1
|
Kuzminska J, Szyk P, Mlynarczyk DT, Bakun P, Muszalska-Kolos I, Dettlaff K, Sobczak A, Goslinski T, Jelinska A. Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment. Molecules 2024; 29:5321. [PMID: 39598712 PMCID: PMC11596437 DOI: 10.3390/molecules29225321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Curcumin, a naturally occurring compound found in the rhizome of Curcuma plants, particularly in turmeric (Curcuma longa L.), exhibits a broad range of biological activities, including anti-inflammatory, antioxidant, and anticancer properties. Curcumin has demonstrated effectiveness in inhibiting tumor growth, arousing interest for its potential in treating various cancers, such as breast, lung, prostate, and brain cancers. However, the clinical application of curcumin is limited due to its low chemical stability, poor water solubility, and low bioavailability. In response to these challenges, structural modifications of curcumin have been explored to improve its pharmacological properties, including enhanced anticancer selectivity index and bioavailability. This review highlights promising chemical modifications of curcumin that could lead to the development of more effective anticancer therapies. By functionalizing the parent curcumin molecule, researchers aim to create more stable and bioavailable compounds with enhanced therapeutic potential, making curcumin derivatives promising candidates for medical applications.
Collapse
Affiliation(s)
- Joanna Kuzminska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Piotr Szyk
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Katarzyna Dettlaff
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Agnieszka Sobczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Anna Jelinska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| |
Collapse
|
2
|
Al-Humaidi JY, Albedair LA, Maliwal D, Zaki MEA, Al-Hussain SA, Pissurlenkar R, Mukhrish YE, Abolibda TZ, Gomha SM. Synthesis and Molecular Docking of Curcumin-Derived Pyrazole-Thiazole Hybrids as Potent α-Glucosidase Inhibitors. Chem Biodivers 2024:e202401766. [PMID: 39440719 DOI: 10.1002/cbdv.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
α-Glucosidase inhibitors are critical for diabetes management, with pyrazoles and thiazoles emerging as effective options. This research highlights curcumin-based pyrazole-thiazole hybrids as potential inhibitors, synthesizing derivatives and evaluating their inhibitory capabilities. The study involved the synthesis of novel compounds using hydrazonoyl halides, confirmed through elemental and spectral analyses. The synthesized derivatives exhibited significant α-glucosidase inhibition, with IC50 values ranging from 3.37±0.25 to 16.35±0.37 μM. Among them, compound 7e demonstrated the strongest inhibition at 3.37±0.25 μM, outperforming the standard drug acarbose (IC50=5.36±0.31 μM). In silico assessments and molecular docking using AutoDock Vina revealed strong interactions, particularly with compounds 7b, 7e, 7f, and 7g, indicating their potential as stable and effective inhibitors. The results suggest that the synthesized pyrazole-thiazole hybrids hold promise as novel therapeutic agents for diabetes, warranting further exploration of their substituent effects for optimized inhibitor design.
Collapse
Affiliation(s)
- Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Lamia A Albedair
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Raghuvir Pissurlenkar
- Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, 403001, India
| | - Yousef E Mukhrish
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Tariq Z Abolibda
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| |
Collapse
|
3
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
4
|
Kaur K, Al-Khazaleh AK, Bhuyan DJ, Li F, Li CG. A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities. Antioxidants (Basel) 2024; 13:1092. [PMID: 39334750 PMCID: PMC11428508 DOI: 10.3390/antiox13091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Curcumin, as the main active component of turmeric (Curcuma longa), has been demonstrated with various bioactivities. However, its potential therapeutic applications are hindered by challenges such as poor solubility and bioavailability, rapid metabolism, and pan-assay interference properties. Recent advancements have aimed to overcome these limitations by developing novel curcumin analogues and modifications. This brief review critically assesses recent studies on synthesising different curcumin analogues, including metal complexes, nano particulates, and other curcumin derivatives, focused on the antioxidant, anti-inflammatory, and anticancer effects of curcumin and its modified analogues. Exploring innovative curcumin derivatives offers promising strategies to address the challenges associated with its bioavailability and efficacy and valuable insights for future research directions.
Collapse
Affiliation(s)
- Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ahmad K Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feng Li
- School of Science, Western Sydney University, Parramatta, NSW 2150, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
5
|
Mishra B, Yadav AS, Malhotra D, Mitra T, Sinsinwar S, Radharani NNV, Sahoo SR, Patnaik S, Kundu GC. Chitosan Nanoparticle-Mediated Delivery of Curcumin Suppresses Tumor Growth in Breast Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1294. [PMID: 39120399 PMCID: PMC11314098 DOI: 10.3390/nano14151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Curcumin is a nutraceutical known to have numerous medicinal effects including anticancer activity. However, due to its poor water solubility and bioavailability, the therapeutic impact of curcumin against cancer, including breast cancer, has been constrained. Encapsulating curcumin into chitosan nanoparticles (CHNPs) is an effective method to increase its bioavailability as well as antitumorigenic activity. In the current study, the effects of curcumin-encapsulated CHNPs (Cur-CHNPs) on cell migration, targeted homing and tumor growth were examined using in vitro and in vivo breast cancer models. Cur-CHNPs possessed a monodispersed nature with long-term colloidal stability, and demonstrated significant inhibition of cell viability in vitro, which was potentiated by 5-Fluorouracil (5-FU). Outcomes of the in vivo imaging studies confirmed effective tumor targeting and retention ability of Cur-CHNPs, thereby suppressing breast tumor growth in mice models. Overall, the results demonstrated that Cur-CHNPs could be an effective candidate drug formulation for management of breast cancer.
