1
|
Zhou Q, Meng Q. Insights into the Microbial Composition of Intratumoral, Reproductive Tract, and Gut Microbiota in Ovarian Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:107-118. [PMID: 38805127 DOI: 10.1007/978-3-031-58311-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
According to the latest global cancer data, ovarian cancer is the deadliest among all gynecological malignant tumors and ranks fifth in terms of mortality. Its etiology and pathogenesis are unknown, and the 5-year survival rate of patients with advanced ovarian cancer is only 40% (Sung et al. CA Cancer J Clin 71:209-49, 2021). Recent research has shown that the human microbiota plays a crucial role in the development and progression of tumors, including ovarian cancer. Numerous studies have highlighted the complex connections between the reproductive tract microbiota, intestinal microbiota, and ovarian cancer (Jacobson et al. PeerJ 9:e11574, 2021). Therefore, this chapter will delve into composition, function, and the correlation between microbiota and immunity in the field of ovarian cancer microbiota, as well as the potential of bacteria in therapeutics and diagnostics of ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China.
| | - Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
AlHilli MM, Rhoades EE, Chau D, Tewari S, Reich A, Myers A, Lindner DJ, Lathia JD, Zhang R, Willard B, Cresci G, Berger NA, Reizes O. Unrestricted Ketogenic Diet Feeding Enhances Epithelial Ovarian Cancer Growth In Vivo. Nutrients 2023; 15:2730. [PMID: 37375634 DOI: 10.3390/nu15122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The ketogenic diet (KD) is hypothesized to impact tumor progression by altering tumor metabolism. In this study, we assessed the impact of an unrestricted KD on epithelial ovarian cancer (EOC) tumor growth, gene expression, and metabolite concentration in a mouse model. ID8 EOC cells, which were syngeneic with C57Bl/6J mouse strain and transfected with luciferase (ID8-luc), were injectedand monitored for tumor development. Female mice were fed either a strict KD, a high fat/low carbohydrate (HF/LC) diet, or a low fat/high carbohydrate (LF/HC) diet (n = 10 mice per group) ad libitum. EOC tumor growth was monitored weekly, and tumor burden was determined based on luciferase fluorescence (photons/second). At the endpoint (42 days), tumors were collected and processed for RNA sequencing. Plasma and tumor metabolites were evaluated using LC-MS. The KD-fed mice exhibited a statistically significant increase in tumor progression in comparison to the HF/LC- and LF/HC-fed groups (9.1 vs. 2.0 vs. 3.1-fold, respectively, p < 0.001). The EOC tumors of the KD-fed mice exhibited significant enrichment of the peroxisome proliferator-activated receptor (PPAR) signaling and fatty acid metabolism pathways based on the RNA sequencing analysis when compared to the LF/HC- and HF/LC-fed mice. Thus, unrestricted KD diet enhanced tumor progression in our mouse EOC model. KD was associated with the upregulation of fatty acid metabolism and regulation pathways, as well as enrichment of fatty acid and glutamine metabolites.
