
- Nutrition and Biochemistry Department, School of Medicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.,Department of Clinical Biochemistry and Nutrition, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Amiri
- Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdulmannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maryam Khosravi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Talebi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pishva Arzhang
- Department of Biochemistry and Diet Therapy, Faculty of Nutritional Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abed Ghavami
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Komolafe O, Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJ, Fritche D, Freeman SC, Cooper NJ, Sutton AJ, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Nutritional supplementation for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 7:CD013157. [PMID: 34280304 PMCID: PMC8406904 DOI: 10.1002/14651858.cd013157.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of non-alcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases risks of liver cirrhosis, hepatocellular carcinoma, and the requirement for liver transplantation. Uncertainty surrounds relative benefits and harms of various nutritional supplements in NAFLD. Currently no nutritional supplement is recommended for people with NAFLD. OBJECTIVES • To assess the benefits and harms of different nutritional supplements for treatment of NAFLD through a network meta-analysis • To generate rankings of different nutritional supplements according to their safety and efficacy SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, the World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) for people with NAFLD, irrespective of method of diagnosis, age and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We performed a network meta-analysis with OpenBUGS using Bayesian methods whenever possible and calculated differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios with 95% credible intervals (CrIs) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. MAIN RESULTS We included in the review a total of 202 randomised clinical trials (14,200 participants). Nineteen trials were at low risk of bias. A total of 32 different interventions were compared in these trials. A total of 115 trials (7732 participants) were included in one or more comparisons. The remaining trials did not report any of the outcomes of interest for this review. Follow-up ranged from 1 month to 28 months. The follow-up period in trials that reported clinical outcomes was 2 months to 28 months. During this follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. We did not calculate effect estimates for mortality because of sparse data (zero events for at least one of the groups in the trial). None of the trials reported that they measured overall health-related quality of life using a validated scale. The evidence is very uncertain about effects of interventions on serious adverse events (number of people or number of events). We are very uncertain about effects on adverse events of most of the supplements that we investigated, as the evidence is of very low certainty. However, people taking PUFA (polyunsaturated fatty acid) may be more likely to experience an adverse event than those not receiving an active intervention (network meta-analysis results: OR 4.44, 95% CrI 2.40 to 8.48; low-certainty evidence; 4 trials, 203 participants; direct evidence: OR 4.43, 95% CrI 2.43 to 8.42). People who take other supplements (a category that includes nutritional supplements other than vitamins, fatty acids, phospholipids, and antioxidants) had higher numbers of adverse events than those not receiving an active intervention (network meta-analysis: rate ratio 1.73, 95% CrI 1.26 to 2.41; 6 trials, 291 participants; direct evidence: rate ratio 1.72, 95% CrI 1.25 to 2.40; low-certainty evidence). Data were sparse (zero events in all groups in the trial) for liver transplantation, liver decompensation, and hepatocellular carcinoma. So, we did not perform formal analysis for these outcomes. The evidence is very uncertain about effects of other antioxidants (antioxidants other than vitamins) compared to no active intervention on liver cirrhosis (HR 1.68, 95% CrI 0.23 to 15.10; 1 trial, 99 participants; very low-certainty evidence). The evidence is very uncertain about effects of interventions in any of the remaining comparisons, or data were sparse (with zero events in at least one of the groups), precluding formal calculations of effect estimates. Data were probably because of the very short follow-up period (2 months to 28 months). It takes follow-up of 8 to 28 years to detect differences in mortality between people with NAFLD and the general population. Therefore, it is unlikely that differences in clinical outcomes are noted in trials providing less than 5 to 10 years of follow-up. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about effects of nutritional supplementation compared to no additional intervention on all clinical outcomes for people with non-alcohol-related fatty liver disease. Accordingly, high-quality randomised comparative clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (study design in which multiple interventions are trialed within large longitudinal cohorts of patients to gain efficiencies and align trials more closely to standard clinical practice) comparing interventions such as vitamin E, prebiotics/probiotics/synbiotics, PUFAs, and no nutritional supplementation. The reason for the choice of interventions is the impact of these interventions on indirect outcomes, which may translate to clinical benefit. Outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource utilisation measures including costs of intervention and decreased healthcare utilisation after minimum follow-up of 8 years (to find meaningful differences in clinically important outcomes).
