1
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
2
|
Twittenhoff C, Brandenburg VB, Righetti F, Nuss AM, Mosig A, Dersch P, Narberhaus F. Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions. Nucleic Acids Res 2020; 48:e71. [PMID: 32463449 PMCID: PMC7337928 DOI: 10.1093/nar/gkaa404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The dynamic conformation of RNA molecules within living cells is key to their function. Recent advances in probing the RNA structurome in vivo, including the use of SHAPE (Selective 2'-Hydroxyl Acylation analyzed by Primer Extension) or kethoxal reagents or DMS (dimethyl sulfate), provided unprecedented insights into the architecture of RNA molecules in the living cell. Here, we report the establishment of lead probing in a global RNA structuromics approach. In order to elucidate the transcriptome-wide RNA landscape in the enteric pathogen Yersinia pseudotuberculosis, we combined lead(II) acetate-mediated cleavage of single-stranded RNA regions with high-throughput sequencing. This new approach, termed 'Lead-seq', provides structural information independent of base identity. We show that the method recapitulates secondary structures of tRNAs, RNase P RNA, tmRNA, 16S rRNA and the rpsT 5'-untranslated region, and that it reveals global structural features of mRNAs. The application of Lead-seq to Y. pseudotuberculosis cells grown at two different temperatures unveiled the first temperature-responsive in vivo RNA structurome of a bacterial pathogen. The translation of candidate genes derived from this approach was confirmed to be temperature regulated. Overall, this study establishes Lead-seq as complementary approach to interrogate intracellular RNA structures on a global scale.
Collapse
Affiliation(s)
| | | | | | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 381214 Braunschweig, Germany
| | - Axel Mosig
- Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 381214 Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
3
|
Kournoutou GG, Giannopoulou PC, Sazakli E, Leotsinidis M, Kalpaxis DL. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:136-147. [PMID: 28957715 DOI: 10.1016/j.aquatox.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or translation factors, and areas related to translation fidelity, were found to undergo significant metal-induced conformational alterations, leading either to loosening of their structure or to more compact folding. These modifications were associated with parallel alterations in the translation process at multiple levels, a fact suggesting that structural perturbations in ribosomes, caused by metals, pose significant hurdles in translational efficiency and fidelity.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Animal Structures/drug effects
- Animal Structures/metabolism
- Animals
- Base Sequence
- Biomarkers/metabolism
- DNA/metabolism
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Mytilus/drug effects
- Mytilus/metabolism
- Nucleic Acid Conformation
- Oxidative Stress/drug effects
- Protein Biosynthesis/drug effects
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
- Trace Elements/toxicity
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Eleni Sazakli
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Michel Leotsinidis
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
4
|
Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL. Predicting RNA secondary structures from sequence and probing data. Methods 2016; 103:86-98. [PMID: 27064083 DOI: 10.1016/j.ymeth.2016.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
RNA secondary structures have proven essential for understanding the regulatory functions performed by RNA such as microRNAs, bacterial small RNAs, or riboswitches. This success is in part due to the availability of efficient computational methods for predicting RNA secondary structures. Recent advances focus on dealing with the inherent uncertainty of prediction by considering the ensemble of possible structures rather than the single most stable one. Moreover, the advent of high-throughput structural probing has spurred the development of computational methods that incorporate such experimental data as auxiliary information.
Collapse
Affiliation(s)
- Ronny Lorenz
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria.
| | - Michael T Wolfinger
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria; Medical University of Vienna, Center for Anatomy and Cell Biology, Währingerstraße 13, 1090 Vienna, Austria.
| | - Andrea Tanzer
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria.