Collapse
Affiliation(s)
- Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Amit Singh Yadav
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
- National Centre for Cell Science (NCCS), Pune 411007, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Simran Sinsinwar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - N. N. V. Radharani
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Saroj Ranjan Sahoo
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar 751024, India;
| | - Srinivas Patnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
- National Centre for Cell Science (NCCS), Pune 411007, India
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar 751024, India;
| |
Collapse
|
6
|
Thakur CK, Karthikeyan C, Ashby CR, Neupane R, Singh V, Babu RJ, Narayana Moorthy NSH, Tiwari AK. Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery. Front Pharmacol 2024; 15:1417399. [PMID: 39119607 PMCID: PMC11306048 DOI: 10.3389/fphar.2024.1417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
- Chhattrapati Shivaji Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY, United States
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Vishal Singh
- Department of Nutrition, State College, Pennsylvania State University, University Park, PA, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - N. S. Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
7
|
Wang Y, Tian G, Huang J, Wu W, Cui Z, Li H, Zhang L, Qi H. Mussel-inspired protein-based nanoparticles for curcumin encapsulation and promoting antitumor efficiency. Int J Biol Macromol 2024; 273:132965. [PMID: 38851615 DOI: 10.1016/j.ijbiomac.2024.132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Curcumin demonstrated therapeutic potential for cancer. However, its medical application is limited due to low solubility, poor stability and low absorption rate. Here, we used the mussel-inspired functional protein (MPKE) to fabricate the curcumin-carrying nanoparticle (Cur-MPKE) for encapsulating and delivering curcumin. The protein MPKE is composed of the mussel module and zwitterionic peptide. The Dopa group bonding characteristic of the mussel module was leveraged for the self-assembly of nanoparticles, while the superhydrophilic property of the zwitterionic peptide was utilized to enhance the stability of nanoparticles. As expected, MPKE and Cur are tightly bound through hydrogen bonds and dynamic imide bonds to form nanoparticles. Cur-MPKE showed improved solubility and stability in aqueous solutions as well as excellent biocompatibility. Besides, Cur-MPKE also exhibited pH-triggered release and enhanced uptake of curcumin by tumor cells, promoting the antioxidant activity and antitumor effect of curcumin. Moreover, systemic experiments of Cur-MPKE to rats demonstrated that Cur-MPKE significantly inhibited tumor tissue growth and proliferation without causing obvious systemic toxicity. This work provides a new strategy for fabricating the delivery system of curcumin with improved stability, sustainability and bioavailability.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Guanfang Tian
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Jie Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Weidang Wu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Haoyue Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
D’Angelo A, Vitiello L, Gagliardi V, Salerno G, De Pascale I, Coppola A, Abbinante G, Pellegrino A, Giannaccare G. The Role of Oral Supplementation for the Management of Age-Related Macular Degeneration: A Narrative Review. J Pers Med 2024; 14:653. [PMID: 38929874 PMCID: PMC11204429 DOI: 10.3390/jpm14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The majority of neurodegenerative eye disorders occur with aging and significantly impair quality of life. Age-related macular degeneration (AMD) is the third most common cause of visual impairment and blindness worldwide. One of the most important elements in the pathophysiology of neurodegenerative eye disease is certainly oxidative stress, with neuroinflammation and ocular ischemia which may also be significant factors. Antioxidants, either by food or oral supplementation, may be able to mitigate the deleterious effects of reactive oxygen species that build as a result of oxidative stress, ischemia, and inflammation. Over the past few decades, a number of research works examining the potential adjuvant impact of antioxidants in AMD have been published. In fact, there is not only more and more interest in already known molecules but also in new molecules that can help clinicians in the management of this complex multifactorial disease, such as astaxanthin and melatonin. However, while some studies showed encouraging outcomes, others were conflicting. In addition, more and more attention is also being paid to nutrition, considered a pivotal key point, especially to prevent AMD. For this reason, the purpose of this review is to analyze the main antioxidant molecules currently used as oral supplements for AMD treatment, as well as the role of diet and food intake in this ocular disease, to better understand how all these factors can improve the clinical management of AMD patients.
Collapse
Affiliation(s)
- Angela D’Angelo
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, MI, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Vincenzo Gagliardi
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulio Salerno
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Ilaria De Pascale
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alessia Coppola
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giulia Abbinante
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Alfonso Pellegrino
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy; (L.V.); (V.G.); (G.S.); (I.D.P.); (A.C.); (G.A.); (A.P.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| |
Collapse
|
9
|
Allegra A, Mirabile G, Caserta S, Stagno F, Russo S, Pioggia G, Gangemi S. Oxidative Stress and Chronic Myeloid Leukemia: A Balance between ROS-Mediated Pro- and Anti-Apoptotic Effects of Tyrosine Kinase Inhibitors. Antioxidants (Basel) 2024; 13:461. [PMID: 38671909 PMCID: PMC11047441 DOI: 10.3390/antiox13040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The balanced reciprocal translocation t (9; 22) (q34; q11) and the BCR-ABL fusion gene, which produce p210 bcr-abl protein production with high tyrosine kinase activity, are characteristics of chronic myeloid leukemia, a myeloproliferative neoplasm. This aberrant protein affects several signaling pathways connected to both apoptosis and cell proliferation. It has been demonstrated that tyrosine kinase inhibitor treatment in chronic myeloid leukemia acts by inducing oxidative stress and, depending on its level, can activate signaling pathways responsible for either apoptosis or survival in leukemic cells. Additionally, oxidative stress and reactive oxygen species generation also mediate apoptosis through genomic activation. Furthermore, it was shown that oxidative stress has a role in both BCR-ABL-independent and BCR-ABL-dependent resistance pathways to tyrosine kinases, while patients with chronic myeloid leukemia were found to have a significantly reduced antioxidant level. The ideal environment for tyrosine kinase inhibitor therapy is produced by a favorable oxidative status. We discuss the latest studies that aim to manipulate the redox system to alter the apoptosis of cancerous cells.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Fabio Stagno
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Sabina Russo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
10
|
Kot K, Michaliszyn A, Kalisińska E, Lepczyńska M. The influence of plant extracts on viability of ST3 and ST7 subtypes of Blastocystis sp. Gut Pathog 2024; 16:19. [PMID: 38570865 PMCID: PMC10988960 DOI: 10.1186/s13099-024-00613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Blastocystis sp. is one of the most frequently detected protozoa during stool specimen examination. In the last decade, the studies about the pathogenic potential of Blastocystis sp. have intensified. Additionally, treatment approaches against this parasite are still disputable. The study aimed to investigate the in vitro activity of the substances of natural origin against two subtypes (ST) of Blastocystis sp.-ST3 and ST7. Garlic and turmeric extracts exhibited the highest inhibitory effect in relation to the ST3 viability. While horseradish and turmeric were found to be the most effective extracts to the ST7 viability. The study showed that ginger, garlic, horseradish, and turmeric extracts have potent antimicrobial activity against Blastocystis ST3 and ST7, with the half-maximal inhibitory concentration (IC50) ranging from 3.8 to 4.8 µg/ml and from 3.3 to 72.0 µg/ml, respectively, and thus may be useful in the prevention and control of Blastocystis infections. Additionally, this research confirmed that Blastocystis ST7 is more resistant to the selected plant extracts treatment than Blastocystis ST3 which in consequence may bring some difficulties in its eradication.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Adam Michaliszyn
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Małgorzata Lepczyńska
- Department of Medical Biology, School of Public Health, University of Warmia and Mazury, Żołnierska 14C, 10-561, Olsztyn, Poland
| |
Collapse
|
11
|
Cancemi G, Caserta S, Gangemi S, Pioggia G, Allegra A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. J Clin Med 2024; 13:1153. [PMID: 38398467 PMCID: PMC10889924 DOI: 10.3390/jcm13041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
12
|
Niţu CD, Mernea M, Vlasceanu RI, Voicu-Balasea B, Badea MA, Raduly FM, Rădiţoiu V, Rădiţoiu A, Avram S, Mihailescu DF, Voinea IC, Stan MS. Biomedical Promise of Sustainable Microwave-Engineered Symmetric Curcumin Derivatives. Pharmaceutics 2024; 16:205. [PMID: 38399259 PMCID: PMC10892556 DOI: 10.3390/pharmaceutics16020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Curcumin is a polyphenol of the Curcuma longa plant, which can be used for various medicinal purposes, such as inflammation and cancer treatment. In this context, two symmetric curcumin derivatives (D1-(1E,6E)-1,7-bis(4-acetamidophenyl)hepta-1,6-diene-3,5-dione and D2-p,p-dihydroxy di-cinnamoyl methane) were obtained by the microwave-based method and evaluated for their antitumoral effect on human cervix cancer in comparison with toxicity on non-tumoral cells, taking into account that they were predicted to act as apoptosis agonists or anti-inflammatory agents. The HeLa cell line was incubated for 24 and 72 h with a concentration of 50 μg/mL of derivatives that killed almost half of the cells compared to the control. In contrast, these compounds did not alter the viability of MRC-5 non-tumoral lung fibroblasts until 72 h of incubation. The nitric oxide level released by HeLa cells was higher compared to MRC-5 fibroblasts after the incubation with 100 μg/mL. Both derivatives induced the decrease of catalase activity and glutathione levels in cancer cells without targeting the same effect in non-tumoral cells. Furthermore, the Western blot showed an increased protein expression of HSP70 and a decreased expression of HSP60 and MCM2 in cells incubated with D2 compared to control cells. We noticed differences regarding the intensity of cell death between the tested derivatives, suggesting that the modified structure after synthesis can modulate their function, the most prominent effect being observed for sample D2. In conclusion, the outcomes of our in vitro study revealed that these microwave-engineered curcumin derivatives targeted tumor cells, much more specifically, inducing their death.
