1
|
Javadi S, Habibi D. Comparative study of cerium-manganese ratios in the design of Ce-Mn-binuclear LDH-based Cu complex: a potent nanocatalyst for the green synthesis of spiro[acridine-9,3'-indole]triones. Sci Rep 2024; 14:26578. [PMID: 39496631 PMCID: PMC11535474 DOI: 10.1038/s41598-024-75724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
The Ce-Mn binuclear LDH was prepared at four different molar ratios of Ce to Mn (1:1, 1:2, 1:3, and 1:4), modified with both 3-chloropropyltrimethoxysilane (CPTMS) and N-amino-phthalimide (NAP), complexed with Cu(II), and characterized by the FT-IR, ICP, XPS, XRD, BET, UV/Vis, EDX, SEM, SEM-mapping, TEM, and TGA-DTA techniques. The ICP, XPS, BET, and UV-vis techniques showed that the 1:4 molar ratio of Ce to Mn is the best, therefore it was used as a heterogeneous nanocatalyst for the green synthesis of fourteen spiro[acridine-indole]triones from the three-component condensation reaction of isatin, aniline, and 1,3-diketone in mild reaction conditions. The advantages of this method include the absence of harmful organic solvents, easy separation of the catalyst and products, and rapid achievement of excellent yields. Furthermore, the activity of the catalyst was maintained even after four consecutive runs without a significant loss of activity.
Collapse
Affiliation(s)
- Samira Javadi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
2
|
Silina EV, Stupin VA, Manturova NE, Chuvilina EL, Gasanov AA, Ostrovskaya AA, Andreeva OI, Tabachkova NY, Abakumov MA, Nikitin AA, Kryukov AA, Dodonova SA, Kochura AV, Pugachevskii MA. Development of Technology for the Synthesis of Nanocrystalline Cerium Oxide Under Production Conditions with the Best Regenerative Activity and Biocompatibility for Further Creation of Wound-Healing Agents. Pharmaceutics 2024; 16:1365. [PMID: 39598490 PMCID: PMC11597548 DOI: 10.3390/pharmaceutics16111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The issue of effective wound healing remains highly relevant. The objective of the study is to develop an optimal method for the synthesis of nanosized cerium oxide powder obtained via the thermal decomposition of cerium carbonate precipitated from aqueous nitrate solution for the technical creation of new drugs in production conditions; the select modification of synthesis under different conditions based on the evaluation of the physicochemical characteristics of the obtained material and its biological activity, and an evaluation of the broad-spectrum effect on cells involved in the regeneration of skin structure as well as antimicrobial properties. Methods: Several modes of the industrial synthesis of cerium dioxide nanoparticles (NPs) were carried out. The synthesis stages and the chemical and physical parameters of the obtained NPs were described using transmission electron microscopy (TEM), X-ray diffraction, Raman spectroscopy, and mass spectrometry. The cell cultures of human fibroblasts and keratinocytes were cultured with different concentrations of different nanoceria variations, and the cytotoxicity and the metabolic and proliferative activity were investigated. An MTT test and cell counting were performed. The antimicrobial activity of CeO2 variations at a concentration of 0.1-0.0001 M against Pseudomonas aeruginosa was studied. Results: The purity of the synthesized nanoceria powders in all the batches was >99.99%. According to TEM data, the size of the NPs varied from 1 nm to 70 nm under different conditions and methodologies. The most optimal technology for the synthesis of the nanoceria with the maximum biological effect was selected. A method for obtaining the most bioactive NPs of optimal size (up to 10 nm) was proposed. The repeatability of the results of the proposed method of nanoceria synthesis in terms of particle size was confirmed. It was proven that the more structural defects on the surface of the CeO2 crystal lattice, the higher the efficiency of the NPs due to oxygen vacancies. The strain provided the best redox activity and antioxidant properties of the nanoceria, which was demonstrated by better regenerative potential on various cell lines. The beneficial effect of synthesized nanoceria on the proliferative and metabolic activity of the cell lines involved in skin regeneration (human fibroblasts, human keratinocytes) was demonstrated. The antimicrobial effect of synthesized nanoceria on the culture of the most-resistant-to-modern-antibiotics microorganism Pseudomonas aeruginosa was confirmed. The optimal concentrations of the nanoceria to achieve the maximum biological effect were determined (10-3 M). Conclusions: It was possible to develop a method for the industrial synthesis of nanoceria, which can be used to produce drugs and medical devices containing CeO2 NPs.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Elena L. Chuvilina
- “LANHIT” LLC, 105118 Moscow, Russia; (E.L.C.); (A.A.G.); (A.A.O.); (O.I.A.)
| | | | | | - Olga I. Andreeva
- “LANHIT” LLC, 105118 Moscow, Russia; (E.L.C.); (A.A.G.); (A.A.O.); (O.I.A.)
| | - Natalia Y. Tabachkova
- National University of Science & Technology MISIS, 119049 Moscow, Russia; (N.Y.T.); (M.A.A.); (A.A.N.)
| | - Maxim A. Abakumov
- National University of Science & Technology MISIS, 119049 Moscow, Russia; (N.Y.T.); (M.A.A.); (A.A.N.)
| | - Aleksey A. Nikitin
- National University of Science & Technology MISIS, 119049 Moscow, Russia; (N.Y.T.); (M.A.A.); (A.A.N.)
| | - Alexey A. Kryukov
- Kursk State Medical University, Karl Marx Str., 3, 305041 Kursk, Russia; (A.A.K.); (S.A.D.)
| | - Svetlana A. Dodonova
- Kursk State Medical University, Karl Marx Str., 3, 305041 Kursk, Russia; (A.A.K.); (S.A.D.)
| | - Aleksey V. Kochura
- Southwest State University, 50 let Oktyabrya Str., 94, 305040 Kursk, Russia; (A.V.K.)
| | | |
Collapse
|
3
|
Maddheshiya S, Rajwani P, Nara S. Effect of precipitant on pro-oxidative and antibacterial properties of CeO 2 nanoparticles - an experimental study. NANOSCALE ADVANCES 2024:d4na00234b. [PMID: 39144157 PMCID: PMC11320113 DOI: 10.1039/d4na00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
In this study, the synthesis of pro-oxidative cerium-oxide nanozymes (CeO2 NZs) is reliably performed via the co-precipitation method using ceric ammonium nitrate as a precursor and ammonium carbonate as a precipitating agent. Different samples of CeO2 NZs were prepared by varying the amount of the precipitant. The synthesized NZs were characterized by ultraviolet-visible (UV-vis) spectroscopy, particle size analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM) and then checked for their pro-oxidative (peroxidase and oxidase) activity. Furthermore, we studied the NZ kinetics and antibacterial properties of synthesized samples.
Collapse
Affiliation(s)
- Shilpa Maddheshiya
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad 211004 UP India +91-532-2271238
| | - Priyanka Rajwani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad 211004 UP India +91-532-2271238
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad 211004 UP India +91-532-2271238
| |
Collapse
|
4
|
Sozarukova MM, Kozlova TO, Beshkareva TS, Popov AL, Kolmanovich DD, Vinnik DA, Ivanova OS, Lukashin AV, Baranchikov AE, Ivanov VK. Gadolinium Doping Modulates the Enzyme-like Activity and Radical-Scavenging Properties of CeO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:769. [PMID: 38727363 PMCID: PMC11085435 DOI: 10.3390/nano14090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.
