1
|
Guo S, Li F, Wang J, Zhou H, Yuan Z, Yang R, Ke H, Chen H, Wang C, Cai M. Two-stage carbon sequestration by Haematococcus pluvialis: Integrated research from small-scale to pilot-scale cultivation and data quality monitoring. BIORESOURCE TECHNOLOGY 2025; 416:131828. [PMID: 39547301 DOI: 10.1016/j.biortech.2024.131828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
A novel two-stage carbon sequestration strategy (3 % and 10 % CO2) was developed and its feasibility was comprehensively demonstrated by multiple methods (pilot-scale cultivation, kinetics, economics and carbon fixation analysis). It was also a safe, efficient and low-cost harvesting strategy. At the end of the culture, astaxanthin production and content increased 2.3 and 2.2 times, respectively. Sedimentation rate (SR) was introduced for the first time to evaluate microalgae culture methods. The SR reached 82.2 % after 2 h of standing. Pilot-scale cultivation was achieved outdoors, with the optimal photobioreactor being a 40 L tubular photobioreactor (T-PBRs), which individually achieved 3.1 g/L and 2.3 % biomass and astaxanthin content. The maximum rate of carbon sequestration (227.9 mg/L/d) was observed in 40 L T-PBRs. The cost of producing 1 kg of astaxanthin-enriched Haematococcus pluvialis (H. pluvialis) was only 17.5 USD. This study brings new perspectives to carbon sequestration and the development of astaxanthin markets.
Collapse
Affiliation(s)
- Shuai Guo
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Feng Li
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; College of Fisheries, Guangdong Ocean University, Guangdong 524088, China
| | - Jun Wang
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; Department of Biological Technology, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Hantao Zhou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ziyi Yuan
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Renjing Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target, Xiamen University, Xiamen 361002, China
| | - Hongwei Ke
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, Xiamen University, Xiamen 361002, China
| | - Chunhui Wang
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Fujian Provincial Key Laboratory of Marine Chemistry and Applied Technology, Xiamen University, Xiamen 361102, China; Department of Biological Technology, Xiamen Ocean Vocational College, Xiamen 361102, China; College of Fisheries, Guangdong Ocean University, Guangdong 524088, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Macías-de la Rosa A, López-Rosales L, Cerón-García MC, Molina-Miras A, Soriano-Jerez Y, Sánchez-Mirón A, Seoane S, García-Camacho F. Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor. BIORESOURCE TECHNOLOGY 2023; 389:129818. [PMID: 37793555 DOI: 10.1016/j.biortech.2023.129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. rotalis was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.
Collapse
Affiliation(s)
- A Macías-de la Rosa
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Y Soriano-Jerez
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - S Seoane
- Department of Plant Biology and Ecology, 48940 Leioa, Spain; Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620 Plentzia, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
4
|
Sarkar S, Bhowmick TK, Gayen K. Enhancement for the synthesis of bio-energy molecules (carbohydrates and lipids) in Desmodesmus subspicatus: experiments and optimization techniques. Prep Biochem Biotechnol 2023; 54:343-357. [PMID: 37531084 DOI: 10.1080/10826068.2023.2241898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Microalgae are regarded as renewable resources of energy, foods and high-valued compounds using a biorefinery approach. In the present study, we explored isolated microalgae (Desmodesmus subspicatus) for the production of bio-energy molecules (carbohydrate and lipid). Optimizations of media (BG-11) components have been made using the Taguchi orthogonal array (TOA) technique to maximize biomass, carbohydrate and lipid production. Optimized results showed that biomass, carbohydrates and lipid productivity increased by 1.3 times at optimal combinations of media components than standard BG-11 media. Further, the influence of various carbon and nitrogen sources as nutritional supplement with optimum media composition under different light intensities was investigated for productivity of carbohydrate and lipid. Results demonstrated that 1.5 times higher productivity of carbohydrate and lipids were achieved in the presence optimum BG-11 under a broad range of light intensities (84-504 µmol m-2 s-1). Among different nitrogen sources, glycine was found to give higher productivity (1.5 times) followed by urea. Use of the cellulose as a carbon source in the media significantly increases biomass (2.4 times), carbohydrates (2.3 times) and lipids (2.3 times) productivity. Investigations revealed that cultivating Desmodesmus subspicatus under optimum culture conditions has the potential for large-scale bio-ethanol and bio-diesel production.