| | - Ivo L Hofacker
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria; University of Vienna, Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, Währingerstr. 29, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Bai Y, Dai X, Harrison A, Johnston C, Chen M. Toward a next-generation atlas of RNA secondary structure. Brief Bioinform 2015; 17:63-77. [PMID: 25922372 DOI: 10.1093/bib/bbv026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/23/2022] Open
Abstract
RNA structure plays a crucial role in gene maturation, regulation and function. Determining the form and frequency of RNA folds is essential for a better understanding of how RNA exerts its functions. Low-throughput studies have focused on RNA primary sequences and expression levels, but with an emphasis on relatively small numbers of transcripts. However, with the recent advent of high-throughput technologies, it is realistic to begin analyzing RNA secondary structures on a genome-wide scale. Here, we review genome-wide RNA secondary structure profiles as well as advances in computational structure predictions. We further discuss the novel characteristics of RNA secondary structure across messenger RNAs. Probing RNA secondary structure by high-throughput sequencing will enable us to build atlases of RNA secondary structures, an important step in helping us to understand the versatility of RNA functions in diverse cellular processes.
Collapse
|
6
|
Structural and sequence requirements for the antisense RNA regulating replication of staphylococcal multiresistance plasmid pSK41. Plasmid 2015; 78:17-25. [PMID: 25634580 DOI: 10.1016/j.plasmid.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/22/2022]
Abstract
pSK41 is a prototypical 46-kb conjugative multiresistance plasmid of Staphylococcus aureus. The pSK41 replication initiation protein (Rep) is rate-limiting for plasmid replication, and its expression is negatively regulated by a small, non-coding antisense transcript, RNAI, that is complementary to the rep mRNA leader region. In this study, enzymatic probing was used to verify the predicted secondary structures of RNAI and its target RNA. We demonstrated that two stem-loop structures of RNAI, SLRNAI-II and SLRNAI-III, were important for inhibition. A putative U-turn motif detected in the loop of SLrep-I (5'-UUGG-3') was analysed for its significance to RNAI-mediated inhibition in vivo and Northern blotting suggested that rep mRNA was processed. Taken together, these observations support our previously proposed model but also raise new questions about the replication control mechanism.
Collapse
|
7
|
Righetti F, Narberhaus F. How to find RNA thermometers. Front Cell Infect Microbiol 2014; 4:132. [PMID: 25279353 PMCID: PMC4166951 DOI: 10.3389/fcimb.2014.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/02/2014] [Indexed: 11/27/2022] Open
Abstract
Temperature is one of the decisive signals that a mammalian pathogen has entered its warm-blooded host. Among the many ways to register temperature changes, bacteria often use temperature-modulated structures in the untranslated region of mRNAs. In this article, we describe how such RNA thermometers (RNATs) have been discovered one by one upstream of heat shock and virulence genes in the past, and how next-generation sequencing approaches are able to reveal novel temperature-responsive RNA structures on a global scale.
Collapse
|
8
|
Li X, Kazan H, Lipshitz HD, Morris QD. Finding the target sites of RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:111-30. [PMID: 24217996 PMCID: PMC4253089 DOI: 10.1002/wrna.1201] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
Abstract
RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Wan Y, Qu K, Ouyang Z, Chang HY. Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat Protoc 2013; 8:849-69. [PMID: 23558785 DOI: 10.1038/nprot.2013.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA structure is important for RNA function and regulation, and there is growing interest in determining the RNA structure of many transcripts. Here we provide a detailed protocol for the parallel analysis of RNA structure (PARS) for probing RNA secondary structures genome-wide. In this method, enzymatic footprinting is coupled to high-throughput sequencing to provide secondary structure data for thousands of RNAs simultaneously. The entire experimental protocol takes ∼5 d to complete, and sequencing and data analysis take an additional 6-8 d. PARS was developed using the yeast genome as proof of principle, but its approach should be applicable to probing RNA structures from different transcriptomes and structural dynamics under diverse solution conditions.