Collapse
Affiliation(s)
- Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Taisiya O. Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana S. Beshkareva
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Danil D. Kolmanovich
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Darya A. Vinnik
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey V. Lukashin
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Finocchiaro G, Ju X, Mezghrani B, Berret JF. Cerium Oxide Catalyzed Disproportionation of Hydrogen Peroxide: A Closer Look at the Reaction Intermediate. Chemistry 2024; 30:e202304012. [PMID: 38133488 DOI: 10.1002/chem.202304012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2 O2 ). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2 O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2 O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O2 2- ) and/or cerium-hydroperoxo (Ce-OOH- ) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2 O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2 O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2 O2 .
Collapse
Affiliation(s)
- Giusy Finocchiaro
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013, Paris, France
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Xiaohui Ju
- Center for Nanorobotics and Machine Intelligence, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Braham Mezghrani
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013, Paris, France
| | - Jean-François Berret
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013, Paris, France
| |
Collapse
|
7
|
Brandão Da Silva Assis M, Nestal De Moraes G, De Souza KR. Cerium oxide nanoparticles: Chemical properties, biological effects and potential therapeutic opportunities (Review). Biomed Rep 2024; 20:48. [PMID: 38357238 PMCID: PMC10865297 DOI: 10.3892/br.2024.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
The chemistry of pure cerium oxide (CeO2-x) nanoparticles has been widely studied since the 1970s, especially for chemical catalysis. CeO2-x nanoparticles have been included in an important class of industrial metal oxide nanoparticles and have been attributed a range of wide applications, such as ultraviolet absorbers, gas sensors, polishing agents, cosmetics, consumer products, high-tech devices and fuel cell conductors. Despite these early applications in the field of chemistry, the biological effects of CeO2-x nanoparticles were only explored in the 2000s. Since then, CeO2-x nanoparticles have gained a spot in research related to various diseases, especially the ones in which oxidative stress plays a part. Due to an innate oxidation state variation on their surface, CeO2-x nanoparticles have exhibited redox activities in diseases, such as cancer, acting either as an oxidizing agent, or as an antioxidant. In biological models, CeO2-x nanoparticles have been shown to modulate cancer cell viability and, more recently, cell death pathways. However, a deeper understanding on how the chemical structure of CeO2-x nanoparticles (including nanoparticle size, shape, suspension, agglomeration in the medium used, pH of the medium, type of synthesis and crystallite size) influences the cellular effects observed remains to be elucidated. In the present review, the chemistry of CeO2-x nanoparticles and their impact on biological models and modulation of cell signalling, particularly focusing on oxidative and cell death pathways, were investigated. The deeper understanding of the chemical activity of CeO2-x nanoparticles may provide the rationale for further biomedical applications towards disease treatment and drug delivery purposes.
Collapse
Affiliation(s)
- Mariane Brandão Da Silva Assis
- Laboratory of Physical-Chemistry of Materials, Military Institute of Engineering (IME), Rio de Janeiro 22 290 270, Brazil
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, National Cancer Institute (INCA), Rio de Janeiro 20 230 130, Brazil
| | - Gabriela Nestal De Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, National Cancer Institute (INCA), Rio de Janeiro 20 230 130, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21 941 599, Brazil
| | - Kátia Regina De Souza
- Laboratory of Physical-Chemistry of Materials, Military Institute of Engineering (IME), Rio de Janeiro 22 290 270, Brazil
| |
Collapse
|
8
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
9
|
Xu R, Zhang S, Wang P, Zhang R, Lin P, Wang Y, Gao L, Wei H, Zhang X, Ling D, Yan X, Fan K. Nanozyme-based strategies for efficient theranostics of brain diseases. Coord Chem Rev 2024; 501:215519. [DOI: 10.1016/j.ccr.2023.215519] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Alvandi M, Shaghaghi Z, Farzipour S, Marzhoseyni Z. Radioprotective Potency of Nanoceria. Curr Radiopharm 2024; 17:138-147. [PMID: 37990425 DOI: 10.2174/0118744710267281231104170435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 11/23/2023]
Abstract
Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.
Collapse
Affiliation(s)
- Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Science, Mazandaran University of Medical Science, Sari, Iran
| | - Zeynab Marzhoseyni
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Ding M, Jia D, Yang M, Yu Y, Lin G, Zhang X. A Detailed Insight into the Effects of Morphologies of Cerium Oxide on Fenton-like Reactions for Different Applications. Chemphyschem 2023; 24:e202300211. [PMID: 37610324 DOI: 10.1002/cphc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
As an exceptional Fenton-like reagent, cerium oxide (CeO2 ) finds applications in biomedical science and organic pollutants treatment. The Fenton-like reaction catalyzed by CeO2 typically encompasses two distinct processes: one resembling the classical Fenton reaction, wherein cerium (Ce3+ ) triggers the decomposition of hydrogen peroxide (H2 O2 ) to yield reactive oxygen species (ROS), and the other involves the complexation of H2 O2 on the Ce3+ surface, leading to the formation of peroxides. However, the influence of diverse CeO2 morphologies on these two reaction pathways has not been comprehensively explored. In this study, CeO2 exhibiting three typical morphologies, rods, cubes, and spheres, were prepared. The generation of ROS and peroxides was evaluated using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction and the reduction current of H2 O2 , respectively. Moreover, the impacts of pH variations and CeO2 /H2 O2 concentrations on the production and conversion of these two reaction products were investigated. To corroborate the distinctions between the resultant products and their applicability, apoptosis assays and acid orange 7 (AO7) degradation analyses were performed. Notably, CeO2 rods exhibited the highest proportion of Ce3+ , predominantly engaging in complexation with H2 O2 to foster peroxide formation, thereby facilitating the robust degradation of AO7. However, the generated peroxides appeared to occupy Ce3+ sites, thereby impeding the H2 O2 decomposition process. Conversely, Ce3+ species on the surface of CeO2 cubes were primarily involved in H2 O2 decomposition, leading to heightened ROS production, and thus showcasing substantial potential for damaging A549 tumor cells. It is worth noting that the ability of these Ce3+ species to form peroxides through complexation with H2 O2 was comparatively reduced. In summation, this study sheds light on the intricate interplay between distinct CeO2 morphologies and their divergent impacts on Fenton-like reactions. These findings expand our comprehension of the influences on its reactivity of CeO2 morphologies and open new insights for applications in diverse domains, from organic dye degradation to tumor therapy.
Collapse
Affiliation(s)
- Meijuan Ding
- Department of Respiratory Medicine, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, 150001, Harbin, China
- Department of Oncology, Second Affifiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Dexin Jia
- Department of Respiratory Medicine, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, 150001, Harbin, China
| | - Min Yang
- Department of Respiratory Medicine, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, 150001, Harbin, China
| | - Yan Yu
- Department of Respiratory Medicine, Cancer Hospital of Harbin Medical University, 150 Haping Road, Nangang District, 150001, Harbin, China
| | - Guochang Lin
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, 150001, Harbin, China
| | - Xuelin Zhang
- MEMS Center, Harbin Institute of Technology, 92 Xidazhi Road, Nangang District, 150001, Harbin, China
| |
Collapse
|
12
|
Silina EV, Stupin VA, Manturova NE, Ivanova OS, Popov AL, Mysina EA, Artyushkova EB, Kryukov AA, Dodonova SA, Kruglova MP, Tinkov AA, Skalny AV, Ivanov VK. Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration. Int J Mol Sci 2023; 24:14501. [PMID: 37833949 PMCID: PMC10572590 DOI: 10.3390/ijms241914501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
| | - Victor A. Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Natalia E. Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.L.P.); (E.A.M.)
| | - Elena A. Mysina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.L.P.); (E.A.M.)