Collapse
Affiliation(s)
- Mariam M AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Emily E Rhoades
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Danielle Chau
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Surabhi Tewari
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adrian Reich
- Department of Bioinformatics, Florida Research and Innovations Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Alex Myers
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Daniel J Lindner
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Department of Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Renliang Zhang
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Belinda Willard
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Gail Cresci
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Nathan A Berger
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines 2023; 11:biomedicines11030782. [PMID: 36979761 PMCID: PMC10045465 DOI: 10.3390/biomedicines11030782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite significant advances in understanding the pathogenetic mechanisms underlying gynaecological cancers, these cancers still remain widespread. Recent research points to a possible link between microbiota and cancer, and the most recent attention is focusing on the relationship between the microbiome, the immune system, and cancer. The microbiome diversity can affect carcinogenesis and the patient’s immune response, modulating the inflammatory cascade and the severity of adverse events. In this review, we presented the recent evidence regarding microbiome alterations in patients with gynaecological tumours to understand if the link that exists between microbiome, immunity, and cancer can guide the prophylactic, diagnostic, and therapeutic management of gynaecological cancers.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | | | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
4
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
5
|
TUNCEL GULTEN, HOTI QENDRESA, MOCAN GAMZE, ERGOREN MAHMUTCERKEZ. A review of the Mediterranean diet and nutritional genomics in relation to cancer in women. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E81-E86. [PMID: 36479503 PMCID: PMC9710391 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer is the leading cause of death among women all over the world. Female tissue-specific cancers are the most commonly diagnosed among women and account for most cancer-related deaths. The main risk factors for women's cancer are hereditary factors, specific exposure to dangerous chemicals, disorders such as hormone imbalance, and lifestyle. High body mass index, low physical activity, low intake of fruit and vegetables, smoking, excessive alcohol consumption, lack of cancer screening and treatment are the most common risk factors. Nutrigenetics and nutrigenomics are both part of nutritional genomics. Nutrigenetics is how a person's body reacts to nutrients based on his/her genotype. It can be used to create a personalized diet, maintain a person's health, avoid disease, and if necessary to sustain therapy. Nutrigenomics studies the impact of nutrition on gene expression and the epigenomic, proteomic, transcriptomic and metabolomic effects of dietary intake. There is evidence that diet matters for different women's cancers, and is related to cancer progression, survival and treatment. The optimum combination for cancer prevention is a diet rich in vitamins and fibre, with low meat consumption, low milk intake and moderate use of alcohol. The Mediterranean diet looks to be an optimal diet with a good nutrition pattern, qualifying it as a therapy to prescribe.
Collapse
Affiliation(s)
- GULTEN TUNCEL
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- Research Center of Experimental Health Sciences (DESAM), Near East University, Nicosia, Cyprus
| | - QENDRESA HOTI
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - GAMZE MOCAN
- Department of Medical Pathology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
6
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
7
|
Cohen J, Goddard E, Brierley ME, Bramley L, Beck E. Poor Diet Quality in Children with Cancer During Treatment. J Pediatr Oncol Nurs 2021; 38:313-321. [PMID: 33960867 DOI: 10.1177/10434542211011050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: With improved long-term health outcomes and survivorship, the long-term nutritional management of childhood cancer survivors, from diagnosis to long-term follow-up, has become a priority. The aim of this study was to examine the diet quality of children receiving treatment for cancer. Methods: Participants were parents of children with cancer who were receiving active treatment and not receiving supplementary nutrition. A 24-h dietary recall assessed food and nutrient intake. Serves of food group intakes and classification of core and discretionary items were made according to the Australian Dietary Guidelines and compared with age and sex recommendations. Results: Sixty-four parents participated (75% female). Most children were not consuming adequate intake of vegetables (94% of patients), fruit (77%), and milk/alternatives (75%). Of the vegetables that were consumed, half were classified as discretionary foods (e.g., chips/fries). Nearly half (49%) of children exceeded recommendations for total sugar intake and 65% of patients had an excessive sodium intake. Discussion: Children receiving cancer treatment are consuming diets of reasonable quantity, but poor quality. Information provided during treatment should focus on educating parents on a healthy diet for their child, the importance of establishing healthy eating habits for life, and strategies to overcome barriers to intake during treatment.