Collapse
Affiliation(s)
- Cristina Doina Niţu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenţei, 050095 Bucharest, Romania; (C.D.N.); (M.M.); (S.A.); (D.F.M.)
- Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 252 Sos. Fundeni, 022328 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenţei, 050095 Bucharest, Romania; (C.D.N.); (M.M.); (S.A.); (D.F.M.)
| | - Raluca Ioana Vlasceanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.V.); (B.V.-B.); (M.A.B.); (M.S.S.)
| | - Bianca Voicu-Balasea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.V.); (B.V.-B.); (M.A.B.); (M.S.S.)
- Interdisciplinary Center of Research and Development in Dentistry (CICDS), Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.V.); (B.V.-B.); (M.A.B.); (M.S.S.)
| | - Florentina Monica Raduly
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.R.)
| | - Valentin Rădiţoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.R.)
| | - Alina Rădiţoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.R.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenţei, 050095 Bucharest, Romania; (C.D.N.); (M.M.); (S.A.); (D.F.M.)
| | - Dan F. Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenţei, 050095 Bucharest, Romania; (C.D.N.); (M.M.); (S.A.); (D.F.M.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.V.); (B.V.-B.); (M.A.B.); (M.S.S.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.V.); (B.V.-B.); (M.A.B.); (M.S.S.)
| |
Collapse
|
13
|
Joshi P, Verma K, Kumar Semwal D, Dwivedi J, Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother Res 2023; 37:5435-5463. [PMID: 37649266 DOI: 10.1002/ptr.7983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the world's second leading cause of mortality and one of the major public health problems. Cancer incidence and mortality rates remain high despite the great advancements in existing therapeutic, diagnostic, and preventive approaches. Therefore, a quest for less toxic and more efficient anti-cancer strategies is still at the forefront of the current research. Traditionally important, curcumin commonly known as a wonder molecule has received considerable attention as an anti-cancer, anti-inflammatory, and antioxidant candidate. However, limited water solubility and low bioavailability restrict its extensive utility in different pathological states. The investigators are making consistent efforts to develop newer strategies to overcome its limitations by designing different analogues with better pharmacokinetic and pharmacodynamic properties. The present review highlights the recent updates on curcumin and its analogues with special emphasis on various mechanistic pathways involved in anti-cancer activity. In addition, the structure-activity relationship of curcumin analogues has also been precisely discussed. This article will also provide key information for the design and development of newer curcumin analogues with desired pharmacokinetic and pharmacodynamic profiles and will provide in depth understanding of molecular pathways involved in the anti-cancer activities.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Deepak Kumar Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
14
|
Brenner MB, Flory S, Wüst M, Frank J, Wagner K. Novel Biphasic In Vitro Dissolution Method Correctly Predicts the Oral Bioavailability of Curcumin in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15632-15643. [PMID: 37824789 DOI: 10.1021/acs.jafc.3c04990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In vitro dissolution methods correctly predicting in vivo bioavailability of compounds from complex mixtures are lacking. We therefore used data on the in vivo performance of bioavailability-improved curcumin formulations to implement an in vivo predictive dissolution method (BiPHa+). BiPHa+ was applied for the characterization of eight curcumin formulations previously studied in a strictly controlled pharmacokinetic human trial. During dissolution, the dissolved proportion of curcumin in the aqueous medium underwent a formulation-dependent reduction, whereas the proportion remained stable in the organic layer. Compared with conventional dissolution systems, BiPHa+ was superior in terms of in vivo-relevant formulation characterization. All formulations could be precisely categorized according to their bioavailability in humans. In vitro-in vivo relationships for each dissolution method were established, with BiPHa+ providing the highest degree of linearity (r2 = 0.9975). The BiPHa+ assay correctly predicted the bioavailability of curcuminoids from complex mixtures and provided mechanistic information about formulation-dependent release characteristics.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Sandra Flory
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Matthias Wüst
- Food Chemistry, University of Bonn, Institute of Nutritional and Food Sciences, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Jan Frank
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Karl Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
15
|
Firoz HM, Nanjundaiah S, Sadashiva CT, Neethumol B, Rashmi Y, Sreedrisya AK. Antiproliferative activity and apoptosis-inducing mechanism of Curcuma longa (Turmimax®) on HeLa cell lines. BRAZ J BIOL 2023; 83:e275953. [PMID: 37820211 DOI: 10.1590/1519-6984.275953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 10/13/2023] Open
Abstract
Curcumin, the primary polyphenol found in turmeric, is derived from the Curcuma longa plant. Since curcumin is nontoxic and has a wide range of medicinal qualities, including anti-oxidant, analgesic, anti-inflammatory, and antibacterial action, it has been widely employed in Ayurveda medicine for ages. Curcumin has recently been discovered to have anti-cancer properties through its impact on numerous biological pathways involved in carcinogenesis, metastasis, tumorigenesis, cell cycle regulation, mutagenesis, and oncogene expression. In this study, we determined the Antiproliferative activity and apoptosis-inducing mechanism of C. longa (Turmimax®) on human cancer cells. The cytotoxic effect was evaluated against HeLa cell lines using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Flow cytometric analysis was performed to detect apoptotic cell death. Turmimax® exhibits promising properties as a potential anti-cancer therapeutic agent in human cervical adenocarcinomas and possibly other cancer types, with an IC50 value of 87.89 µg/mL. In HeLa cells treated with Turmimax®, cell cycle arrest was seen in the G0/G1 and S phases. By inducing apoptosis and increasing the number of apoptotic cells in a dose-dependent manner, the experimental data suggest that Turmimax® has considerable promise in cancer prevention and treatment.
