1
|
Wang L, Wang X, Wu H, Wang H, Lu Z. Interspecies synergistic interactions mediated by cofactor exchange enhance stress tolerance by inducing biofilm formation. mSystems 2024; 9:e0088424. [PMID: 39189769 PMCID: PMC11406921 DOI: 10.1128/msystems.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic exchange plays a crucial role in shaping microbial community interactions and functions, including the exchange of small molecules such as cofactors. Cofactors are fundamental to enzyme catalytic activities; however, the role of cofactors in microbial stress tolerance is unclear. Here, we constructed a synergistic consortium containing two strains that could efficiently mineralize di-(2-ethylhexyl) phthalate under hyperosmotic stress. Integration of transcriptomic analysis, metabolic profiling, and a genome-scale metabolic model (GEM) facilitated the discovery of the potential mechanism of microbial interactions. Multi-omics analysis revealed that the vitamin B12-dependent methionine-folate cycle could be a key pathway for enhancing the hyperosmotic stress tolerance of synergistic consortium. Further GEM simulations revealed interspecies exchange of S-adenosyl-L-methionine and riboflavin, cofactors needed for vitamin B12 biosynthesis, which was confirmed by in vitro experiments. Overall, we proposed a new mechanism of bacterial hyperosmotic stress tolerance: bacteria might promote the production of vitamin B12 to enhance biofilm formation, and the species collaborate with each other by exchanging cofactors to improve consortium hyperosmotic stress tolerance. These findings offer new insights into the role of cofactors in microbial interactions and stress tolerance and are potentially exploitable for environmental remediation. IMPORTANCE Metabolic interactions (also known as cross-feeding) are thought to be ubiquitous in microbial communities. Cross-feeding is the basis for many positive interactions (e.g., mutualism) and is a primary driver of microbial community assembly. In this study, a combination of multi-omics analysis and metabolic modeling simulation was used to reveal the metabolic interactions of a synthetic consortium under hyperosmotic stress. Interspecies cofactor exchange was found to promote biofilm formation under hyperosmotic stress. This provides a new perspective for understanding the role of metabolic interactions in microbial communities to enhance environmental adaptation, which is significant for improving the efficiency of production activities and environmental bioremediation.
Collapse
Affiliation(s)
- Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Jansen Z, Alameri A, Wei Q, Kulhanek DL, Gilmour AR, Halper S, Schwalm ND, Thyer R. A modular toolkit for environmental Rhodococcus, Gordonia, and Nocardia enables complex metabolic manipulation. Appl Environ Microbiol 2024; 90:e0034024. [PMID: 39082821 PMCID: PMC11337820 DOI: 10.1128/aem.00340-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Soil-dwelling Actinomycetes are a diverse and ubiquitous component of the global microbiome but largely lack genetic tools comparable to those available in model species such as Escherichia coli or Pseudomonas putida, posing a fundamental barrier to their characterization and utilization as hosts for biotechnology. To address this, we have developed a modular plasmid assembly framework, along with a series of genetic control elements for the previously genetically intractable Gram-positive environmental isolate Rhodococcus ruber C208, and demonstrate conserved functionality in 11 additional environmental isolates of Rhodococcus, Nocardia, and Gordonia. This toolkit encompasses five Mycobacteriale origins of replication, five broad-host-range antibiotic resistance markers, transcriptional and translational control elements, fluorescent reporters, a tetracycline-inducible system, and a counter-selectable marker. We use this toolkit to interrogate the carotenoid biosynthesis pathway in Rhodococcus erythropolis N9T-4, a weakly carotenogenic environmental isolate and engineer higher pathway flux toward the keto-carotenoid canthaxanthin. This work establishes several new genetic tools for environmental Mycobacteriales and provides a synthetic biology framework to support the design of complex genetic circuits in these species.IMPORTANCESoil-dwelling Actinomycetes, particularly the Mycobacteriales, include both diverse new hosts for sustainable biomanufacturing and emerging opportunistic pathogens. Rhodococcus, Gordonia, and Nocardia are three abundant genera with particularly flexible metabolisms and untapped potential for natural product discovery. Among these, Rhodococcus ruber C208 was shown to degrade polyethylene; Gordonia paraffinivorans can assimilate carbon from solid hydrocarbons; and Nocardia neocaledoniensis (and many other Nocardia spp.) possesses dual isoprenoid biosynthesis pathways. Many species accumulate high levels of carotenoid pigments, indicative of highly active isoprenoid biosynthesis pathways which may be harnessed for fermentation of terpenes and other commodity isoprenoids. Modular genetic toolkits have proven valuable for both fundamental and applied research in model organisms, but such tools are lacking for most Actinomycetes. Our suite of genetic tools and DNA assembly framework were developed for broad functionality and to facilitate rapid prototyping of genetic constructs in these organisms.