Collapse
Affiliation(s)
- Jennifer Cohen
- School of Women's and Children's Health, 7800UNSW Sydney, Sydney, NSW, Australia.,Kids Cancer Centre, 63623Sydney Children's Hospital, Sydney, Australia
| | - Emma Goddard
- School of Medicine, 8691University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Mary-Ellen Brierley
- School of Women's and Children's Health, 7800UNSW Sydney, Sydney, NSW, Australia
| | - Lynsey Bramley
- Kids Cancer Centre, 63623Sydney Children's Hospital, Sydney, Australia
| | - Eleanor Beck
- School of Medicine, 8691University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
8
|
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors. Cell Syst 2021; 12:68-81.e11. [PMID: 33476554 PMCID: PMC7905848 DOI: 10.1016/j.cels.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
Collapse
Affiliation(s)
- Joshua E. Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Tom E. Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David A. Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA,Corresponding Author: Correspondence:
| |
Collapse
|
9
|
AlHilli MM, Bae-Jump V. Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol 2020; 159:299-308. [PMID: 32933758 DOI: 10.1016/j.ygyno.2020.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Over the last decade, there has been a dramatic surge in research exploring the human gut microbiome and its role in health and disease. It is now widely accepted that commensal microorganisms coexist within the human gastrointestinal tract and other organs, including those of the reproductive tract. These microorganisms, which are collectively known as the "microbiome", contribute to maintaining host physiology and to the development of pathology. Next generation sequencing and multi-'omics' technology has enriched our understanding of the complex and interdependent relationship that exists between the host and microbiome. Global changes in the microbiome are known to be influenced by dietary, genetic, lifestyle, and environmental factors. Accumulating data have shown that alterations in the gut microbiome contribute to the development, prognosis and treatment of many disease states including cancer primarily through interactions with the immune system. However, there are large gaps in knowledge regarding the association between the gut microbiome and gynecologic cancers, and research characterizing the reproductive tract microbiome is insufficient. Herein, we explore the mechanisms by which alterations in the gut and reproductive tract microbiome contribute to carcinogenesis focusing on obesity, hyperestrogenism, inflammation and altered tumor metabolism. The impact of the gut microbiome on response to anti-cancer therapy is highlighted with an emphasis on immune checkpoint inhibitor efficacy in gynecologic cancers. We discuss dietary interventions that are likely to modulate the metabolic and immunologic milieu as well as tumor microenvironment through the gut microbiome including intermittent fasting/ketogenic diet, high fiber diet, use of probiotics and the metabolic management of obesity. We conclude that enhanced understanding of the microbiome in gynecologic cancers coupled with thorough evaluation of metabolic and metagenomic analyses would enable us to integrate novel preventative strategies and adjunctive interventions into the care of women with gynecologic cancers.
Collapse
Affiliation(s)
- Mariam M AlHilli
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| | - Victoria Bae-Jump
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
10
|
Cogan PS. Reality and Legality: Disentangling What Is Actual from What Is Tolerated in Comparisons of Hemp Extracts with Pure CBD. J Diet Suppl 2020; 17:527-542. [DOI: 10.1080/19390211.2020.1790710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- P. S. Cogan
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, Colorado, USA
| |
Collapse
|
11
|
Rogers PC, Barr RD. The relevance of nutrition to pediatric oncology: A cancer control perspective. Pediatr Blood Cancer 2020; 67 Suppl 3:e28213. [PMID: 32096351 DOI: 10.1002/pbc.28213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
It is indisputable that adequate and appropriate nutrition is fundamental to the health, growth, and development of infants, children, and adolescents, including those with cancer. Nutrition has a role in most of the accepted components of the cancer control spectrum, from prevention through to palliation. The science of nutrigenomics, nutrigenetics, and bioactive foods (phytochemicals), and how nutrition affects cancer biology and cancer treatment, is growing. Nutritional epigenetics is giving us an understanding that there are possible primary prevention strategies for pediatric cancers, especially during conception and pregnancy, which need to be studied. Primary prevention of cancer in adults, such as colorectal cancer, should commence early in childhood, given the long gestation of nutritionally related cancers. Obesity avoidance is definitely a target for both pediatric and adult cancer prevention, commencing in childhood. There is now compelling evidence that the nutritional status of children with cancer, both overweight and underweight, does affect cancer outcomes. This is a potentially modifiable prognostic factor. Consistent longitudinal nutritional assessment of patients from diagnosis through treatment and long-term follow-up is required so that interventions can be implemented and evaluated. While improving, there remains a dearth of basic and clinical nutritional research in pediatric oncology. The perspective of evaluating nutrition as a cancer control factor is discussed in this article.