Collapse
Affiliation(s)
- Sreya Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| |
Collapse
|
5
|
González-Cardoso MA, Cerón-García MC, Navarro-López E, Molina-Miras A, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F. Alternatives to classic solvents for the isolation of bioactive compounds from Chrysochromulina rotalis. BIORESOURCE TECHNOLOGY 2023; 379:129057. [PMID: 37059341 DOI: 10.1016/j.biortech.2023.129057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
This paper demonstrates a sequential partitioning method for isolating bioactive compounds from Chrysochromulina rotalis using a polarity gradient, replacing classic and hazardous solvents with greener alternatives. Seventeen solvents were evaluated based on their Hansen solubility parameters and for having a similar polarity to the solvents they would replace, four of which were selected as substitutes in the classic fractionation process. Considering the fatty acid and carotenoid recovery yields obtained for each of the solvents, it has been proposed to replace hexane (HEX), toluene (TOL), dichloromethane (DCM) and n-butanol (BUT) with cyclohexane, chlorobenzene, isobutyl acetate and isoamyl alcohol, respectively. In addition, cytotoxic activity was observed when the TOL and DCM solvent extracts were tested against tumour cell lines, demonstrating the antiproliferative potential of compounds containing, for example, fucoxanthin, fatty acids, peptides, isoflavonoids or terpenes, among others.
Collapse
Affiliation(s)
| | - M C Cerón-García
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain.
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Contreras-Gómez
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| |
Collapse
|
6
|
Soto-Sánchez O, Hidalgo P, González A, Oliveira PE, Hernández Arias AJ, Dantagnan P. Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. AQUACULTURE NUTRITION 2023; 2023:5110281. [PMID: 36860971 PMCID: PMC9973195 DOI: 10.1155/2023/5110281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Studies have shown that ancient cultures used microalgae as food for centuries. Currently, scientific reports highlight the value of nutritional composition of microalgae and their ability to accumulate polyunsaturated fatty acids at certain operational conditions. These characteristics are gaining increasing interest for the aquaculture industry which is searching for cost-effective replacements for fish meal and oil because these commodities are one of the most significant operational expenses and their dependency has become a bottleneck for their sustainable development of the aquaculture industry. This review is aimed at highlighting the use of microalgae as polyunsaturated fatty acid source in aquaculture feed formulations, despite their scarce production at industrial scale. Moreover, this document includes several approaches to improve microalgae production and to increase the content of polyunsaturated fatty acids with emphasis in the accumulation of DHA, EPA, and ARA. Furthermore, the document compiles several studies which prove microalgae-based aquafeeds for marine and freshwater species. Finally, the study explores the aspects that intervene in production kinetics and improvement strategies with possibilities for upscaling and facing main challenges of using microalgae in the commercial production of aquafeeds.
Collapse
Affiliation(s)
- Oscar Soto-Sánchez
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Pamela Hidalgo
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Aixa González
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia E. Oliveira
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Adrián J. Hernández Arias
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
7
|
Olabi AG, Shehata N, Sayed ET, Rodriguez C, Anyanwu RC, Russell C, Abdelkareem MA. Role of microalgae in achieving sustainable development goals and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158689. [PMID: 36108848 DOI: 10.1016/j.scitotenv.2022.158689] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In 2015, the United Nations General Assembly (UNGA) set out 17 Sustainable Development Goals (SDGs) to be achieved by 2030. These goals highlight key objectives that must be addressed. Each target focuses on a unique perspective crucial to meeting these goals. Social, political, and economic issues are addressed to comprehensively review the main issues combating climate change and creating sustainable and environmentally friendly industries, jobs, and communities. Several mechanisms that involve judicious use of biological entities are among instruments that are being explored to achieve the targets of SDGs. Microalgae have an increasing interest in various sectors, including; renewable energy, food, environmental management, water purification, and the production of chemicals such as biofertilizers, cosmetics, and healthcare products. The significance of microalgae also arises from their tendency to consume CO2, which is the main greenhouse gas and the major contributor to the climate change. This work discusses the roles of microalgae in achieving the various SDGs. Moreover, this work elaborates on the contribution of microalgae to the circular economy. It was found that the microalgae contribute to all the 17th SDGs, where they directly contribute to 9th of the SDGs and indirectly contribute to the rest. The major contribution of the Microalgae is clear in SDG-6 "Clean water and sanitation", SDG-7 "Affordable and clean energy", and SDG-13 "Climate action". Furthermore, it was found that Microalgae have a significant contribution to the circular economy.