| | - Elena B. Artyushkova
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Maria P. Kruglova
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
| | - Alexey A. Tinkov
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Anatoly V. Skalny
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
13
|
Dhouib A, Mezghrani B, Finocchiaro G, Le Borgne R, Berthet M, Daydé-Cazals B, Graillot A, Ju X, Berret JF. Synthesis of Stable Cerium Oxide Nanoparticles Coated with Phosphonic Acid-Based Functional Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37236227 DOI: 10.1021/acs.langmuir.3c00576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Functional polymers, such as poly(ethylene glycol) (PEG), terminated with a single phosphonic acid, hereafter PEGik-Ph are often applied to coat metal oxide surfaces during post-synthesis steps but are not sufficient to stabilize sub-10 nm particles in protein-rich biofluids. The instability is attributed to the weak binding affinity of post-grafted phosphonic acid groups, resulting in a gradual detachment of the polymers from the surface. Here, we assess these polymers as coating agents using an alternative route, namely, the one-step wet-chemical synthesis, where PEGik-Ph is introduced with cerium precursors during the synthesis. Characterization of the coated cerium oxide nanoparticles (CNPs) indicates a core-shell structure, where the cores are 3 nm cerium oxide and the shell consists of functionalized PEG polymers in a brush configuration. Results show that CNPs coated with PEG1k-Ph and PEG2k-Ph are of potential interest for applications as nanomedicines due to their high Ce(III) content and increased colloidal stability in cell culture media. We further demonstrate that the CNPs in the presence of hydrogen peroxide show an additional absorbance band in the UV-vis spectrum, which is attributed to Ce-O22- peroxo-complexes and could be used in the evaluation of their catalytic activity for scavenging reactive oxygen species.
Collapse
Affiliation(s)
- Ameni Dhouib
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, 75013 Paris, France
| | - Braham Mezghrani
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, 75013 Paris, France
| | - Giusy Finocchiaro
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, 75013 Paris, France
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská1014/57, 182 51 Prague, Czech Republic
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Mathéo Berthet
- Specific Polymers, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | | | - Alain Graillot
- Specific Polymers, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Xiaohui Ju
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, 181 00 Prague, Czech Republic
| | | |
Collapse
|
14
|
Hanzha VV, Rozumna NM, Kravenska YV, Spivak MY, Lukyanetz EA. The effect of cerium dioxide nanoparticles on the viability of hippocampal neurons in Alzheimer’s disease modeling. Front Cell Neurosci 2023; 17:1131168. [PMID: 37006473 PMCID: PMC10060808 DOI: 10.3389/fncel.2023.1131168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
The possibilities of using nanoparticle materials based on cerium dioxide (CNPs) are exciting since they are low toxic and have specific redox, antiradical properties. It can be supposed that CNPs’ biomedical use is also relevant in neurodegenerative diseases, especially Alzheimer’s disease (AD). AD is known as the pathologies leading to progressive dementia in the elderly. The factor that provokes nerve cell death and cognitive impairment in AD is the pathological accumulation of beta-amyloid peptide (Aβ) in the brain tissue. In our studies, we examined the impact of Aβ 1-42 on neuronal death and evaluated the potential neuroprotective properties of CNPs during AD modeling in cell culture. Our findings show that, under AD modeling conditions, the number of necrotic neurons increased from 9.4% in the control to 42.7% when Aβ 1-42 was used. In contrast, CNPs alone showed low toxicity, with no significant increase in the number of necrotic cells compared to control conditions. We further explored the potential of CNPs as a neuroprotective agent against Aβ-induced neuronal death. We found that introducing CNPs 24 h after Aβ 1-42 incubation or prophylactically incubating hippocampal cells with CNPs 24 h before amyloid administration significantly reduced the percentage of necrotic cells to 17.8 and 13.3%, respectively. Our results suggest that CNPs in the cultural media can significantly reduce the number of dead hippocampal neurons in the presence of Aβ, highlighting their neuroprotective properties. These findings suggest that CNPs may hold promise for developing new treatments for AD based on their neuroprotective properties.
Collapse
Affiliation(s)
- Vita V. Hanzha
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, The National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
| | - Nataliia M. Rozumna
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, The National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
- *Correspondence: Nataliia M. Rozumna,
| | - Yevheniia V. Kravenska
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, The National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
| | - Mykola Ya. Spivak
- Danylo Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
| | - Elena A. Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, The National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
| |
Collapse
|
15
|
Hernández-Montes V, Buitrago-Sierra R, Echeverry-Rendón M, Santa-Marín JF. Ceria-based coatings on magnesium alloys for biomedical applications: a literature review. RSC Adv 2023; 13:1422-1433. [PMID: 36712919 PMCID: PMC9829028 DOI: 10.1039/d2ra06312c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Magnesium alloys are being studied for use in temporary orthopedic implants because of their mechanical properties, which are similar to those of human bone, and their good biocompatibility. However, their application is limited due to their rapid degradation, and early loss of their mechanical properties, decreasing the stability of the implant and its proper synchronization with tissue regeneration. In this regard, various surface coatings have been used to improve their biological, physico-chemical and biodegradation properties. Currently, one of the most explored strategies is using smart coatings because of their self-healing properties that can slow down the corrosion process of Mg and its alloys. Ceria-based materials show promise as coatings for these alloys. Their unique redox capacity not only provides Mg alloys with good self-healing properties but also interesting biological properties, which are described in this paper. Despite this, some problems and challenges related to the biocompatibility and application of these materials in coatings remain unsolved. In this article, a critical review is presented summarizing the most representative literature on ceria-based coatings on Mg alloys for their potential use as biomaterials. The results show that ceria is a versatile material that may be used in industrial and biomedical applications.
Collapse
Affiliation(s)
- V Hernández-Montes
- Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas. Medellín, Colombia, Grupo de Tribología y Superficies Medellín Colombia
| | - R Buitrago-Sierra
- Instituto Tecnológico Metropolitano (ITM). Facultad de Ingenierías, Grupo de Materiales Avanzados y Energía (MATyER) Medellín Colombia
| | | | - J F Santa-Marín
- Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas. Medellín, Colombia, Grupo de Tribología y Superficies Medellín Colombia
- Instituto Tecnológico Metropolitano (ITM). Facultad de Ingenierías, Grupo de Materiales Avanzados y Energía (MATyER) Medellín Colombia
| |
Collapse
|
16
|
Liu Y, Sebastian S, Huang J, Corbascio T, Engellau J, Lidgren L, Tägil M, Raina DB. Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect. Front Bioeng Biotechnol 2022; 10:1076320. [PMID: 36601389 PMCID: PMC9806272 DOI: 10.3389/fbioe.2022.1076320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite (HA) has been widely used as a bone substitute and more recently as a carrier for local delivery of bone targeted drugs. Majority of the approved HA based biomaterials and drug carriers comprise of micrometer sized particulate HA (mHA) or granules and can therefore only be used for extracellular drug release. This shortcoming could be overcome with the use of cell penetrating HA nanoparticles (nHA) but a major concern with the clinical use of nHA is the lack of data on its in vivo biodistribution after implantation. In this study, we aimed to study the in vivo biodistribution of locally implanted nHA in a clinically relevant tibial void in rats and compare it with mHA or a combination of mHA and nHA. To enable in vivo tracking, HA particles were first labelled with 14C-zoledronic acid (14C-ZA), known to have a high binding affinity to HA. The labelled particles were then implanted in the animals and the radioactivity in the proximal tibia and vital organs was detected at various time points (Day 1, 7 and 28) post-implantation using scintillation counting. The local distribution of the particles in the bone was studied with micro-CT. We found that majority (>99.9%) of the implanted HA particles, irrespective of the size, stayed locally at the implantation site even after 28 days and the findings were confirmed using micro-CT. Less than 0.1% radioactivity was observed in the kidney and the spleen at later time points of day 7 and 28. No pathological changes in any of the vital organs could be observed histologically. This is the first longitudinal in vivo HA biodistribution study showing that the local implantation of nHA particles in bone is safe and that nHA could potentially be used for localized drug delivery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden,*Correspondence: Yang Liu, ; Deepak Bushan Raina,
| | - Sujeesh Sebastian
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jintian Huang
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Tova Corbascio
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob Engellau
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lars Lidgren
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden,*Correspondence: Yang Liu, ; Deepak Bushan Raina,
| |
Collapse
|
17
|
Wu T, Cui J, Wang C, Zhang G, Li L, Qu Y, Niu Y. Oxygen Vacancy-Mediated Activates Oxygen to Produce Reactive Oxygen Species (ROS) on Ce-Modified Activated Clay for Degradation of Organic Compounds without Hydrogen Peroxide in Strong Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4410. [PMID: 36558264 PMCID: PMC9785360 DOI: 10.3390/nano12244410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The treatment of acid wastewater to remove organic matter in acid wastewater and recycle valuable resources has great significance. However, the classical advanced oxidation process (AOPs), such as the Fenton reaction, encountered a bottleneck under the conditions of strong acid. Herein, making use of the oxidation properties of CeAY (CeO2@acid clay), we built an AOPs reaction system without H2O2 under a strong acid condition that can realize the transformation of organic matter in industrial wastewater. The X-ray photoelectron spectroscopy (XPS) proved that the CeAY based on Ce3+ as an active center has abundant oxygen vacancies, which can catalyze O2 to produce reactive oxygen species (ROS). Based on the electron spin-resonance spectroscopy spectrum and radical trapping experiments, the production of •O2- and •OH can be determined, which are the essential factors of the degradation of organic compounds. In the system of pH = 1.0, when 1 mg CeAY is added to 10 mL of wastewater, the degradation efficiency of an aniline solution with a 5 mg/L effluent concentration is 100%, and that of a benzoic acid solution with a 100 mg/L effluent concentration is 50% after 10 min of reaction. This work may provide novel insights into the removal of organic pollutants in a strong acid water matrix.