Collapse
Affiliation(s)
- Paul C Rogers
- British Columbia Children's Hospital and University of British Columbia, Vancouver, Canada
| | - Ronald D Barr
- Department of Pediatrics, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
13
|
Poor Dietary Polyphenol Intake in Childhood Cancer Patients. Nutrients 2019; 11:nu11112835. [PMID: 31752350 PMCID: PMC6893556 DOI: 10.3390/nu11112835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging research demonstrates polyphenol-rich diets like the Mediterranean diet may play a role in improving the outcomes of adult cancer therapy. To date, there are no trials assessing the intake or efficacy of polyphenol-rich diets in childhood cancer patients. In this study we collected dietary data on 59 childhood cancer patients on treatment using a three-pass 24-h dietary recall (24-HDR), which is based on a validated and structured three-part methodology. Polyphenol consumption was calculated by matching the food consumption data with polyphenol content extracted from the most updated Phenol-Explorer database. The mean total polyphenol intake was 173.31 ± 141.02 mg/day. The major food sources of polyphenols were fruits, beverages, and cereals. There were no significant associations with time since diagnosis, body mass index (BMI) z-score, types of cancer, treatment intensity, food-related symptoms, relapse, and total daily polyphenol intake. Further investigation with larger studies will facilitate the steps in assessing the value of polyphenol-rich dietary patterns in future nutritional interventions for childhood cancer patients.
Collapse
|
14
|
Wallace TC, Bailey RL, Blumberg JB, Burton-Freeman B, Chen CYO, Crowe-White KM, Drewnowski A, Hooshmand S, Johnson E, Lewis R, Murray R, Shapses SA, Wang DD. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev Food Sci Nutr 2019; 60:2174-2211. [PMID: 31267783 DOI: 10.1080/10408398.2019.1632258] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruit and vegetables (F&V) have been a cornerstone of healthy dietary recommendations; the 2015-2020 U.S. Dietary Guidelines for Americans recommend that F&V constitute one-half of the plate at each meal. F&V include a diverse collection of plant foods that vary in their energy, nutrient, and dietary bioactive contents. F&V have potential health-promoting effects beyond providing basic nutrition needs in humans, including their role in reducing inflammation and their potential preventive effects on various chronic disease states leading to decreases in years lost due to premature mortality and years lived with disability/morbidity. Current global intakes of F&V are well below recommendations. Given the importance of F&V for health, public policies that promote dietary interventions to help increase F&V intake are warranted. This externally commissioned expert comprehensive narrative, umbrella review summarizes up-to-date clinical and observational evidence on current intakes of F&V, discusses the available evidence on the potential health benefits of F&V, and offers implementation strategies to help ensure that public health messaging is reflective of current science. This review demonstrates that F&V provide benefits beyond helping to achieve basic nutrient requirements in humans. The scientific evidence for providing public health recommendations to increase F&V consumption for prevention of disease is strong. Current evidence suggests that F&V have the strongest effects in relation to prevention of CVDs, noting a nonlinear threshold effect of 800 g per day (i.e., about 5 servings a day). A growing body of clinical evidence (mostly small RCTs) demonstrates effects of specific F&V on certain chronic disease states; however, more research on the role of individual F&V for specific disease prevention strategies is still needed in many areas. Data from the systematic reviews and mostly observational studies cited in this report also support intake of certain types of F&V, particularly cruciferous vegetables, dark-green leafy vegetables, citrus fruits, and dark-colored berries, which have superior effects on biomarkers, surrogate endpoints, and outcomes of chronic disease.