Collapse
Affiliation(s)
- A G Olabi
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK.
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| | - Cristina Rodriguez
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Ruth Chinyere Anyanwu
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Callum Russell
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mohammad Ali Abdelkareem
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| |
Collapse
|
8
|
Zheng S, Zou S, Wang H, Feng T, Sun S, Chen H, Wang Q. Reducing culture medium nitrogen supply coupled with replenishing carbon nutrient simultaneously enhances the biomass and lipid production of Chlamydomonas reinhardtii. Front Microbiol 2022; 13:1019806. [PMID: 36225359 PMCID: PMC9549070 DOI: 10.3389/fmicb.2022.1019806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Chlamydomonas reinhardtii is a model strain to explore algal lipid metabolism mechanism, and exhibits great potentials in large-scale production of lipids. Completely lacking nitrogen is an efficient strategy to trigger the lipid synthesis in microalgal cells, while it always leads to the obvious reduction in the biomass. To illustrate the optimal culture substrate carbon (C) and nitrogen (N) levels to simultaneously stimulate the growth and lipid production of C. reinhardtii, cells were cultivated under altered C and N concentrations. Results showed that replenishing 6 g/L sodium acetate (NaAc) could increase 1.50 and 1.53 times biomass and lipid productivity compared with 0 g/L NaAc treatment (the control), but total lipid content slightly decreased. Reducing 75% of basic medium (TAP) N level (0 g/L NaAc + 0.09 g/L NH4Cl treatment) could promote 21.57% total lipid content in comparison with the control (containing 0.38 g/L NH4Cl), but decrease 44.45% biomass and 34.15% lipid productivity. The result of the central composite design (CCD) experiment suggested the optimum total lipid content together with higher biomass and lipid productivity could be obtained under the condition of 4.12 g/L NaAc and 0.20 g/L NH4Cl. They reached 32.14%, 1.68 g/L and 108.21 mg/L/d, and increased by 36.77%, 93.10% and 1.75 times compared with the control, respectively. It suggests moderately increasing C supply and decreasing N levels could synchronously improve the biomass and lipid content of C. reinhardtii.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Hongyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Tian Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
9
|
Sarkar S, Sarkar S, Bhowmick TK, Gayen K. Process intensification for the enhancement of growth and chlorophyll molecules of isolated Chlorella thermophila: A systematic experimental and optimization approach. Prep Biochem Biotechnol 2022:1-19. [DOI: 10.1080/10826068.2022.2119578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sreya Sarkar
- Department of Chemical engineering, National Institute of Technology Agartala, Agartala, India
| | - Sambit Sarkar
- Department of Chemical engineering, National Institute of Technology Agartala, Agartala, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, India
| | - Kalyan Gayen
- Department of Chemical engineering, National Institute of Technology Agartala, Agartala, India
| |
Collapse
|
10
|
Dolganyuk V, Andreeva A, Sukhikh S, Kashirskikh E, Prosekov A, Ivanova S, Michaud P, Babich O. Study of the Physicochemical and Biological Properties of the Lipid Complex of Marine Microalgae Isolated from the Coastal Areas of the Eastern Water Area of the Baltic Sea. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185871. [PMID: 36144605 PMCID: PMC9506268 DOI: 10.3390/molecules27185871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
The Baltic Sea algae species composition includes marine euryhaline, freshwater euryhaline, and true brackish water forms. This study aimed to isolate a lipid–pigment complex from microalgae of the Baltic Sea (Kaliningrad region) and investigate its antimicrobial activity against Gram-positive and Gram-negative bacteria. Microalgae were sampled using a box-shaped bottom sampler. Sequencing was used for identification. Spectroscopy and chromatography with mass spectroscopy were used to study the properties of microalgae. Antibiotic activity was determined by the disc diffusion test. Lipids were extracted using the Folch method. Analysis of the results demonstrated the presence of antimicrobial activity of the lipid–pigment complex of microalgae against E. coli (the zone diameter was 17.0 ± 0.47 mm and 17.0 ± 0.21 mm in Chlorella vulgaris and Arthrospira platensis, respectively) and Bacillus pumilus (maximum inhibition diameter 16.0 ± 0.27 mm in C. vulgaris and 16.0 ± 0.22 mm in A. platensis). The cytotoxic and antioxidant activities of the lipid complexes of microalgae C. vulgaris and A. platensis were established and their physicochemical properties and fatty acid composition were studied. The results demonstrated that the lipid–pigment complex under experimental conditions was the most effective against P. pentosaceus among Gram-positive bacteria. Antimicrobial activity is directly related to the concentration of the lipid–pigment complex. The presence of antibacterial activity in microalgae lipid–pigment complexes opens the door to the development of alternative natural preparations for the prevention of microbial contamination of feed. Because of their biological activity, Baltic Sea microalgae can be used as an alternative to banned antibiotics in a variety of fields, including agriculture, medicine, cosmetology, and food preservation.