Collapse
Affiliation(s)
- Tianming Wu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jing Cui
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Changjiang Wang
- Shandong Zhengyuan Geological Resource Exploration Co. Ltd., China Metallurgical Geology Bureau, Weifang 261200, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yue Qu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
- School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Kang MS, Lee GH, Kwon IH, Yang MJ, Heo MB, Choi JW, Lee TG, Yoon CH, Baek B, Sung MC, Kim DW, Park EJ. Uptake and toxicity of cerium dioxide nanoparticles with different aspect ratio. Toxicol Lett 2022; 373:196-209. [PMID: 36464203 DOI: 10.1016/j.toxlet.2022.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Cerium dioxide nanoparticles (CeONPs) have been extensively applied in research for future energy development due to two common oxidation states on their surface. Considering that shape (aspect ratio) is a key determinant of NPs-induced toxicity, we compared the toxicity of hexagonal (H)- and rod-shaped (R)-CeONPs in mice. At 24 h after pharyngeal aspiration, both types of CeONPs recruited surrounding immune cells (monocytes and neutrophils) into the lung, and R-CeONPs induced a more severe pulmonary inflammatory response compared with H-CeONPs. To identify an indicator to predict pulmonary inflammatory responses at the cellular level, we also investigated their responses in alveolar macrophage cells. At 24 h after treatment, both types of CeONPs were mainly located within the vacuoles (partially, in the lysosome) in the cytoplasm. Mitochondrial damage, intracellular calcium accumulation, and increased NO production were observed in cells exposed to both types of CeONPs, ultimately resulting in a decrease in cell viability. More interestingly, both types of CeONPs formed multinucleated giant cells. Meanwhile, contrary to when suspended in deionized water, R-CeONPs were strongly aggregated with a negative charge in cell culture media, whereas H-CeONPs were relatively well-dispersed with a positive charge. R-CeONPs-induced lysosomal extension was also recovered by premix with negatively charged DNA, and even NPs suspended in cell culture media without cells were detected under the FACS system, suggesting interference by protein corona. Therefore, we suggest that shape (aspect ratio) is an important factor determining inhaled NPs-induced pathology and that the effect of the surface charge and protein corona should be carefully considered in interpreting results derived from in vitro tests. Furthermore, we propose that the relationship between the formation of multinucleated giant cells and the inflammatory response of inhaled CeONPs should be further studied.
Collapse
Affiliation(s)
- Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea; Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Min Beom Heo
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea; Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Cheol-Ho Yoon
- Environmental Analysis Team, Korea Basic Science Institute, Seoul 28119, Republic of Korea
| | - Bosung Baek
- Toxicity Evaluation Center, Keyprime Research Company, 28161, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myeong-Chang Sung
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea.
| | - Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
19
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Nanotechnology for Pediatric Retinoblastoma Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091087. [PMID: 36145308 PMCID: PMC9504930 DOI: 10.3390/ph15091087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma is a rare, sometimes hereditary, pediatric cancer. In high-income countries this disease has a survival rate approaching 100%, while in low- and middle-income countries the prognosis is fatal for about 80% of cases. Depending on the stage of the disease, different therapeutic protocols are applied. In more advanced forms of the disease, surgical removal of the entire globe and its intraocular contents (enucleation) is, unfortunately, necessary, whereas in other cases, conventional chemotherapy is normally used. To overcome the side-effects and reduced efficacy of traditional chemotherapic drugs, nanodelivery systems that ensure a sustained drug release and manage to reach the target site have more recently been developed. This review takes into account the current use and advances of nanomedicine in the treatment of retinoblastoma and discusses nanoparticulate formulations that contain conventional drugs and natural products. In addition, future developments in retinoblastoma treatment are discussed.
Collapse
|
21
|
Xu S, Wu Q, He B, Rao J, Chow DHK, Xu J, Wang X, Sun Y, Ning C, Dai K. Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety. Biomaterials 2022; 288:121751. [PMID: 36031456 DOI: 10.1016/j.biomaterials.2022.121751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Endowing biomaterials with functional elements enhances their biological properties effectively. However, improving bioactivity and biosafety simultaneously is still highly desirable. Herein, cerium (Ce) and copper (Cu) are incorporated into silicocarnotite (CPS) to modulate the constitution and microstructure for degradability, bioactivity and biosafety regulation. Our results demonstrated that introducing Ce suppressed scaffold degradation, while, co-incorporation of both Ce and Cu accelerated degradability. Osteogenic effect of CPS in vitro was promoted by Ce and optimized by Cu, and Ce-induced angiogenic inhibition could be mitigated by cell coculture method and reversed by Ce-Cu co-incorporation. Ce enhanced osteogenic and angiogenic properties of CPS in a dose-dependent manner in vivo, and Cu-Ce coexistence exhibited optimal bioactivity and satisfactory biosafety. This work demonstrated that coculture in vitro was more appropriately reflecting the behavior of implanted biomaterials in vivo. Interactive effects of multi-metal elements were promising to enhance bioactivity and biosafety concurrently. The present work provided a promising biomaterial for bone repair and regeneration, and offered a comprehensive strategy to design new biomaterials which aimed at adjustable degradation behavior, and enhanced bioactivity and biosafety.
Collapse
Affiliation(s)
- Shunxiang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China
| | - Bo He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, MD, 20742, USA
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, PR China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China.
| |
Collapse
|
22
|
Yalçın B, Güneş M, Kurşun AY, Kaya N, Marcos R, Kaya B. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology 2022; 16:393-407. [PMID: 35818303 DOI: 10.1080/17435390.2022.2098072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.