Collapse
Affiliation(s)
- H M Firoz
- Star Hi Herbs Pvt Ltd, R&D Centre, Jigani, Bangalore, Karnataka, India
| | - S Nanjundaiah
- Star Hi Herbs Pvt Ltd, R&D Centre, Jigani, Bangalore, Karnataka, India
| | - C T Sadashiva
- Star Hi Herbs Pvt Ltd, R&D Centre, Jigani, Bangalore, Karnataka, India
| | - B Neethumol
- Star Hi Herbs Pvt Ltd, R&D Centre, Jigani, Bangalore, Karnataka, India
| | - Y Rashmi
- Star Hi Herbs Pvt Ltd, R&D Centre, Jigani, Bangalore, Karnataka, India
| | - A K Sreedrisya
- Star Hi Herbs Pvt Ltd, R&D Centre, Jigani, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
17
|
Hussein HA, Khaphi FL. The Apoptotic Activity of Curcumin Against Oral Cancer Cells Without Affecting Normal Cells in Comparison to Paclitaxel Activity. Appl Biochem Biotechnol 2023; 195:5019-5033. [PMID: 37032374 DOI: 10.1007/s12010-023-04454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Until now, chemotherapy, which has a series of side effects, has been the most widely employed treatment for different types of cancer. However, bioactive products have been utilized as alternative medicines for tumors due to their bioactivities with low or no side effects in normal cells. This research reported for the first time that curcumin (CUR) and paclitaxel (PTX) have significant anti-cancer activity against normal human gingival fibroblast (HGF) and tongue squamous cell carcinoma fibroblast (TSCCF) cell lines. The results showed that CUR (13.85 µg mL-1) and PTX (8.17 µg mL-1) significantly inhibited TSCCF cell viability, with no significant effect on normal HGF cells. SEM showed morphological changes in cells treated with CUR and PTX, especially with TSCCF cells, compared to HGF normal cells. For TSCCF, the results showed the highest necrosis was achieved with CUR (58.8%) and PTX (39%) as compared to the control (2.99%). For normal HGF cells, the highest early and late apoptosis was achieved with PTX. Further, DCFH-DA analyses showed no significant ROS stimulation in TSCCF and HGF cell lines treated with CUR and PTX. The 1H NMR analysis results show the presence of methoxy and hydroxyl groups and aromatic hydrogens in the CUR structure. In conclusion, the results confirmed that CUR is more specific to the oral cancer cells but not normal cells by inducing apoptosis in a dose- and time-dependent manner, with decreased TSCCF cell viability, and the cytotoxicity of CUR and PTX is not through the ROS pathway.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq.
| | - Fatin L Khaphi
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq
| |
Collapse
|
18
|
Ahmadi S, Mehrabi Z, Zare M, Ghadir S, Masoumi SJ. Efficacy of Nanocurcumin as an Add-On Treatment for Patients Hospitalized with COVID-19: A Double-Blind, Randomized Clinical Trial. Int J Clin Pract 2023; 2023:5734675. [PMID: 37547100 PMCID: PMC10403319 DOI: 10.1155/2023/5734675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/20/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023] Open
Abstract
Background Curcumin is a polyphenol derivative of the Curcuma longa rhizome, with potential antioxidant, anticancer, antidepressant, antiviral, and anti-inflammatory effects. This compound can be prepared as biodegradable polymer nanoparticles, called nanocurcumin, to improve its solubility, stability, half-life, and bioavailability. Aim We explored nanocurcumin's effect on the clinical manifestations of patients hospitalized with mild-to-moderate COVID-19. Methods This double-blind, randomized clinical trial involved 76 COVID-19 patients admitted to Ali-Asghar Hospital from December 2021 to March 2022. All patients received standard coronavirus treatment as per national guidelines. In addition, four times a day for two weeks, the curcumin group received 40 mg of nanocurcumin, while the control group received a placebo. Clinical manifestations were examined and recorded by the associate doctors working in the department. Statistical analysis was done using SPSS v. 21. Results Thirty-nine people from the control group and 29 from the curcumin group completed the study. At baseline, the groups were comparable in age, gender, body mass index, hospitalization duration, and background diseases. The mean age of patients in the control and treatment groups was 53.9 ± 11.9 and 54.6 ± 13.4, respectively. Compared with the placebo, nanocurcumin minimized coughs (P=0.036), fatigue (P=0.0001), myalgia (P=0.027), oxygen demand (P=0.036), oxygen usage (P=0.05), and respiratory rate (P < 0.0001). By discharge, the curcumin group had a significantly greater increase in SPO2 than the control group (P=0.006). Conclusions This preliminary study suggests that nanocurcumin has a potentiating anti-inflammatory effect when combined with standard COVID-19 treatment, helping the recovery from the acute inflammatory phase of the disease in hospitalized patients with mild-to-moderate disease severity. This trial is registered with Iranian Registry of Clinical Trials: IRCT20211126053183N1 (registered while recruiting on 13/12/2021).
Collapse
Affiliation(s)
- Sedigheh Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Mehrabi
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ghadir
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 2023; 241:124508. [PMID: 37085076 DOI: 10.1016/j.ijbiomac.2023.124508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.
Collapse
Affiliation(s)
- Sepideh Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
20
|
Tran TT, Chua A, Pu S, Park JW, Hadinoto K. Maintaining supersaturation generation and protein integrity of amorphous curcumin-albumin nanoplex during storage by freeze drying with trehalose. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
21
|
Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Kah G, Chandran R, Abrahamse H. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020639. [PMID: 36839961 PMCID: PMC9962422 DOI: 10.3390/pharmaceutics15020639] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer continues to cause an alarming number of deaths globally, and its burden on the health system is significant. Though different conventional therapeutic procedures are exploited for cancer treatment, the prevalence and death rates remain elevated. These, therefore, insinuate that novel and more efficient treatment procedures are needed for cancer. Curcumin, a bioactive, natural, phenolic compound isolated from the rhizome of the herbaceous plant turmeric, is receiving great interest for its exciting and broad pharmacological properties. Curcumin presents anticancer therapeutic capacities and can be utilized as a photosensitizing drug in cancer photodynamic therapy (PDT). Nonetheless, curcumin's poor bioavailability and related pharmacokinetics limit its clinical utility in cancer treatment. This review looks at the physical and chemical properties, bioavailability, and safety of curcumin, while focusing on curcumin as an agent in cancer therapy and as a photosensitizer in cancer PDT. The possible mechanisms and cellular targets of curcumin in cancer therapy and PDT are highlighted. Furthermore, recent improvements in curcumin's bioavailability in cancer therapy using nanoformulations and delivery systems are presented.