Collapse
Affiliation(s)
- Zachary Jansen
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, USA
| | - Abdulaziz Alameri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Qiyao Wei
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Devon L. Kulhanek
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Andrew R. Gilmour
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, USA
| | - Sean Halper
- DEVCOM Army Research Laboratory, Adelphi, Maryland, USA
| | | | - Ross Thyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Wang L, Hou J, Yang K, Yu H, Zhang B, Liu Z, Zheng Y. Development of synthetic small regulatory RNA for Rhodococcus erythropolis. Biotechnol J 2024; 19:e2400022. [PMID: 38528342 DOI: 10.1002/biot.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
Rhodococci have been regarded as ideal chassis for biotransformation, biodegradation, and biosynthesis for their unique environmental persistence and robustness. However, most species of Rhodococcus are still difficult to metabolically engineer due to the lack of genetic tools and techniques. In this study, synthetic sRNA strategy was exploited for gene repression in R. erythropolis XP. The synthetic sRNA based on the RhlS scaffold from Pseudomonas aeruginosa functions better in repressing sfgfp expression than those based on E. coli MicC, SgrS, and P. aeruginosa PrrF1-2 scaffold. The RhlS-based sRNAs were applied to study the influence of sulfur metabolism on biodesulfurization (BDS) efficiency in R. erythropolis XP and successfully identified two genes involved in sulfur metabolism that affect the BDS efficiency significantly. The RhlS-based synthetic sRNAs show promise in the metabolic engineering of Rhodococcus and promote the industrial applications of Rhodococcus in environmental remediation and biosynthesis.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Jie Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P.R. China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Haonan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
4
|
Graf M, Greenfield LM, Reay MK, Bargiela R, Williams GB, Onyije C, Lloyd CEM, Bull ID, Evershed RP, Golyshin PN, Chadwick DR, Jones DL. Increasing concentration of pure micro- and macro-LDPE and PP plastic negatively affect crop biomass, nutrient cycling, and microbial biomass. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131932. [PMID: 37390687 DOI: 10.1016/j.jhazmat.2023.131932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Over the last 50 years, the intense use of agricultural plastic in the form of mulch films has led to an accumulation of plastic in soil, creating a legacy of plastic in agricultural fields. Plastic often contains additives, however it is still largely unknown how these compounds affect soil properties, potentially influencing or masking effects of the plastic itself. Therefore, the aim of this study was to investigate the effects of pure plastics of varying sizes and concentrations, to improve our understanding of plastic-only interactions within soil-plant mesocosms. Maize (Zea mays L.) was grown over eight weeks following the addition of micro and macro low-density polyethylene and polypropylene at increasing concentrations (equivalent to 1, 10, 25, and 50 years mulch film use) and the effects of plastic on key soil and plant properties were measured. We found the effect of both macro and microplastic on soil and plant health is negligible in the short-term (1 to <10 years). However, ≥ 10 years of plastic application for both plastic types and sizes resulted in a clear negative effect on plant growth and microbial biomass. This study provides vital insight into the effect of both macro and microplastics on soil and plant properties.
Collapse
Affiliation(s)
- Martine Graf
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Lucy M Greenfield
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Michaela K Reay
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Rafael Bargiela
- Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Gwion B Williams
- Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Charles Onyije
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ian D Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Richard P Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Peter N Golyshin
- Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David R Chadwick
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
Salusjärvi L, Ojala L, Peddinti G, Lienemann M, Jouhten P, Pitkänen JP, Toivari M. Production of biopolymer precursors beta-alanine and L-lactic acid from CO2 with metabolically versatile Rhodococcus opacus DSM 43205. Front Bioeng Biotechnol 2022; 10:989481. [PMID: 36281430 PMCID: PMC9587121 DOI: 10.3389/fbioe.2022.989481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogen oxidizing autotrophic bacteria are promising hosts for conversion of CO2 into chemicals. In this work, we engineered the metabolically versatile lithoautotrophic bacterium R. opacus strain DSM 43205 for synthesis of polymer precursors. Aspartate decarboxylase (panD) or lactate dehydrogenase (ldh) were expressed for beta-alanine or L-lactic acid production, respectively. The heterotrophic cultivations on glucose produced 25 mg L−1 beta-alanine and 742 mg L−1 L-lactic acid, while autotrophic cultivations with CO2, H2, and O2 resulted in the production of 1.8 mg L−1 beta-alanine and 146 mg L−1 L-lactic acid. Beta-alanine was also produced at 345 μg L−1 from CO2 in electrobioreactors, where H2 and O2 were provided by water electrolysis. This work demonstrates that R. opacus DSM 43205 can be engineered to produce chemicals from CO2 and provides a base for its further metabolic engineering.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
- *Correspondence: Laura Salusjärvi,
| | - Leo Ojala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Gopal Peddinti
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Paula Jouhten
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|