Collapse
Affiliation(s)
- Vyacheslav Dolganyuk
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Anna Andreeva
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Egor Kashirskikh
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-473407425 (P.M.)
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-473407425 (P.M.)
| | - Olga Babich
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| |
Collapse
|
11
|
Huang Z, Guo S, Guo Z, He Y, Chen B. Integrated green one-step strategy for concurrent recovery of phycobiliproteins and polyunsaturated fatty acids from wet Porphyridium biomass. Food Chem 2022; 389:133103. [DOI: 10.1016/j.foodchem.2022.133103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022]
|
12
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
13
|
Kholany M, Coutinho JAP, Ventura SPM. Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules 2022; 27:2540. [PMID: 35458744 PMCID: PMC9030877 DOI: 10.3390/molecules27082540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Microalgae have an outstanding capacity to efficiently produce value-added compounds. They have been inspiring researchers worldwide to develop a blue biorefinery, supporting the development of the bioeconomy, tackling the environmental crisis, and mitigating the depletion of natural resources. In this review, the characteristics of the carotenoids produced by microalgae are presented and the downstream processes developed to recover and purify them are analyzed, considering their main applications. The ongoing activities and initiatives taking place in Portugal regarding not only research, but also industrialization under the blue biorefinery concept are also discussed. The situation reported here shows that new techniques must be developed to make microalgae production more competitive. Downstream pigment purification technologies must be developed as they may have a considerable impact on the economic viability of the process. Government incentives are needed to encourage a constructive interaction between academics and businesses in order to develop a biorefinery that focuses on high-grade chemicals.
Collapse
Affiliation(s)
| | | | - Sónia P. M. Ventura
- Chemistry Department, CICECO-Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.K.); (J.A.P.C.)
| |
Collapse
|
14
|
Sarkar S, Mankad J, Padhihar N, Manna MS, Bhowmick TK, Gayen K. Enhancement of growth and biomolecules (carbohydrates, proteins, and chlorophylls) of isolated Chlorella thermophila using optimization tools. Prep Biochem Biotechnol 2022; 52:1173-1189. [PMID: 35234575 DOI: 10.1080/10826068.2022.2033995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The production of multiple products from microalgae is essential for economic sustainability and the knowledge of optimum cultivation conditions for high growth and biomolecule synthesis of a microalgal strain is the prerequisite for its commercial production. In this work, optimization of nutrient concentrations for the cultivation of isolated Chlorella thermophila was performed by manipulating nine nutrients with the objectives of maximization of growth, carbohydrate, protein, and chlorophyll contents. Experiments were designed and effects of the parameters were studied using Taguchi orthogonal array (TOA). Experimental results of TOA were used for modeling artificial neural networks (ANN) followed by the optimization using genetic algorithm (GA) to find global optimal solutions. Results showed an increase of 36, 88, 36, and 88% for growth, carbohydrates, proteins, and chlorophylls, respectively, at optimal combinations of parameters given by TOA. Results obtained through the ANN-GA optimization were 9, 10, and 3% more compared to the TOA for biomass, carbohydrates, and chlorophylls, respectively with experimental verification. Nitrates and bicarbonate were found to play the most pivotal role in biomass and biomolecule synthesis of the isolated microalgal strain. Results of the current investigation can be used in the industrial scale-up for the production of multiple products using the biorefinery approach.