Collapse
Affiliation(s)
- Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Inc., Washington, DC, USA
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| | - Britt Burton-Freeman
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, USA
| | - C-Y Oliver Chen
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
- Biofortis Research, Merieux NutriSciences, Addison, Illinois, USA
| | | | - Adam Drewnowski
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Elizabeth Johnson
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| | - Richard Lewis
- Bone and Body Composition Laboratory, College of Family and Consumer Sciences, University of Georgia, Athens, Georgia, USA
| | - Robert Murray
- College of Education and Human Ecology, The Ohio State University, Columbus, Ohio, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | | |
Collapse
|
15
|
Rinninella E, Fagotti A, Cintoni M, Raoul P, Scaletta G, Quagliozzi L, Miggiano GAD, Scambia G, Gasbarrini A, Mele MC. Nutritional Interventions to Improve Clinical Outcomes in Ovarian Cancer: A Systematic Review of Randomized Controlled Trials. Nutrients 2019; 11:E1404. [PMID: 31234395 PMCID: PMC6627677 DOI: 10.3390/nu11061404] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Among all gynaecological neoplasms, ovarian cancer has the highest rate of disease-related malnutrition, representing an important risk factor of postoperative mortality and morbidity. Hence, the importance of finding effective nutritional interventions is crucial to improve ovarian cancer patient's well-being and survival. This systematic review of randomized controlled trials (RCTs) aims at assessing the effects of nutritional interventions on clinical outcomes such as overall survival, progression-free survival, length of hospital stay (LOS), complications following surgery and/or chemotherapy in ovarian cancer patients. Three electronic bibliographic databases (MEDLINE, Web of Science, and Cochrane Central Register of Controlled Trials) were used to conduct a systematic literature search based on fixed inclusion and exclusion criteria, until December 2018. A total of 14 studies were identified. Several early postoperative feeding interventions studies (n = 8) were retrieved mainly demonstrating a reduction in LOS and an ameliorated intestinal recovery after surgery. Moreover, innovative nutritional approaches such as chewing gum intervention (n = 1), coffee consumption (n = 1), ketogenic diet intervention (n = 2) or fruit and vegetable juice concentrate supplementation diet (n = 1) and short-term fasting (n = 1) have been shown as valid and well-tolerated nutritional strategies improving clinical outcomes. However, despite an acceptable number of prospective trials, there is still a lack of homogeneous and robust endpoints. In particular, there is an urgent need of RCTs evaluating overall survival and progression-free survival during ovarian oncology treatments. Further high-quality studies are warranted, especially prospective studies and large RCTs, with more homogeneous types of intervention and clinical outcomes, including a more specific sampling of ovarian cancer women, to identify appropriate and effective nutritional strategies for this cancer, which is at high risk of malnutrition.
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Anna Fagotti
- UOC di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Marco Cintoni
- Scuola di Specializzazione in Scienza dell'Alimentazione, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Pauline Raoul
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giuseppe Scaletta
- UOC di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Lorena Quagliozzi
- UOC di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Giacinto Abele Donato Miggiano
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giovanni Scambia
- UOC di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | - Antonio Gasbarrini
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Maria Cristina Mele
- UOC di Nutrizione Clinica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| |
Collapse
|
16
|
Nutritional Interventions to Improve Clinical Outcomes in Ovarian Cancer: A Systematic Review of Randomized Controlled Trials. Nutrients 2019. [PMID: 31234395 DOI: 10.3390/nu11061404,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among all gynaecological neoplasms, ovarian cancer has the highest rate of disease-related malnutrition, representing an important risk factor of postoperative mortality and morbidity. Hence, the importance of finding effective nutritional interventions is crucial to improve ovarian cancer patient's well-being and survival. This systematic review of randomized controlled trials (RCTs) aims at assessing the effects of nutritional interventions on clinical outcomes such as overall survival, progression-free survival, length of hospital stay (LOS), complications following surgery and/or chemotherapy in ovarian cancer patients. Three electronic bibliographic databases (MEDLINE, Web of Science, and Cochrane Central Register of Controlled Trials) were used to conduct a systematic literature search based on fixed inclusion and exclusion criteria, until December 2018. A total of 14 studies were identified. Several early postoperative feeding interventions studies (n = 8) were retrieved mainly demonstrating a reduction in LOS and an ameliorated intestinal recovery after surgery. Moreover, innovative nutritional approaches such as chewing gum intervention (n = 1), coffee consumption (n = 1), ketogenic diet intervention (n = 2) or fruit and vegetable juice concentrate supplementation diet (n = 1) and short-term fasting (n = 1) have been shown as valid and well-tolerated nutritional strategies improving clinical outcomes. However, despite an acceptable number of prospective trials, there is still a lack of homogeneous and robust endpoints. In particular, there is an urgent need of RCTs evaluating overall survival and progression-free survival during ovarian oncology treatments. Further high-quality studies are warranted, especially prospective studies and large RCTs, with more homogeneous types of intervention and clinical outcomes, including a more specific sampling of ovarian cancer women, to identify appropriate and effective nutritional strategies for this cancer, which is at high risk of malnutrition.
Collapse
|