Collapse
Affiliation(s)
- Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Nuray Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Antalya, Spain
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
23
|
Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. NANOMATERIALS 2022; 12:nano12122117. [PMID: 35745455 PMCID: PMC9227416 DOI: 10.3390/nano12122117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Green synthesized cerium oxide nanoparticles (GS-CeO2 NPs) have a unique size, shape, and biofunctional properties and are decorated with potential biocompatible agents to perform various therapeutic actions, such as antimicrobial, anticancer, antidiabetic, and antioxidant effects and drug delivery, by acquiring various mechanistic approaches at the molecular level. In this review article, we provide a detailed overview of some of these critical mechanisms, including DNA fragmentation, disruption of the electron transport chain, degradation of chromosomal assemblage, mitochondrial damage, inhibition of ATP synthase activity, inhibition of enzyme catalytic sites, disorganization, disruption, and lipid peroxidation of the cell membrane, and inhibition of various cellular pathways. This review article also provides up-to-date information about the future applications of GS-CeONPs to make breakthroughs in medical sectors for the advancement and precision of medicine and to effectively inform the disease diagnosis and treatment strategies.
Collapse
|
24
|
Gheriany EI, Abbas OA, EL-Sherbiny EM. Comparative study on the effect of cerium nano composite on juvenile hormones in adult and aged rats. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Development of Novel Antimicrobial Dental Composite Resin with Nano Cerium Oxide Fillers. Int J Biomater 2022; 2022:3912290. [PMID: 35464636 PMCID: PMC9019447 DOI: 10.1155/2022/3912290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives. To assess the antibacterial efficacy of experimental dental composite resin with cerium oxide nanoparticles as fillers. Methods. The cerium oxide nanoparticles were prepared by the coprecipitation procedure. Synthesized 3wt% CeO2 nanoparticles were added to the composite resin as antibacterial filler. Experimental composite resin was manually prepared by adding ingredients. The resin matrix consisted of two mixed monomers, bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate, diketone as the photo initiator, and N, N-dimethylaminoethyl methacrylate as a coinitiator. The antibacterial efficacy against Streptococcus mutans, Streptococcus mitis, Streptococcus aureus, and Lactobacillus spp. bacterial strains was tested using the microdilution method keeping commercially available 3M Filtek Z250 restorative composite as control. Results. The experimental dental composite demonstrated 99.503% efficacy against Streptococcus mutans, 99.441% efficacy against Streptococcus mitis, 99.416% efficacy against Streptococcus aureus, and 99.233% efficacy against Lactobacillus spp. Conclusion. Integrating cerium oxide nanoparticles as fillers into dental composite resin can be promising in terms of antibacterial activity, provided furthermore study has to be conducted to examine other properties. Clinical Significance. Previous studies attempted adding CeO2 nanoparticles into acrylic resins that showed improvement in mechanical properties, but literature is nil on the dental composite resin and cerium oxide nanoparticles. This study demonstrates the development of an experimental antibacterial dental composite resin that can resolve most of the problems related to secondary caries around dental composite restorations.
Collapse
|
26
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|
27
|
Salvetti A, Degl'Innocenti A, Gambino G, van Loon JJ, Ippolito C, Ghelardoni S, Ghigo E, Leoncino L, Prato M, Rossi L, Ciofani G. Artificially altered gravity elicits cell homeostasis imbalance in planarian worms, and cerium oxide nanoparticles counteract this effect. J Biomed Mater Res A 2021; 109:2322-2333. [PMID: 33960131 PMCID: PMC8518838 DOI: 10.1002/jbm.a.37215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
Gravity alterations elicit complex and mostly detrimental effects on biological systems. Among these, a prominent role is occupied by oxidative stress, with consequences for tissue homeostasis and development. Studies in altered gravity are relevant for both Earth and space biomedicine, but their implementation using whole organisms is often troublesome. Here we utilize planarians, simple worm model for stem cell and regeneration biology, to characterize the pathogenic mechanisms brought by artificial gravity alterations. In particular, we provide a comprehensive evaluation of molecular responses in intact and regenerating specimens, and demonstrate a protective action from the space-apt for nanotechnological antioxidant cerium oxide nanoparticles.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Andrea Degl'Innocenti
- Istituto Italiano di TecnologiaCenter for Materials Interfaces, Smart Bio‐InterfacesPisaItaly
| | - Gaetana Gambino
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Jack J.W.A. van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral PathologyAmsterdam UMC location VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA)AmsterdamThe Netherlands
- TEC‐MMG LIS labEuropean Space Agency (ESA), European Space Research and Technology Center (ESTEC)NoordwijkThe Netherlands
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Biology and Genetics UnitUniversità di PisaPisaItaly
| | - Sandra Ghelardoni
- Department of Pathology, Biochemistry UnitUniversità di PisaPisaItaly
| | - Eric Ghigo
- Institut Hospitalo‐Universitaire Méditerranée InfectionMarseilleFrance
- Techno JouvenceMarseilleFrance
| | - Luca Leoncino
- Istituto Italiano di TecnologiaElectron Microscopy FacilityGenoaItaly
| | - Mirko Prato
- Istituto Italiano di TecnologiaMaterials Characterization FacilityGenoaItaly
| | - Leonardo Rossi
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaCenter for Materials Interfaces, Smart Bio‐InterfacesPisaItaly
| |
Collapse
|
28
|
Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021; 13:pharmaceutics13101642. [PMID: 34683935 PMCID: PMC8537309 DOI: 10.3390/pharmaceutics13101642] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of the ability to determine its physicochemical properties, a conclusion for the correlation with the biological response it is yet to be found. Hence, a special focus on the most desirable properties for an appropriate biological response needs to be addressed. This review provides an overview of the fundamental properties of hydroxyapatite nanoparticles and the characterization of physicochemical properties involved in their biological response and role as a drug delivery system. A summary of the main chemical properties and applications of hydroxyapatite, the advantages of using nanoparticles, and the influence of shape, size, functional group, morphology, and crystalline phase in the biological response is presented. A special emphasis was placed on the analysis of chemical and physical interactions of the nanoparticles and the cargo, which was explained through the use of spectroscopic and physical techniques such as FTIR, Raman, XRD, SEM, DLS, and BET. We discuss the properties tailored for hydroxyapatite nanoparticles for a specific biomolecule based on the compilation of studies performed on proteins, peptides, drugs, and genetic material.
Collapse
|
29
|
Ju X, Hubalek Kalbacova M, Šmíd B, Johánek V, Janata M, Dinhová TN, Bělinová T, Mazur M, Vorokhta M, Strnad L. Poly(acrylic acid)-mediated synthesis of cerium oxide nanoparticles with variable oxidation states and their effect on regulating the intracellular ROS level. J Mater Chem B 2021; 9:7386-7400. [PMID: 34551046 DOI: 10.1039/d1tb00706h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerium oxide nanoparticles (CeNPs) possess multiple redox enzyme mimetic activities in scavenging reactive oxygen species (ROS) as a potential biomedicine. These enzymatic activities of CeNPs are closely related to their surface oxidation state. Here we have reported a synthetic method to modify CeNPs' surface oxidation state by changing the conformation of the poly(acrylic acid) (PAA) polymers adsorbed onto the CeNP surface. The synthesized PAA-CeNPs exhibited the same core size, morphology, crystal structure, and colloidal stability, with the only variation being their surface oxidation state (Ce3+ percentage). The modification mechanism can be attributed to the polymers chemisorbed onto the metal oxide surface forming a metal complexation structure. Such adsorption further modified CeNPs' surface oxidation state in a temperature-dependent manner. The series of PAA-CeNPs exhibited multiple redox enzyme mimetic activities (superoxide dismutase, catalase, peroxidase, and oxidase) directly related to their surface oxidation state. In vitro experiments showed no cytotoxic effect of these PAA-CeNPs on the osteoblastic cell line SAOS-2 at high loadings. Microscopic images confirmed the internalization of PAA-CeNPs in the cells. All tested PAA-CeNPs can reduce the basal and hydrogen peroxide-induced intracellular ROS level in the cells, indicating their effective intracellular ROS scavenging effect. However, we did not observe a positive correlation between the CeNP surface oxidation state and their capacities to reduce the intracellular ROS levels. We propose that CeNPs can maintain a dynamic state of Ce3+/Ce4+ during their catalytic activities, exhibiting a non-linear correlation between the CeNP surface oxidation state and their effect on regulating the intracellular ROS level.