Collapse
Affiliation(s)
| | - Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas Jg Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | | | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
9
|
Salehi B, Quispe C, Sharifi-Rad J, Cruz-Martins N, Nigam M, Mishra AP, Konovalov DA, Orobinskaya V, Abu-Reidah IM, Zam W, Sharopov F, Venneri T, Capasso R, Kukula-Koch W, Wawruszak A, Koch W. Phytosterols: From Preclinical Evidence to Potential Clinical Applications. Front Pharmacol 2021; 11:599959. [PMID: 33519459 PMCID: PMC7841260 DOI: 10.3389/fphar.2020.599959] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Phytosterols (PSs) are plant-originated steroids. Over 250 PSs have been isolated, and each plant species contains a characteristic phytosterol composition. A wide number of studies have reported remarkable pharmacological effects of PSs, acting as chemopreventive, anti-inflammatory, antioxidant, antidiabetic, and antiatherosclerotic agents. However, PS bioavailability is a key issue, as it can be influenced by several factors (type, source, processing, preparation, delivery method, food matrix, dose, time of administration into the body, and genetic factors), and the existence of a close relationship between their chemical structures (e.g., saturation degree and side-chain length) and low absorption rates has been stated. In this sense, the present review intends to provide in-depth data on PS therapeutic potential for human health, also emphasizing their preclinical effects and bioavailability-related issues.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, School of Pharmacy, Shobhit University, Gangoh, India
| | - Dmitryi Alexeevich Konovalov
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute, Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia
| | - Valeriya Orobinskaya
- Institute of Service, Tourism and Design (Branch) of North-Caucasus Federal University in Pyatigorsk, Pyatigorsk, Russia
| | - Ibrahim M. Abu-Reidah
- Department of Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Farukh Sharopov
- “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Tommaso Venneri
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Zeng BB, Zhang LY, Chen C, Zhang TT, Xue CH, Yanagita T, Li ZJ, Wang YM. Sea Cucumber Sterol Alleviates the Lipid Accumulation in High-Fat-Fructose Diet Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9707-9717. [PMID: 32786870 DOI: 10.1021/acs.jafc.0c03794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of marine-derived sea cucumber sterol (SS) with a special sulfate group on lipid accumulation remains unknown, although phytosterol has been proved to have many biological activities, including lowering blood cholesterol. The purpose of the present study is to investigate the alleviation of SS on lipid accumulation and the possible underlying mechanism using high-fat-fructose diet fed mice. Dietary administration with SS for 8 weeks reduced significantly the body weight gain and lipid levels in serum and liver. Especially, SS was superior to phytosterol in lowering lipid accumulation due to the great promotion of fatty acid β-oxidation, the inhibition of cholesterol synthesis, and the acceleration of cholesterol efflux. The findings found that sea cucumber sterol exhibited a more significant effect than phytosterol on alleviating HFF-diet-induced lipid accumulation through regulating lipid and cholesterol metabolism, which might be attributed to the difference in the branch chain and sulfate group.
Collapse
Affiliation(s)
- Bei-Bei Zeng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Ling-Yu Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Cheng Chen
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong Province People's Republic of China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Zhao-Jie Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong Province People's Republic of China
| |
Collapse
|
11
|
Feng S, Belwal T, Li L, Limwachiranon J, Liu X, Luo Z. Phytosterols and their derivatives: Potential health‐promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 2020; 19:1243-1267. [DOI: 10.1111/1541-4337.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- College of Food Science and TechnologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light IndustryZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Xingquan Liu
- School of Agriculture and Food SciencesZhejiang Agriculture and Forestry University Hangzhou 311300 People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Ningbo Research InstituteZhejiang University Ningbo 315100 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
12
|
Plant Sterol Ester of α-Linolenic Acid Attenuates Nonalcoholic Fatty Liver Disease by Rescuing the Adaption to Endoplasmic Reticulum Stress and Enhancing Mitochondrial Biogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8294141. [PMID: 33273997 PMCID: PMC7695996 DOI: 10.1155/2019/8294141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming more common in the world and is presenting a great challenge concerning prevention and treatment. Plant sterol ester of α-linolenic acid (PS-ALA) has a potential benefit to NAFLD. To examine the effect of PS-ALA on NAFLD, C57BL/6J mice were given a control diet, high fat and high cholesterol diet (HFD), and HFD plus 2% PS, 1.3% ALA, or 3.3% PS-ALA for 16 weeks. Our results showed that PS-ALA treatment suppressed hepatic steatosis, ameliorated lipid disorder, attenuated inflammatory response, and inhibited oxidative stress. In the molecular level, PS-ALA downregulated high transcriptional and translational levels of endoplasmic reticulum (ER) stress markers (Grp78 and Chop) leading to decreased protein expression of transcription factor and key enzymes involved in de novo lipogenesis (Srebp-1c and Fas) and cholesterol synthesis (Srebp-2 and Hmgcr). In parallel, PS-ALA blocked Nlrp3 activation and reduced release of IL-1β and IL-18 via inhibiting ER stress-induced sensitization of unfolded protein response sensors (Ire1α and Xbp1s). Finally, PS-ALA improved HFD-induced mitochondrial damage and fatty acid accumulation as exhibited by higher protein and mRNA expression of key genes administering mitochondrial biogenesis (Pgc-1α, Nrf1, and Tfam) and fatty acid β-oxidation (Pparα and Cpt1a). In conclusion, our study originally demonstrated that PS-ALA rescued ER stress, enhanced mitochondrial biogenesis, and thus ameliorated NAFLD.