Collapse
Affiliation(s)
- Sambit Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Jaivik Mankad
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Nitin Padhihar
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Mriganka Sekhar Manna
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| |
Collapse
|
15
|
Zheng S, Zou S, Feng T, Sun S, Guo X, He M, Wang C, Chen H, Wang Q. Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2022; 348:126746. [PMID: 35065224 DOI: 10.1016/j.biortech.2022.126746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Chlamydomonas reinhardtii grows fast and is rich in polyunsaturated fatty acids. To explore whether the alpha-linolenic acid (ALA) content can be further enhanced, the cultures were incubated under different culture temperatures, light intensities and inoculum densities. Results showed that temperature exhibited more great impact on ALA synthesis of C. reinhardtii than light intensity and inoculum size. The changes of light intensity and inoculum size displayed non-significant effects on ALA content. The optimal ALA proportion in cells was obtained under the condition of 10 °C, 50 μE/m2/s and 5% inoculum density, which reached ∼ 39%.The augmented initial inoculum density could markedly improve the biomass of C. reinhardtii under 10 °C. The maximum ALA productivity (16.42 mg/L/d) was gained under 10 °C coupled with 25% inoculum size, where higher intracellular sugar and protein yield were observed. These results suggest C. reinhardtii would be an alternative feedstock for the industrial production of ALA.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tian Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangxu Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
16
|
Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022; 62:999-1029. [PMID: 35014044 DOI: 10.1002/jobm.202100477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
Microalgae and cyanobacteria (blue-green algae) are used as food by humans. They have gained a lot of attention in recent years because of their potential applications in biotechnology. Microalgae and cyanobacteria are good sources of many valuable compounds, including important biologically active compounds with antiviral, antibacterial, antifungal, and anticancer activities. Under optimal growth condition and stress factors, algal biomass produce varieties of potential bioactive compounds. In the current review, bioactive compounds production and their remarkable applications such as pharmaceutical and nutraceutical applications along with processes involved in identification and characterization of the novel bioactive compounds are discussed. Comprehensive knowledge about the exploration, extraction, screening, and trading of bioactive products from microalgae and cyanobacteria and their pharmaceutical and other applications will open up new avenues for drug discovery and bioprospecting.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India.,Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ramu Meenatchi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Kalpana Pachillu
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Foundation for Aquaculture Innovation and Technology Transfer (FAITT), Thoraipakkam, Chennai, Tamil Nadu, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
17
|
Xiao X, Zhou Y, Liang Z, Lin R, Zheng M, Chen B, He Y. A novel two-stage heterotrophic cultivation for starch-to-protein switch to efficiently enhance protein content of Chlorella sp. MBFJNU-17. BIORESOURCE TECHNOLOGY 2022; 344:126187. [PMID: 34710603 DOI: 10.1016/j.biortech.2021.126187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to firstly establish an efficient and novel two-stage cultivation process to produce microalgal biomass rich in protein using a heterotrophic Chlorella sp. MBFJNU-17 strain. In the first-stage cultivation, to reduce the glucose and urea utilization, microalga achieved a high biomass at 40 g/L glucose and 1 g/L urea; meantime, the expression from starch biosynthesis genes of microalga was up-regulated under nitrogen-starvation conditions for starch accumulation (55.01%). In the second-stage cultivation, based on the over-compensation effect, Chlorella cells after the first-stage cultivation were further treated at 5 g/L glucose and 3 g/L urea to up-regulate starch degradation, central carbon metabolism and urea absorption genes expression to drive intracellular starch-to-protein switch for biosynthetic protein (59.75%). Moreover, microalga performed similar characteristics in a 10-L fermenter by the established process. Taken together, Chlorella sp. MBFJNU-17 was the promising candidate to produce high-value biomass enriched in protein by the established two-stage cultivation.
Collapse
Affiliation(s)
- Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhibo Liang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Rongzhao Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
18
|
Park YH, Han SI, Oh B, Kim HS, Jeon MS, Kim S, Choi YE. Microalgal secondary metabolite productions as a component of biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 344:126206. [PMID: 34715342 DOI: 10.1016/j.biortech.2021.126206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The interest in developing microalgae for industrial use has been increasing because of concerns about the depletion of petroleum resources and securing sustainable energy sources. Microalgae have high biomass productivity and short culture periods. However, despite these advantages, various barriers need to be overcome for industrial applications. Microalgal cultivation has a high unit price, thus rendering industrial application difficult. It is indispensably necessary to co-produce their primary and secondary metabolites to compensate for these shortcomings. In this regard, this article reviews the following aspects, (1) co-production of primary and secondary metabolites in microalgae, (2) induction methods for the promotion of the biosynthesis of secondary metabolites, and (3) perspectives on the co-production and co-extraction of primary and secondary metabolites. This paper presents various approaches for producing useful metabolites from microalgae and suggests strategies that can be utilized for the co-production of primary and secondary metabolites.