Collapse
Affiliation(s)
- Xiaohui Ju
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. .,Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Břetislav Šmíd
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Viktor Johánek
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Martin Janata
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Thu Ngan Dinhová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Tereza Bělinová
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Maryna Vorokhta
- Department of Geochemistry, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Strnad
- Laboratories of the Geological Institutes, Charles University, Prague, Czech Republic
| |
Collapse
|
30
|
Akhtar MJ, Ahamed M, Alhadlaq H. Anti-Inflammatory CeO 2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules 2021; 26:5416. [PMID: 34500851 PMCID: PMC8434366 DOI: 10.3390/molecules26175416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•-), hydroxyl radical, etc.) by DCFH-DA and used a O2•- specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•- and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•- production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hisham Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
31
|
Popov AL, Abakumov MA, Savintseva IV, Ermakov AM, Popova NR, Ivanova OS, Kolmanovich DD, Baranchikov AE, Ivanov VK. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T 1 relaxivity and selective cytotoxicity to cancer cells. J Mater Chem B 2021; 9:6586-6599. [PMID: 34369536 DOI: 10.1039/d1tb01147b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern are possible gadolinium deposition in the brain and the development of systemic nephrogenic fibrosis after repeated use of MRI contrasts. Thus, there is an urgent need to develop a new generation of MRI contrasts that are safe and that have high selectivity in tissue accumulation with improved local contrast. Here, we report on a new type of theranostic MRI contrast, namely dextran stabilised, gadolinium doped cerium dioxide nanoparticles. These ultra-small (4-6 nm) Ce0.9Gd0.1O1.95 nanoparticles have been shown to possess excellent colloidal stability and high r1-relaxivity (3.6 mM-1 s-1). They are effectively internalised by human normal and cancer cells and demonstrate dose-dependent selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- A L Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky av., 31, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int J Mol Sci 2021; 22:ijms22158347. [PMID: 34361117 PMCID: PMC8348784 DOI: 10.3390/ijms22158347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs’ surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs’ surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.
Collapse
|
33
|
You G, Xu Y, Wang P, Wang C, Chen J, Hou J, Miao L, Gao Y, Li Y. Deciphering the effects of CeO 2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125300. [PMID: 33578093 DOI: 10.1016/j.jhazmat.2021.125300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The physicochemical transformations as well as the redox reaction-induced toxicity changes of ceria nanoparticles (CeO2 NPs) in reducing conditions is extremely lacking. Herein, the behaviors, chemical modifications and toxicity of CeO2 NPs in the presence of reduction-active ions (namely Fe2+ and S2-) were investigated, with a particular emphasis on the cytotoxicity mechanism associated with their physicochemical transformations. The presence of Fe2+ and S2- differently altered the surface properties and toxicity of CeO2 NPs. Redox reactions with Fe2+ led to form small aggregates, boosted the reduction of CeIVO2 and enhanced dissolved Ce3+ concentration. Moreover, CeO2 NPs possessed a high affinity for Escherichia coli (E. coli) and induced the generation of •OH abiotically after reaction with Fe2+, provoking serious disruption of cell membranes and causing high toxicity to E. coli. In contrast, the amending of S2- protected E. coli from direct contact with CeO2 NPs by creating new Ce2S3 precipitated on the surface, accelerating the aggregation of NPs and reducing the concentration of dissolved Ce3+. This study suggested that the chemical interactions between the reactive surfaces of CeO2 and reduction-active ions highly determined the stability and cytotoxicity of CeO2 NPs, which provides fundamental insights into the environmental risks of CeO2 NPs.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yang Gao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| |
Collapse
|
34
|
Hartati YW, Topkaya SN, Gaffar S, Bahti HH, Cetin AE. Synthesis and characterization of nanoceria for electrochemical sensing applications. RSC Adv 2021; 11:16216-16235. [PMID: 35479153 PMCID: PMC9031634 DOI: 10.1039/d1ra00637a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Nanoceria (cerium oxide nanoparticles: CeO2-NPs) has received significant attention due to its biocompatibility, good conductivity, and the ability to transfer oxygen. Nanoceria has been widely used to develop electrochemical sensors and biosensors as it could increase response time, sensitivity, and stability of the sensor. In this review, we discussed synthesis methods, and the recent applications employing CeO2-NPs for electrochemical detection of various analytes reported in the most recent four years.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University Turkey
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Husein H Bahti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center Izmir Turkey
| |
Collapse
|
35
|
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:155-206. [PMID: 32462332 DOI: 10.1007/398_2020_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent years have raised wide concerns about their toxicity. Numerous studies have been conducted to reveal the toxicity of CNPs, but the results are sometimes contradictory. In this review, the most important factors in mediating CNPs toxicity are discussed, including (1) the roles of physicochemical properties (size, morphology, agglomeration condition, surface charge, coating and surface valence state) on CNPs toxicity; (2) the phase transfer and transformation process of CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2-, and ferrous ions. The physicochemical properties play key roles in the interactions of CNPs with organisms and consequently their environmental transformations, reactivity and toxicity assessment. Also, the speciation transformations of CNPs caused by reactions with (in)organic ligands in both environmental and biological systems would further alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms are proposed based on the physical damage of direct adsorption of CNPs onto the cell membrane and chemical inhibition (including oxidative stress and interaction of CNPs with biomacromolecules). Finally, the current knowledge gaps and further research needs in identifying the toxicological risk factors of CNPs under realistic environmental conditions are highlighted, which might improve predictions about their potential environmental influences. This review aims to provide new insights into cost-effectiveness of control options and management practices to prevent environmental risks from CNPs exposure.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
36
|
Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. CRYSTALS 2020. [DOI: 10.3390/cryst10111038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Quasi-spherical nanoparticles of ZrO2 containing EuO1.5 from 2 to 15 mol.% were synthesized from the chlorides of the corresponding metals under hydrothermal conditions. The structural changes of Zr1–xEuxO2–0.5x (x = 0.02 ÷ 0.15) nanoparticles depending on the content of europium (III) ions were studied using the complementary methods (X-ray diffraction, electron microdiffraction, Raman and photoluminescence spectroscopy). It was shown that increasing the Eu3+ concentration in the Zr1–xEuxO2–0.5x nanoparticles leads to a transition from the equilibrium monoclinic zirconia phase to metastable tetragonal and cubic polymorphic modifications. In this case, the size of the nanoparticles decreases from 11.5 nm to 9 nm; the specific surface area grows from 80.2 to 111.3 m2/g, and the electrokinetic potential increases monotonously from −8.7 to 16.3 mV. The evolution of the phase composition of Zr1–xEuxO2-0.5x nanoparticles from monoclinic to tetragonal/cubic allomorphs with an increase in the molar fraction of stabilizer ions was correlated with changes in the sublevel structure of 5D0 → 7F2 and 5D0 → 7F4 optical transitions for Eu3+ in the luminescence spectra. Besides, for the nanoparticles obtained by hydrothermal synthesis from chlorides, the quantum efficiency does not exceed 3%. According to the M.T.T. assay, as a result of three-day human fibroblast cultivation in the aqueous dispersion of Zr1–xEuxO2–0.5x (x = 0.02 ÷ 0.15) nanoparticles, the proliferation activity of the cells is maintained, indicating that they do not have cytotoxic properties. Such nanoparticles can be used in organic–inorganic composites for medical applications in order to strengthen the polymer scaffolds and visualize changes in their structure within time.