Collapse
|
13
|
Liu J, Xing J, Wang B, Wei C, Yang R, Zhu Y, Qiu H. Correlation Between Adiponectin Gene rs1501299 Polymorphism and Nonalcoholic Fatty Liver Disease Susceptibility: A Systematic Review and Meta-Analysis. Med Sci Monit 2019; 25:1078-1086. [PMID: 30735485 PMCID: PMC6376635 DOI: 10.12659/msm.912737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Metabolic related nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases around the world. A single nucleotide polymorphism (SNP) rs1501299 (+276G>T) in the adiponectin gene has been recently revealed to be responsible for susceptibility to NAFLD. This meta-analysis intended to assess the association risk of NAFLD and rs1501299 polymorphism. Material/Methods We conducted a literature search on PubMed, Embase, and Cochrane Library databases. All involved studies were selected based on our search criteria. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantify the strength of the association. Subgroup analysis considered the effects of ethnicity, subject scope, and source of control. Publication bias was assessed by Begg’s tests. Results Eight qualified case-control studies with 1639 patients and 1426 controls demonstrated a significant correlation between rs1501299 polymorphism in adiponectin and NAFLD under the dominant model (OR=1.18, 95% CI=1.02–1.36), allelic contrast (OR=1.21, 95% CI=1.09–1.36), homozygote comparison (OR=1.63, 95% CI=1.26–2.01) and the recessive allele model (OR=1.58, 95% CI=1.23–2.02) with evident heterogeneity. No association was observed between the risk of NAFLD and the genotypic variants in heterozygote comparison (OR=1.11, 95% CI=0.95–1.29) without heterogeneity. Subgroup analysis suggested that the sample size could be the potential source of heterogeneity. Source of control was not the reason for between-study heterogeneity and further sensitivity analysis and publication bias revealed good consistency and symmetry in the pooling studies. Conclusions Results from our current meta-analysis gave insight into the correlation between rs1501299 polymorphism and the risk of NAFLD, indicating the variant of rs1501299 might be related to increased NAFLD susceptibility.
Collapse
Affiliation(s)
- Jiaxing Liu
- Bayi College of People's Liberation Army (PLA), Anhui Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jicheng Xing
- Department of Clinical Laboratory, The 81st Hospital of People's Liberation Army (PLA), Nanjing, Jiangsu, China (mainland)
| | - Bing Wang
- Department of Clinical Laboratory, The 81st Hospital of People's Liberation Army (PLA), Nanjing, Jiangsu, China (mainland)
| | - Changyong Wei
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ruining Yang
- Department of Clinical Laboratory, The 81st Hospital of People's Liberation Army (PLA), Nanjing, Jiangsu, China (mainland)
| | - Yuerong Zhu
- Department of Clinical Laboratory, The 81st Hospital of People's Liberation Army (PLA), Nanjing, Jiangsu, China (mainland)
| | - Hong Qiu
- Department of Clinical Laboratory, The 81st Hospital of People's Liberation Army (PLA), Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
14
|
Plat J, Baumgartner S, Houben T, Vreugdenhil ACE, Mensink RP, Lütjohann D, Shiri-Sverdlov R. Comment on Tauriainen et al.: Serum, liver and bile sitosterol and sitostanol in obese patients with and without NAFLD. Biosci Rep 2018; 38:BSR20180505. [PMID: 30287500 PMCID: PMC6209585 DOI: 10.1042/bsr20180505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/02/2022] Open
Abstract
This short article provides a comment on the recent article by Tauriainen et al. [Bioscience Reports (2018) 38, BSR20171274 https://doi.org/10.1042/BSR20171274].
Collapse
Affiliation(s)
- Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sabine Baumgartner
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Anita C E Vreugdenhil
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Bonn University, Bonn, Germany
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Santos HO, Bueno AA, Mota JF. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol Res 2018; 137:170-178. [PMID: 30308247 DOI: 10.1016/j.phrs.2018.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is a highly prevalent issue worldwide, and one of its main manifestations, dyslipidaemia, needs more attention. Cooked artichoke (Cynara scolymus) hearts or artichoke leaf extract (ALE) are believed to be helpful in the treatment of dyslipidaemia. In this narrative review, we provide a brief overview of the potential impact of artichoke consumption on lipid profile. We appraised the Cochrane, MEDLINE and Web of Science databases, and included articles published between 2000 and June 2018 on intervention in humans only. The main potential of ALE administration observed on lipid profile relates to decreased serum LDL, total cholesterol and triglyceride concentrations, although no strong evidence for increasing HDL appears to exist. Evidence suggests that decreases of 8-49 mg/dL for LDL concentration, 12-55 mg/dL for total cholesterol, and 11-51 mg/dL for triglycerides, can be attributed to 2 to 3 g/d of ALE, in which its components luteolin and chlorogenic acid may play a key role. On the other hand, the effects of cooked artichoke hearts can be attributed mainly to its soluble fibres, particularly inulin. Despite the convincing evidence on its health benefits, additional long-term clinical trials are pivotal to fully elucidate the potential effects of ALE administration on positive cardiovascular outcomes.
Collapse
Affiliation(s)
- Heitor Oliveira Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Allain Amador Bueno
- Department of Biological Sciences, University of Worcester, Henwick Grove, Worcester WR2 6AJ, United Kingdom.
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, Goiania, GO, Brazil.
| |
Collapse
|