Collapse
Affiliation(s)
- Yun Hwan Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Han
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Institute of Green Manufacturing Technology, Korea University, Seoul 02841, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
López-Rodríguez M, Cerón-García MC, López-Rosales L, Navarro-López E, Sánchez Mirón A, Molina-Miras A, Abreu AC, Fernández I, García-Camacho F. An integrated approach for the efficient separation of specialty compounds from biomass of the marine microalgae Amphidinium carterae. BIORESOURCE TECHNOLOGY 2021; 342:125922. [PMID: 34547712 DOI: 10.1016/j.biortech.2021.125922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
An amphidinol-prioritized fractioning approach was for the first time developed to isolate multiple specialty metabolites such as amphidinols, carotenoids and fatty acids using the biomass of the marine microalgae Amphidinium carterae. The biomass was produced in a raceway photobioreactor and the exhausted culture media were reused, thus fulfilling sustainability criteria employing a circular economy concept. The integrated bioactive compounds-targeted approach presented here consisted of four steps with which recovery percentages of carotenoids, fatty acids and amphidinols of 97%, 82% and 99 %, respectively, were achieved. The proposed process was proved to be a better extraction system for this microalga than another based on a sequential gradient partition with water and four water-immiscible organic solvents (hexane, carbon tetrachloride, dichloromethane and n-butanol). The proposed process could be scaled-up as a commercial solid-phase extraction technology well-established for industrial bioprocesses.
Collapse
Affiliation(s)
- M López-Rodríguez
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - A Sánchez Mirón
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - A C Abreu
- Department of Chemistry and Physics, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
20
|
Ferreira GF, Pessoa JGB, Ríos Pinto LF, Maciel Filho R, Fregolente LV. Mono- and diglyceride production from microalgae: Challenges and prospects of high-value emulsifiers. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. CHEMOSPHERE 2021; 280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa Dell'Annunziata, Via Roma 29, 81031, Aversa, CE, Italy; Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Obulisamy Parthiba Karthikeysan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
22
|
Leal MA, Monteiro S, Silva MET, Rodrigues FA, Martins MA, Sousa RDCS, Coimbra JSR. Extraction of microalgae oil by organic solvents: experimental determination and modeling of liquid–liquid equilibria using vegetable oils mixture as a model system. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00118-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
24
|
Andreeva A, Budenkova E, Babich O, Sukhikh S, Ulrikh E, Ivanova S, Prosekov A, Dolganyuk V. Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins. Molecules 2021; 26:molecules26092767. [PMID: 34066679 PMCID: PMC8125830 DOI: 10.3390/molecules26092767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 01/17/2023] Open
Abstract
Microalgae are known to be rich in protein. In this study, we aim to investigate methods of producing and purifying proteins of 98 microalgae including Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, and Pleurochrysis carterae (Baltic Sea). Therefore, we studied their amino acid composition and developed a two-stage protein concentrate purification method from the microalgae biomass. After an additional stage of purification, the mass fraction of protein substances with a molecular weight greater than 50 kDa in the protein concentrate isolated from the biomass of the microalga Dunaliella salina increased by 2.58 times as compared with the mass fraction before filtration. In the protein concentrate isolated from the biomass of the microalga Pleurochrysis cartera, the relative content of the fraction with a molecular weight greater than 50.0 kDa reached 82.4%, which was 2.43 times higher than the relative content of the same fractions in the protein concentrate isolated from this culture before the two-stage purification. The possibilities of large-scale industrial production of microalgae biomass and an expanded range of uses determine the need to search for highly productive protein strains of microalgae and to optimize the conditions for isolating amino acids from them.
Collapse
Affiliation(s)
- Anna Andreeva
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (A.A.); (E.B.); (O.B.); (S.S.); (V.D.)
| | - Ekaterina Budenkova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (A.A.); (E.B.); (O.B.); (S.S.); (V.D.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (A.A.); (E.B.); (O.B.); (S.S.); (V.D.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (A.A.); (E.B.); (O.B.); (S.S.); (V.D.)