Collapse
|
37
|
|
38
|
Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'Innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G. Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111113. [DOI: 10.1016/j.msec.2020.111113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
39
|
Lin YW, Fang CH, Meng FQ, Ke CJ, Lin FH. Hyaluronic Acid Loaded with Cerium Oxide Nanoparticles as Antioxidant in Hydrogen Peroxide Induced Chondrocytes Injury: An In Vitro Osteoarthritis Model. Molecules 2020; 25:molecules25194407. [PMID: 32992833 PMCID: PMC7582542 DOI: 10.3390/molecules25194407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease type and is accompanied by varying degrees of functional limitation. Both hyaluronic acid (HA) joint injections and pain relievers are efficient treatments for early-stage osteoarthritis. However, for the decomposition by hyaluronidase and free radicals in the knee joint, HA injection treatment has limited effect time. The cerium oxide nanoparticles (CeO2) is a long time free radical scavenger. CeO2 combined with HA expected, may extend the HA decomposition time and have a positive effect on osteoarthritis therapy. In this study, CeO2 was successfully synthesized using the hydrothermal method with a particle size of about 120 nm, which possessed excellent dispersibility in the culture medium. The in vitro OA model was established by cell treated with H2O2 for 30 min. Our study found that the inhibition of chondrocyte proliferation dose-dependently increased with H2O2 concentration but was significantly decreased by supplementation of cerium oxide nanoparticles. COL2a1 and ACAN gene expression in chondrocytes was significantly decreased after H2O2 treatment; however, the tendency was changed after cerium oxide nanoparticles treatment, which suggested that damaged chondrocytes were protected against oxidative stress. These findings suggest that cerium oxide nanoparticles are potential therapeutic applications in the early stage of OA.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
| | - Chih-Hsiang Fang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
| | - Fan-Qi Meng
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
| | - Cherng-Jyh Ke
- Biomaterials Translational Research Center, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404332, Taiwan
- Correspondence: (C.-J.K.); (F.-H.L.); Tel.: +886-2-2732-7474 (F.-H.L.)
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Correspondence: (C.-J.K.); (F.-H.L.); Tel.: +886-2-2732-7474 (F.-H.L.)
| |
Collapse
|
40
|
Stephen Inbaraj B, Chen BH. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci 2020; 15:558-575. [PMID: 33193860 PMCID: PMC7610205 DOI: 10.1016/j.ajps.2019.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) possess a great potential as therapeutic agents due to their ability to self-regenerate by reversibly switching between two valences +3 and +4. This article reviews recent articles dealing with in vivo studies of CNPs towards Alzheimer's disease, obesity, liver inflammation, cancer, sepsis, amyotrophic lateral sclerosis, acute kidney injury, radiation-induced tissue damage, hepatic ischemia reperfusion injury, retinal diseases and constipation. In vivo anti-cancer studies revealed the effectiveness of CNPs to reduce tumor growth and angiogenesis in melanoma, ovarian, breast and retinoblastoma cancer cell-induced mice, with their conjugation with folic acid, doxorubicin, CPM, or CXC receptor-4 antagonist ligand eliciting higher efficiency. After conjugation with triphenylphosphonium or magnetite nanoparticles, CNPs were shown to combat Alzheimer's disease by reducing amyloid-β, glial fibrillary acidic protein, inflammatory and oxidative stress markers in mice. By improving muscle function and longevity, the citrate/EDTA-stabilized CNPs could ameliorate amyotrophic lateral sclerosis. Also, they could effectively reduce obesity in mice by scavenging ROS and reducing adipogenesis, triglyceride synthesis, GAPDH enzyme activity, leptin and insulin levels. In CCl4-induced rats, stress signaling pathways due to inflammatory cytokines, liver enzymes, oxidative and endoplasmic reticulum messengers could be attenuated by CNPs. Commercial CNPs showed protective effects on rats with hepatic ischemia reperfusion and peritonitis-induced hepatic/cardiac injuries by decreasing oxidative stress and hepatic/cardiac inflammation. The same CNPs could improve kidney function by diminishing renal superoxide, hyperglycemia and tubular damage in peritonitis-induced acute kidney injury in rats. Radiation-induced lung and testicular tissue damage could be alleviated in mice, with the former showing improvement in pulmonary distress and bronchoconstriction and the latter exhibiting restoration in spermatogenesis rate and spermatid/spermatocyte number. Through enhancement of gastrointestinal motility, the CNPs could alleviate constipation in both young and old rats. They could also protect rat from light-induced retinal damage by slowing down neurodegenerative process and microglial activation.
Collapse
Affiliation(s)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, Taipei 242
| |
Collapse
|
41
|
Yuan K, Mei J, Shao D, Zhou F, Qiao H, Liang Y, Li K, Tang T. Cerium Oxide Nanoparticles Regulate Osteoclast Differentiation Bidirectionally by Modulating the Cellular Production of Reactive Oxygen Species. Int J Nanomedicine 2020; 15:6355-6372. [PMID: 32922006 PMCID: PMC7457858 DOI: 10.2147/ijn.s257741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cerium oxide nanoparticles (CeO2NPs) are potent scavengers of cellular reactive oxygen species (ROS). Their antioxidant properties make CeO2NPs promising therapeutic agents for bone diseases and bone tissue engineering. However, the effects of CeO2NPs on intracellular ROS production in osteoclasts (OCs) are still unclear. Numerous studies have reported that intracellular ROS are essential for osteoclastogenesis. The aim of this study was to explore the effects of CeO2NPs on osteoclast differentiation and the potential underlying mechanisms. METHODS The bidirectional modulation of osteoclast differentiation by CeO2NPs was explored by different methods, such as fluorescence microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. The cytotoxic and proapoptotic effects of CeO2NPs were detected by cell counting kit (CCK-8) assay, TdT-mediated dUTP nick-end labeling (TUNEL) assay, and flow cytometry. RESULTS The results of this study demonstrated that although CeO2NPs were capable of scavenging ROS in acellular environments, they facilitated the production of ROS in the acidic cellular environment during receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent osteoclast differentiation of bone marrow-derived macrophages (BMMs). CeO2NPs at lower concentrations (4.0 µg/mL to 8.0 µg/mL) promoted osteoclast formation, as shown by increased expression of Nfatc1 and C-Fos, F-actin ring formation and bone resorption. However, at higher concentrations (greater than 16.0 µg/mL), CeO2NPs inhibited osteoclast differentiation and promoted apoptosis of BMMs by reducing Bcl2 expression and increasing the expression of cleaved caspase-3, which may be due to the overproduction of ROS. CONCLUSION This study demonstrates that CeO2NPs facilitate osteoclast formation at lower concentrations while inhibiting osteoclastogenesis in vitro by inducing the apoptosis of BMMs at higher concentrations by modulating cellular ROS levels.