Collapse
|
23
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
24
|
Li M, Rao C, Ye X, Wang M, Yang B, Wang C, Guo L, Xiong Y, Cui X. Applications for natural deep eutectic solvents in Chinese herbal medicines. Front Pharmacol 2023; 13:1104096. [PMID: 36699048 PMCID: PMC9868165 DOI: 10.3389/fphar.2022.1104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal medicines (CHMs), with a wide range of bioactive components, are considered to be an important source for new drug discovery. However, the process to isolate and obtain those bioactive components to develop new drugs always consumes a large amount of organic solvents with high toxicity and non-biodegradability. Natural deep eutectic solvents (NADES), a new type of green and designable solvents composed of primary plant-based metabolites, have been used as eco-friendly substitutes for traditional organic solvents in various fields. Due to the advantages of easy preparation, low production cost, low toxicity, and eco-friendliness, NADES have been also applied as extraction solvents, media, and drug delivery agents in CHMs in recent years. Besides, the special properties of NADES have been contributed to elucidating the traditional processing (also named Paozhi in Chinese) theory of CHMs, especially processing with honey. In this paper, the development process, preparation, classification, and applications for NADES in CHMs have been reviewed. Prospects in the future applications and challenges have been discussed to better understand the possibilities of the new solvents in the drug development and other uses of CHMs.
Collapse
Affiliation(s)
- Minghui Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Cheng Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqian Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Mei Wang
- Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,SU Biomedicine BV, Leiden, Netherlands
| | - Boyuan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Liqun Guo
- Center for Drug Discovery & Technology Development of Yunnan Traditional Medicine, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,*Correspondence: Yin Xiong, ; Xiuming Cui,
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,*Correspondence: Yin Xiong, ; Xiuming Cui,
| |
Collapse
|
25
|
Pantiora P, Furlan V, Matiadis D, Mavroidi B, Perperopoulou F, Papageorgiou AC, Sagnou M, Bren U, Pelecanou M, Labrou NE. Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1. Antioxidants (Basel) 2022; 12:antiox12010063. [PMID: 36670925 PMCID: PMC9854774 DOI: 10.3390/antiox12010063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The isoenzyme of human glutathione transferase P1-1 (hGSTP1-1) is involved in multi-drug resistance (MDR) mechanisms in numerous cancer cell lines. In the present study, the inhibition potency of two curcuminoids and eleven monocarbonyl curcumin analogues against hGSTP1-1 was investigated. Demethoxycurcumin (Curcumin II) and three of the monocarbonyl curcumin analogues exhibited the highest inhibitory activity towards hGSTP1-1 with IC50 values ranging between 5.45 ± 1.08 and 37.72 ± 1.02 μM. Kinetic inhibition studies of the most potent inhibitors demonstrated that they function as non-competitive/mixed-type inhibitors. These compounds were also evaluated for their toxicity against the prostate cancer cells DU-145. Interestingly, the strongest hGSTP1-1 inhibitor, (DM96), exhibited the highest cytotoxicity with an IC50 of 8.60 ± 1.07 μΜ, while the IC50 values of the rest of the compounds ranged between 44.59-48.52 μΜ. Structural analysis employing molecular docking, molecular dynamics (MD) simulations, and binding-free-energy calculations was performed to study the four most potent curcumin analogues as hGSTP1-1 inhibitors. According to the obtained computational results, DM96 exhibited the lowest binding free energy, which is in agreement with the experimental data. All studied curcumin analogues were found to form hydrophobic interactions with the residue Gln52, as well as hydrogen bonds with the nearby residues Gln65 and Asn67. Additional hydrophobic interactions with the residues Phe9 and Val36 as well as π-π stacking interaction with Phe9 contributed to the superior inhibitory activity of DM96. The van der Waals component through shape complementarity was found to play the most important role in DM96-inhibitory activity. Overall, our results revealed that the monocarbonyl curcumin derivative DM96 acts as a strong hGSTP1-1 inhibitor, exerts high prostate cancer cell cytotoxicity, and may, therefore, be exploited for the suppression and chemosensitization of cancer cells. This study provides new insights into the development of safe and effective GST-targeted cancer chemosensitizers.
Collapse
Affiliation(s)
- Panagiota Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
- Institute of Biosciences & Applications, NCSR “Demokritos”, 15310 Athens, Greece
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Dimitris Matiadis
- Institute of Biosciences & Applications, NCSR “Demokritos”, 15310 Athens, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, NCSR “Demokritos”, 15310 Athens, Greece
| | - Fereniki Perperopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | | | - Marina Sagnou
- Institute of Biosciences & Applications, NCSR “Demokritos”, 15310 Athens, Greece
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Maria Pelecanou
- Institute of Biosciences & Applications, NCSR “Demokritos”, 15310 Athens, Greece
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
- Correspondence: ; Tel./Fax: +30-2105294208
| |
Collapse
|
26
|
Islamov II, Yusupova AV, D’yakonov VA, Dzhemilev UM. Synthesis of New Hybrid Molecules Based on Isomerically Pure 5Z,9Z-Alkadienoic Acids and Monocarbonyl Curcumin Analog. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
27
|
Praseetha NG, Divya UK, Nair S. Identifying the potential role of curcumin analogues as anti-breast cancer agents; an in silico approach. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer ranks top among newly reported cancer cases and most of the women suffers from breast cancer. Development of target therapy using phytochemicals with minimal side effects is trending in health care research. Phytochemicals targets complex multiple signalling events in cancer and are pleiotropic in nature. Thus, the present study was conducted to check the effectivity of curcumin analogues (Capsaicin, Chlorogenic acid, Ferulic acid, Zingerone, Gingerol) against the receptors that are expressed in breast cancer cells and prove its ethno-medicinal value by using bioinformatic tools and softwares like PDB, Patch Dock, PubChem, Chimera and My Presto.
Result
Out of the various curcumin analogues studied, Ferulic acid showed best binding affinity with all the breast cancer cell specific receptors (FGF, MMP9, RNRM1, TGF-beta, DHFR, VEGF and aromatase) which was confirmed through the docking studies.
Conclusion
The current work was a preliminary step towards screening suitable drug candidate against breast cancer using in silico methods. This information can be used further to carry out in vivo studies using selected natural analogues of curcumin as a suitable drug candidate against breast cancer saving time and cost.