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia
| | - Elena Ulrikh
- Kuzbass State Agricultural Academy, 650056 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (A.A.); (E.B.); (O.B.); (S.S.); (V.D.)
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia
| |
Collapse
|
25
|
Sustainable Production of Reclaimed Water by Constructed Wetlands for Combined Irrigation and Microalgae Cultivation Applications. HYDROLOGY 2021. [DOI: 10.3390/hydrology8010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering the increasing pressure on freshwater resources due to the constant increase in water consumption and insufficient wastewater control and treatment, recovering wastewater is a path to overcoming water scarcity. The present work describes the potential of reusing treated wastewater (reclaimed water) for irrigation and production of microalgae biomass in an integrated way, through experimental evaluation of plant and microalgae growth, and creation of an application model. First, two parallel experiments were conducted to evaluate the use of reclaimed water produced by a constructed wetland filled with a mix of solid waste: the irrigation of a set of small pots filled with soil and planted with Tagetes patula L., and the cultivation of microalgae Chlorella sp. and a mixed microalgae population with predominant species of the genus Scenedesmus sp. in shaken flasks and tubular bubble column photobioreactors. Results indicated no negative effects of using the reclaimed water on the irrigated plants and in the cultivated microalgae. The growth indicators of plants irrigated with reclaimed water were not significantly different from plants irrigated with fertilized water. The growth indicators of the microalgae cultivated with reclaimed water are within the range of published data. Second, to apply the results to a case study, the seasonal variability of irrigation needs in an academic campus was used to propose a conceptual model for wastewater recovery. The simulation results of the model point to a positive combination of using reclaimed water for the irrigation of green spaces and microalgae production, supported by a water storage strategy. Water abstraction for irrigation purposes can be reduced by 89%, and 2074 kg dry weight microalgae biomass can be produced annually. Besides the need for future work to optimize the model and to add economical evaluation criteria, the model shows the potential to be applied to non-academic communities in the perspective of smarter and greener cities.
Collapse
|
26
|
Bertsch P, Böcker L, Mathys A, Fischer P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Dolganyuk V, Andreeva A, Budenkova E, Sukhikh S, Babich O, Ivanova S, Prosekov A, Ulrikh E. Study of Morphological Features and Determination of the Fatty Acid Composition of the Microalgae Lipid Complex. Biomolecules 2020; 10:biom10111571. [PMID: 33227978 PMCID: PMC7699214 DOI: 10.3390/biom10111571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Microalgae are rich in nutrients and biologically active substances such as proteins, carbohydrates, lipids, vitamins, pigments, phycobiliproteins, among others. The lipid composition of the microalgae Chlorella vulgaris, Arthrospira platensis, and Dunaliella salina was screened for the first time. The proposed method for purifying the lipid complex isolated from microalgae’s biomass involved dissolving the lipid-pigment complex in n-hexane for 4 h and stirring at 500 rpm. We found that the largest number of neutral lipids is contained in the biomass of microalgae Arthrospira platensis, fatty acids, polar lipids (glycerophospholipids), and unsaponifiable substances—in the biomass of microalgae Dunaliella salina, chlorophyll, and other impurities—in the biomass of microalgae Chlorella vulgaris. The developed method of purification of the fatty acid composition of the microalgae lipid complex confirmed the content of fatty acids in microalgae, which are of interest for practical use in the production of biologically active components. We also determined the potential of its use in the development of affordable technology for processing microalgae into valuable food and feed additives.
Collapse
Affiliation(s)
- Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (A.A.); (E.B.); (S.S.); (O.B.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Anna Andreeva
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (A.A.); (E.B.); (S.S.); (O.B.)
| | - Ekaterina Budenkova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (A.A.); (E.B.); (S.S.); (O.B.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (A.A.); (E.B.); (S.S.); (O.B.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (A.A.); (E.B.); (S.S.); (O.B.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-3842-39-6832
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Elena Ulrikh
- Kuzbass State Agricultural Academy, Markovtseva Street 5, 650056 Kemerovo, Russia;
| |
Collapse
|
28
|
Cheng P, Zhou C, Chu R, Chang T, Xu J, Ruan R, Chen P, Yan X. Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|