Collapse
Affiliation(s)
- Kai Yuan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Jingtian Mei
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai200050, People’s Republic of China
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Yakun Liang
- Shanghai Institute of Precision Medicine, Shanghai200125, People’s Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai200050, People’s Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, People’s Republic of China
| |
Collapse
|
42
|
Anti-Inflammatory Effects of Cerium Dioxide Nanoparticles on Peritonitis in Rats Induced by Staphylococcus epidermidis Infection. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/3591508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effects of cerium dioxide (CeO2) nanoparticles on the inflammatory response of peritonitis rats induced by Staphylococcus epidermidis infection. Methods. Green tea polyphenol CeO2 nanoparticles were synthesized and characterized by transmission microscopy, ultraviolet-visible spectroscopy, FT-IR, and powder diffractometer. 40 male adult SD rats were randomly divided into 4 groups (n = 10 each): a control group, a model group, a CeO2 group, and a CeO2 + model group. Staphylococcus epidermidis solution was injected intraperitoneally with 107 CFU/ml of bacterial solution in the model group, while the control group was injected intraperitoneally with the same amount of normal saline, and the CeO2 and CeO2 + model groups were injected with 0.5 mg/kg CeO2 nanoparticles through the tail vein for 2 h and then injected with saline or bacterial solution for 2 h, respectively. After 0 h, 3 h, 12 h, 24 h, and 48 h of model construction, rats were sacrificed, and serum and peritoneal lavage fluid were collected. The total number of leukocytes and the percentage of each type of leukocytes in the peritoneal lavage fluid were determined. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factor TNF-α in serum and peritoneal lavage fluid, and myeloperoxidase (MPO) activity in peritoneal tissue was also measured. In addition, real-time fluorescence quantitative PCR (RT-PCR) was used to measure the expression of TLR2 and TLR4 in peritoneal tissue, and western blotting was used to detect the expression of TLR2, TLR4, and the activation of NF-κB signaling pathways as well. Results. The CeO2 has an average size of 37 ± 3 nm with binding activity to proteins, phenolic compounds, and alkaloids. After counting the white blood cells in the peritoneal lavage fluid, it was found that the total number of white blood cells and the percentage of neutrophils in the model group were significantly increased (both P<0.05), and CeO2 treatment significantly reversed the above changes (both P<0.05). The ELISA results showed that compared with the control group, the TNF-α in the peritoneal lavage fluid and serum of the model group increased in a time-dependent manner (all P<0.05); however, there was no significant change in the CeO2 group (P>0.05); at the same time in the CeO2 + model group, the TNF-α content was significantly reduced (all P<0.05). Detection of MPO activity in peritoneal tissue revealed that MPO activity was significantly increased under peritonitis (all P<0.05), and CeO2 treatment could mitigate that increase (all P<0.05). RT-PCR results showed that compared with the control group, the expression of TLR2 and TLR4 mRNA levels in the peritoneum of the model group were increased in a time-dependent manner (all P<0.05), and there was no significant change in the CeO2 group (P>0.05); however, TLR2 and TLR4 mRNA levels were significantly reduced in the CeO2 + model group (all P<0.05). Western blotting test was performed on the peritoneal tissue collected after 48 h of the model establishment. Compared with the control group, the levels of TLR2, TLR4, p–NF–κB, and p-IκBα protein in the model group were significantly increased (all P<0.05), while CeO2 group showed no significant changes (P>0.05) and administration of CeO2 before model construction can significantly reverse the above protein activation (all P<0.05). Conclusion. CeO2 nanoparticles have anti-inflammatory effects in peritonitis caused by Staphylococcus epidermidis infection.
Collapse
|
43
|
|
44
|
Tang S, Zhou L, Liu Z, Zou L, Xiao M, Huang C, Xie Z, He H, Guo Y, Cao Y, Huang H, Wu X, Meng D, Ye L, Wu Y, Yang X, Zhou X. Ceria nanoparticles promoted the cytotoxic activity of CD8 + T cells by activating NF-κB signaling. Biomater Sci 2019; 7:2533-2544. [PMID: 30968875 DOI: 10.1039/c9bm00113a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytotoxic CD8+ T cells (CTLs) are crucial for controlling intracellular pathogens as well as cancer. However, how to promote the cytotoxic activity of CTL cells in vitro and in vivo remains largely unknown. On the other hand, ceria nanoparticles (CNPs) are widely used in biomedical fields, but the role of CNPs in CTL cells is still unclear. In this study, we found that the activated antigen-specific (P14) and nonspecific CD8+ T cells with CNP treatment both produced more cytokines, including interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α), and released more effector molecules, such as granzyme B and perforin, and then exhibited higher killing activity of P14 cells in vitro and stronger viral clearance capacity of CTL cells in vivo. Mechanistically, the activated P14 cells with CNP treatment inhibited the production of reactive oxygen species, and therefore promoted the activity of NF-κB signaling. Importantly, while the P14 cells were simultaneously treated by IMD-0354, a specific inhibitor of NF-κB signaling, the increases of IL-2 and TNF-α productions and granzyme B and perforin releases were remedied, and the P14 cells eventually exhibited the natural killing activity in vitro. Thus, our results demonstrated that CNP treatment promoted the cytotoxic activity of CTL cells and provide new ideas in the usage of CNPs and fascinating pharmacological potentials for clinical application, especially cancer immunotherapy.
Collapse
Affiliation(s)
- Shupei Tang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jia T, Xu J, Dong S, He F, Zhong C, Yang G, Bi H, Xu M, Hu Y, Yang D, Yang P, Lin J. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chem Sci 2019. [DOI: 10.1039/c9sc01615e] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A hollow structured biophotocatalyst comprising an UCNP core and mesoporous cerium oxide shell was constructed to realize oxygen self-efficient photodynamic therapy upon 980 nm laser irradiation under multiple imaging guidance.
Collapse
|
46
|
Maqbool Q, Nazar M, Maqbool A, Pervez MT, Jabeen N, Hussain T, Franklin G. CuO and CeO 2 Nanostructures Green Synthesized Using Olive Leaf Extract Inhibits the Growth of Highly Virulent Multidrug Resistant Bacteria. Front Pharmacol 2018; 9:987. [PMID: 30245628 PMCID: PMC6137241 DOI: 10.3389/fphar.2018.00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022] Open
Abstract
One of the major challenges of nano-biotechnology is to engineer potent antimicrobial nanostructures (NS) with high biocompatibility. Keeping this in view, we have performed aqueous olive leaf extract mediated one pot facile synthesis of CuO-NS and CeO2-NS. Prepared NS were homogenous, less than 26 nm in size, and small crystallite units as revealed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. Fourier transform infrared spectroscopy (FTIR) of CuO-NS and CeO2-NS showed typical Cu-O prints around 592-660 cm-1 and Ce-O bond vibrations at 453 cm-1. The successful capping of CuO-NS and CeO2-NS by compounds present in the plant extract was further validated by high performance liquid chromatography (HPLC) and thermal gravimetric analysis (TGA). Active phyto-chemicals from the leaf extract simultaneously acted as strong reducing as well as capping agent in the NS synthesis. NS engineered in the present study showed antibacterial potential at extremely low concentration against highly virulent multidrug-resistant (MDR) gram-negative strains (Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Pseudomonas aeruginosa), alarmed by World Health Organization (WHO). Furthermore, CuO-NS and CeO2-NS did not show any cytotoxicity on HEK-293 cell lines and Brine shrimp larvae indicating that the NS green synthesized in the present study are biocompatible.
Collapse
Affiliation(s)
- Qaisar Maqbool
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
- National Institute of Vacuum Science and Technology, Islamabad, Pakistan
| | - Mudassar Nazar
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
- National Institute of Vacuum Science and Technology, Islamabad, Pakistan
| | - Ayesha Maqbool
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Muhammad T. Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Nyla Jabeen
- Applied Biotechnology and Genetic Engineering Lab, Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Islamabad, Pakistan
| | - Talib Hussain
- National Institute of Vacuum Science and Technology, Islamabad, Pakistan
| | - Gregory Franklin
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|