Collapse
|
28
|
Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23:ijms232314710. [PMID: 36499036 PMCID: PMC9738113 DOI: 10.3390/ijms232314710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98100 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
29
|
Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Given the importance of cyclin-dependent kinases (CDKs) in the maintenance of cell development, gene transcription, and other essential biological operations, CDK blockers have been generated to manage a variety of disorders resulting from CDK irregularities. Furthermore, CDK9 has a crucial role in transcription by regulating short-lived anti-apoptotic genes necessary for cancer cell persistence. Addressing CDK9 with blockers has consequently emerged as a promising treatment for cancer. This study scrutinizes the effectiveness of nature-derived compounds (geniposidic acid, quercetin, geniposide, curcumin, and withanolide C) against CDK9 through computational approaches. A molecular docking study was performed after preparing the protein and the ligands. The selected blockers of the CDK9 exerted reliable binding affinities (−8.114 kcal/mol to −13.908 kcal/mol) against the selected protein, resulting in promising candidates compared to the co-crystallized ligand (LCI). The binding affinity of geniposidic acid (−13.908 kcal/mol) to CDK9 is higher than quercetin (−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol), withanolide C (−8.114 kcal/mol), and the co-crystallized ligand LCI (−11.425 kcal/mol). Therefore, geniposidic acid is a promising inhibitor of CDK9. Moreover, the molecular dynamics studies assessed the structure–function relationships and protein–ligand interactions. The network pharmacology study for the selected ligands demonstrated the auspicious compound–target–pathway signaling pathways vital in developing tumor, tumor cell growth, differentiation, and promoting tumor cell progression. Moreover, this study concluded by analyzing the computational approaches the natural-derived compounds that have potential interacting activities against CDK9 and, therefore, can be considered promising candidates for CKD9-induced cancer. To substantiate this study’s outcomes, in vivo research is recommended.
Collapse
|
30
|
Palabindela R, Guda R, Ramesh G, Bodapati R, Nukala SK, Myadaraveni P, Ravi G, Kasula M. Curcumin based Pyrazole-thiazole Hybrids as Antiproliferative Agents: Synthesis, Pharmacokinetic, Photophysical Properties, and Docking Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Dourado D, Oliveira MCD, Araujo GRSD, Amaral-Machado L, Porto DL, Aragão CFS, Alencar EDN, Egito ESTD. Low-surfactant microemulsion, a smart strategy intended for curcumin oral delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wang S, Gao X, Li J, Wei S, Shao Y, Yin Y, Zhang D, Tang M. The anticancer effects of curcumin and clinical research progress on its effects on esophageal cancer. Front Pharmacol 2022; 13:1058070. [DOI: 10.3389/fphar.2022.1058070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) is a common tumor of the gastrointestinal system and a major threat to human health. The etiology and incidence of EC vary depending on the type of pathology. Owing to the unique physiological structure of the esophagus and the poor biological behavior of EC, the treatment modalities available are limited, and the prognosis of patients is relatively poor. Curcumin is a type of natural phytochemical belonging to the class of phenolic compounds. It exerts favorable anticancer effects on various cancers. A growing body of evidence indicates that curcumin suppresses tumor development and progression by inhibiting tumor cell proliferation, invasion, and migration, thus inducing apoptosis, regulating microRNA expression, reversing multidrug resistance, and inducing sensitivity to the therapeutic effect of chemoradiotherapy. Multiple cellular molecules, growth factors, and genes encoding proteins participating in different signaling pathways interact with each other to contribute to the complex and orderly anticancer effect. The efficacy and safety of curcumin have been established in preclinical studies for EC and clinical trials for other cancers. However, the low bioavailability of curcumin limits its clinical application. Therefore, the modification of curcumin analogs, the combination of curcumin with other drugs or therapies, and the use of novel nanocarriers have been widely investigated to improve the clinical effects of curcumin in EC.
Collapse
|
33
|
Massironi A, Marzorati S, Marinelli A, Toccaceli M, Gazzotti S, Ortenzi MA, Maggioni D, Petroni K, Verotta L. Synthesis and Characterization of Curcumin-Loaded Nanoparticles of Poly(Glycerol Sebacate): A Novel Highly Stable Anticancer System. Molecules 2022; 27:molecules27206997. [PMID: 36296595 PMCID: PMC9606863 DOI: 10.3390/molecules27206997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.
Collapse
Affiliation(s)
- Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Alessandra Marinelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marta Toccaceli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gazzotti
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniela Maggioni
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
34
|
Rai A, Qazi S, Raza K. In Silico Analysis and Comparative Molecular Docking Study of FDA Approved Drugs with Transforming Growth Factor Beta Receptors in Oral Submucous Fibrosis. Indian J Otolaryngol Head Neck Surg 2022; 74:2111-2121. [PMID: 36452628 PMCID: PMC9702157 DOI: 10.1007/s12070-020-02014-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
Abstract Oral sub-mucous fibrosis (OSMF) is a severe crippling malignant disorder which affects the oral mucosa. The transforming growth factor beta (TGF-β) is one of the cytokines involved with the cell proliferation, cell growth and apoptosis. Several traditional and synthetic medications have been tried in OSMF. This study attempts to identify the FDA approved drugs (including both synthetic and herbal medications) with least side effects, highest efficacy and robust dynamic mechanism for the treatment of OSMF. A ligand library comprising of FDA approved drug compounds was prepared using ChEMBL database. Molecular docking was carried out using GOLD suite 5.2.2. The docked complexes which had the highest binding affinities and lowest energy were deployed to a molecular dynamic simulation using MDweb server. Further, SwissADME was used to study ADME, physicochemistry, drug-likeness, pharmacokinetics and medicinal chemistry friendliness properties. Our docking results suggest that ligands-Curcumin, Curcumin Pyrazole and Demethoxycurcumin, which are all herbal in nature, have a better binding affinity and the best docking scores for both TGF-β type I and TGF-β type II receptors. The molecular dynamics study discerns that the structures have become more stable with less energy. The pharmacokinetics and pharmacodynamics analysis, physicochemical properties and toxicity prediction suggest that Curcumin is the optimal lead compound and holds the potential to be used as an effective drug for the treatment of OSMF. Curcumin, a FDA approved herbal compound, can be used as an effective drug for the treatment of OSMF. Graphic Abstract
Collapse
Affiliation(s)
- Arpita Rai
- Oral Medicine & Radiology, Dental Institute, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025 India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
35
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today’s scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| |
Collapse
|
36
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Mohamadian M, Ahmadi SS, Bahrami A, Ferns GA. Review on the Therapeutic Potential of Curcumin and its Derivatives on Glioma Biology. Neurochem Res 2022; 47:2936-2953. [PMID: 35790698 DOI: 10.1007/s11064-022-03666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are common and aggressive brain tumors that carry a poor prognosis. The current multimodal therapeutic option for glioma includes surgery subsequently temozolomide chemotherapy and/or radiation; but gliomas are often associated with multidrug resistance, intensive adverse events, and tumor relapse. Thus, novel interventions that can enhance successful chemo-prevention and overcome therapeutic resistance are urgently needed. Phytochemicals have several biological properties with multi-target sites and relatively limited degrees of toxicity. Curcumin is a natural polyphenolic compound with several anti-tumor effects which potentially inhibit tumor growth, development, proliferation, invasion, dissemination, and angiogenesis in different human malignancies. Experimental model studies have demonstrated that curcumin attenuates glioma cell viability by G2/M cell cycle arrest, apoptosis, induction of autophagy, gene expression alteration, and disruption of multi-molecular pathways. Moreover, curcumin has been reported to re-sensitize cancer to chemotherapeutics as well as augment the effect of radiotherapy on glioma cells. In this review, we have provided an update on the in vitro and in vivo effects of curcumin-based therapy on gliomas. We have also discussed the use of curcumin in combination therapies, its effectiveness on drug-resistant cells, and new formulations of curcumin in the treatment of gliomas.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. .,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
38
|
Martínez-González JDJ, Ríos-Morales SL, Guevara-Flores A, Ramos-Godinez MDP, López-Saavedra A, Rendón JL, Del Arenal Mena IP. Evaluating the effect of curcumin on the metacestode of Taenia crassiceps. Exp Parasitol 2022; 239:108319. [PMID: 35777452 DOI: 10.1016/j.exppara.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 μM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.
Collapse
Affiliation(s)
- José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Sandra Lizeth Ríos-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - María Del Pilar Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Irene Patricia Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico.
| |
Collapse
|
39
|
Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH. Multiple health benefits of curcumin and its therapeutic potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43732-43744. [PMID: 35441996 DOI: 10.1007/s11356-022-20137-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Turmeric, or Curcuma longa as it is formally named, is a multifunctional plant with numerous names. It was dubbed "the golden spice" and "Indian saffron" not only for its magnificent yellow color, but also for its culinary use. Turmeric has been utilized in traditional medicine since the dawn of mankind. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which are all curcuminoids, make up turmeric. Although there have been significant advancements in cancer treatment, cancer death and incidence rates remain high. As a result, there is an increasing interest in discovering more effective and less hazardous cancer treatments. Curcumin is being researched for its anti-inflammatory, anti-cancer, anti-metabolic syndrome, neuroprotective, and antibacterial properties. Turmeric has long been used as a home remedy for coughs, sore throats, and other respiratory problems. As a result, turmeric and its compounds have the potential to be used in modern medicine to cure a variety of diseases. In this current review, we highlighted therapeutic potential of curcumin and its multiple health benefits on various diseases.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra, 21310, Pakistan
| | - Obaid Ullah
- Department of Chemistry, University of Malakand, Chakdara, 18800, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea
| |
Collapse
|
40
|
Jyotirmayee B, Mahalik G. A review on selected pharmacological activities of Curcuma longa L. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B Jyotirmayee
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
41
|
Guéguinou M, Ibrahim S, Bourgeais J, Robert A, Pathak T, Zhang X, Crottès D, Dupuy J, Ternant D, Monbet V, Guibon R, Flores-Romero H, Lefèvre A, Lerondel S, Le Pape A, Dumas JF, Frank PG, Girault A, Chautard R, Guéraud F, García-Sáez AJ, Ouaissi M, Emond P, Sire O, Hérault O, Fromont-Hankard G, Vandier C, Tougeron D, Trebak M, Raoul W, Lecomte T. Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cell Mol Life Sci 2022; 79:284. [PMID: 35526196 PMCID: PMC11072810 DOI: 10.1007/s00018-022-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.
Collapse
Affiliation(s)
- Maxime Guéguinou
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
| | | | | | - Alison Robert
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Trayambak Pathak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - David Crottès
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Jacques Dupuy
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, Tours, France
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Valérie Monbet
- IRMAR Mathematics Research Institute of Rennes, UMR-CNRS 6625, Rennes, France
| | - Roseline Guibon
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Hector Flores-Romero
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Antoine Lefèvre
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | | | | | - Jean-François Dumas
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Philippe G Frank
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Alban Girault
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, Amiens, France
| | | | - Françoise Guéraud
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ana J García-Sáez
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Mehdi Ouaissi
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | - Olivier Sire
- IRDL Institut de Recherche Dupuy de Lôme, UMR-CNRS, 06027, Vannes, France
| | | | - Gaëlle Fromont-Hankard
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Christophe Vandier
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - David Tougeron
- Hepato-Gastroenterology Department, Poitiers University Hospital and Faculty of Medicine of Poitiers, 86000, Poitiers, France
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - William Raoul
- EA 7501 GICC, Université de Tours, Tours, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Thierry Lecomte
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
- Department of Hepato-Gastroenterology and Digestive Oncology, CHRU de Tours, Tours, France.
| |
Collapse
|
42
|
Khodaei A, Jahanmard F, Madaah Hosseini H, Bagheri R, Dabbagh A, Weinans H, Amin Yavari S. Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors. Bioact Mater 2022; 11:107-117. [PMID: 34938916 PMCID: PMC8665343 DOI: 10.1016/j.bioactmat.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of the shell, which could consequently control the release of curcumin. The release was systematically studied as a function of temperature and pH, via response surface methodology (RSM). The bone tumor killing efficacy of the released curcumin from the carrier in combination with the hyperthermia was studied on MG-63 osteosarcoma cells through Alamar blue assay, live-dead staining and apoptosis caspase 3/7 activation kit. It was found that the shrinkage of the F127/F68 layer stimulated by elevated temperature in an alternative magnetic field caused the curcumin release. Although the maximum release concentration and cell death took place at 45 °C, treatment at 41 °C was chosen as the optimum condition due to considerable cell apoptosis and lower side effects of mild hyperthermia. The cell metabolic activity results confirmed the synergistic effects of curcumin and hyperthermia in killing MG-63 osteosarcoma cells.
Collapse
Affiliation(s)
- A. Khodaei
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F. Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H.R. Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - R. Bagheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - A. Dabbagh
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S. Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
43
|
Chen L, Dai Z, Ge C, Huang D, Zhou X, Pan K, Xu W, Fu J, lin Du J. Specific Metabolic Response of Patient-derived Organoids to Curcumin of Colorectal Cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123260. [DOI: 10.1016/j.jchromb.2022.123260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
|
44
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Exosome-Mediated Therapeutic Strategies for Management of Solid and Hematological Malignancies. Cells 2022; 11:cells11071128. [PMID: 35406692 PMCID: PMC8997895 DOI: 10.3390/cells11071128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin containing cytokines, RNAs, growth factors, proteins, lipids, and metabolites. They have been identified as fundamental intercellular communication controllers in several diseases and an enormous volume of data confirmed that exosomes could either sustain or inhibit tumor onset and diffusion in diverse solid and hematological malignancies by paracrine signaling. Thus, exosomes might constitute a promising cell-free tumor treatment alternative. This review focuses on the effects of exosomes in the treatment of tumors, by discussing the most recent and promising data from in vitro and experimental in vivo studies and the few existing clinical trials. Exosomes are extremely promising as transporters of drugs, antagomir, genes, and other therapeutic substances that can be integrated into their core via different procedures. Moreover, exosomes can augment or inhibit non-coding RNAs, change the metabolism of cancer cells, and modify the function of immunologic effectors thus modifying the tumor microenvironment transforming it from pro-tumor to antitumor milieu. Here, we report the development of currently realized exosome modifiers that offer indications for the forthcoming elaboration of other more effective methods capable of enhancing the activity of the exosomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
45
|
G MS, Swetha M, Keerthana CK, Rayginia TP, Anto RJ. Cancer Chemoprevention: A Strategic Approach Using Phytochemicals. Front Pharmacol 2022; 12:809308. [PMID: 35095521 PMCID: PMC8793885 DOI: 10.3389/fphar.2021.809308] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.
Collapse
Affiliation(s)
- Mohan Shankar G
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - C K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Tennyson P Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
46
|
Shao C, Wu J, Han S, Liu Y, Su Z, Zhu HL, Liu HK, Qian Y. Biotinylated curcumin as a novel chemosensitizer enhances naphthalimide-induced autophagic cell death in breast cancer cells. Eur J Med Chem 2022; 228:114029. [PMID: 34871840 DOI: 10.1016/j.ejmech.2021.114029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
Achieving selective release of chemical anticancer agents and improving therapeutic efficacy has always been a hot spot in the field of cancer research, yet how to achieve this remains a great challenge. In this work, we constructed a novel chemical anticancer agent (named MCLOP) by introducing naphthalimide into the skeleton of methylene blue (MB). Under the stimulation by cellular hypochlorous acid (HClO) and visible light, selective release of active naphthalimide can be achieved within breast cancer cell lines, the release process of which can be tracked visually using near-infrared fluorescence of MB (685 nm). More importantly, we developed biotinylated curcumin (Cur-Bio) as a new chemosensitizer, which significantly enhanced the ability of MCLOP to induce autophagic cell death of breast cancer cells. This synergistic treatment strategy exhibited an excellent anti-proliferation effect on breast cancer cells in vitro, three-dimensional (3D) cell sphere model, and mouse tumor model in vivo. This work provides a new strategy for the treatment of breast cancer and also opens new opportunities for the efficient treatment of cancer with curcumin-based chemosensitizer.
Collapse
Affiliation(s)
- Chenwen Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China; Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Jian Wu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Yani Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China; Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China.
| |
Collapse
|
47
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
48
|
Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of Curcumin Nanoformulations in Cancer Management. Molecules 2022; 27:361. [PMID: 35056675 PMCID: PMC8777756 DOI: 10.3390/molecules27020361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho PMB 31, Ghana;
| | - Enas Alkhader
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan;
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
49
|
Khwaza V, Oyedeji OO, Aderibigbe BA, Morifi E, Fonkui YT, Ndinteh DT, Nell M, Steenkamp V. Design of Oleanolic Acid-based Hybrid Compounds as Potential Pharmaceutical Scaffolds. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210604112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Infectious diseases, as well as cancer, are the leading causes of death
worldwide. Drug resistance usually results in their treatment requiring a combination of two or more
drugs.
Objective:
Oleanolic-based hybrid compounds were prepared via esterification and characterized
using FTIR, NMR and LC-MS. In vitro antibacterial and in vitro cytotoxicity studies were performed.
Method:
Oleanolic acid was hybridized with selected known pharmaceutical scaffolds via the carboxylic
acid functionality in order to develop therapeutics with increased biological activity. Antibacterial
activity was determined using the micro-dilution assay against selected Gram-positive and
Gram-negative bacteria and cytotoxicity using the sulforhodamine B assay.
Results:
Compound 8 displayed potent antibacterial effect against five strains of bacteria, such as
Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Klebsiella oxytoca, and Escherichia coli,
with MIC values of 1.25, 0.078, 0.078, 1.25, 1.25 mg/mL when compared to the control, oleanolic
acid (MIC = 2.5 mg/mL). Furthermore, in vitro cytotoxicity, as determined using the SRB assay,
against selected cancer cells revealed that compound 7 was the most cytotoxic on MDA, DU145, and
MCF-7 cell lines with IC50 values of 69.87 ± 1.04, 73.2 ± 1.08, and 85.27 ± 1.02 μg/mL, respectively,
compared to oleanolic acid with an IC50 > 200 μg/mL.
Conclusion:
Hybridization of oleanolic acid was successful, and further development of these potential
antibacterial compounds with reduced cytotoxicity is therefore warranted.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice, Eastern
Cape, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry division, University of the Witwatersrand, Johannesburg
Private Bag X3, WITS, 2050, South Africa
| | - Youmbi Thierry Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science,
University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry,
Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Margo Nell
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Vanessa Steenkamp
- Department of
Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
50
|
Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021; 610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Curcumin (CUR) is a bioactive natural compound with potent antioxidant and anticancer properties. However, its poor water solubility has been a major limitation against its widespread clinical use. The aim of this study was to develop a nanoscale formulation for CUR to improve its solubility and potentially enhance its bioactivity, by leveraging the self-assembly behavior of tannic acid (TA) and amphiphilic poloxamers to form CUR-entrapped nanoassemblies. To optimize drug loading, formulation variables included the CUR: TA ratio and the type of amphiphilic polymer (Pluronic® F-127 or Pluronic® P-123). The optimal CUR nanoparticles (NPs) were around 200 nm in size with a high degree of monodispersity and 56% entrapment efficiency. Infrared spectroscopy confirmed the presence of intermolecular interactions between CUR and the NP formulation components. X-ray diffraction revealed that CUR was entrapped in the NPs in an amorphous state. The NPs maintained excellent colloidal stability under various conditions. In vitro release of CUR from the NPs showed a biphasic controlled release pattern up to 72 h. Antioxidant and antiproliferative assays against a panel of human cancer cell lines revealed significantly higher activity for CUR NPs compared to free CUR, particularly in MCF-7 and MDA-MB-231 breast cancer cells. This was attributed to greater cellular uptake of the NPs compared to the free drug as verified by confocal microscopy imaging and flow cytometry measurements. Our findings present a highly promising NP delivery platform for CUR prepared via a simple self-assembly process with the ability to potentiate its bioactivity in cancer and other diseases where oxidative stress is implicated.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Bayan Orainee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|