Collapse
Affiliation(s)
- Yue Wan
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
10
|
Probing the sequence and structure of in vitro synthesized antisense and target RNAs from the replication control system of plasmid pMV158. Plasmid 2013; 70:94-103. [PMID: 23541653 DOI: 10.1016/j.plasmid.2013.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/30/2022]
Abstract
Antisense RNAII is a replication control element encoded by promiscuous plasmid pMV158. RNAII binds to its complementary sequence in the copG-repB mRNA, thus inhibiting translation of the replication initiator repB gene. In order to initiate the biochemical characterization of the pMV158 antisense RNA-mediated control system, conditions for in vitro transcription by T7RNA polymerase were set up that yielded large amounts of antisense and target run-off products able to bind to each other. The run-off antisense transcript was expected, and confirmed, to span the entire RNAII as synthesized by the bacterial RNA polymerase, including the intrinsic transcription terminator at its 3'-terminus. On the other hand, two different target transcripts, mRNA₆₀ and mRNA₈₀, were produced, characterized and tested for efficient binding to the antisense product. The mRNA₆₀ and mRNA₈₀ run-off transcripts supposedly spanned 60 and 80 nucleotides, respectively, on the copG-repB mRNA and lacked terminator-like structures at their 3'-termini. Probing of the sequence and conformation of the main products, along with modeling of their secondary structures, showed that both target transcripts were actually longer-than-expected, and contained a 3'-terminal hairpin wherein the extra nucleotides base-paired to the expected 3'-terminus of the corresponding run-off transcript. These longer products were proposed to arise from the RNA-dependent polymerizing activity of T7RNA polymerase on correct run-off transcripts primed by extremely short 3'-selfcomplementarity. Seizing of the target mRNA sequence complementary to the 5'-terminus of RNAII in a stable 3'-terminal hairpin generated by this activity seemed to cause a 3-fold decrease in the efficiency of binding to the antisense RNA.
Collapse
|
11
|
Niittymäki T, Burakova E, Laitinen E, Leisvuori A, Virta P, Lönnberg H. Zn2+Complexes of 3,5-Bis[(1,5,9-triazacyclododecan-3-yloxy)methyl]phenyl Conjugates of Oligonucleotides as Artificial RNases: The Effect of Oligonucleotide Conjugation on Uridine Selectivity of the Cleaving Agent. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. Understanding the transcriptome through RNA structure. Nat Rev Genet 2011; 12:641-55. [PMID: 21850044 DOI: 10.1038/nrg3049] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA structure is crucial for gene regulation and function. In the past, transcriptomes have largely been parsed by primary sequences and expression levels, but it is now becoming feasible to annotate and compare transcriptomes based on RNA structure. In addition to computational prediction methods, the recent advent of experimental techniques to probe RNA structure by high-throughput sequencing has enabled genome-wide measurements of RNA structure and has provided the first picture of the structural organization of a eukaryotic transcriptome - the 'RNA structurome'. With additional advances in method refinement and interpretation, structural views of the transcriptome should help to identify and validate regulatory RNA motifs that are involved in diverse cellular processes and thereby increase understanding of RNA function.
Collapse
Affiliation(s)
- Yue Wan
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
13
|
Rocca-Serra P, Bellaousov S, Birmingham A, Chen C, Cordero P, Das R, Davis-Neulander L, Duncan CD, Halvorsen M, Knight R, Leontis NB, Mathews DH, Ritz J, Stombaugh J, Weeks KM, Zirbel CL, Laederach A. Sharing and archiving nucleic acid structure mapping data. RNA (NEW YORK, N.Y.) 2011; 17:1204-12. [PMID: 21610212 PMCID: PMC3138558 DOI: 10.1261/rna.2753211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://snrnasm.bio.unc.edu.
Collapse
Affiliation(s)
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | | | - Chunxia Chen
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Pablo Cordero
- Biochemistry Department, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Biochemistry Department, Stanford University, Stanford, California 94305, USA
| | - Lauren Davis-Neulander
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Caia D.S. Duncan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Matthew Halvorsen
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, Boulder, Colorado 80309, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - David H. Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Justin Ritz
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Jesse Stombaugh
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Alain Laederach
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
- Corresponding author.E-mail .
| |
Collapse
|
14
|
Sobczak K, Michlewski G, de Mezer M, Krol J, Krzyzosiak WJ. Trinucleotide repeat system for sequence specificity analysis of RNA structure probing reagents. Anal Biochem 2010; 402:40-6. [PMID: 20302838 DOI: 10.1016/j.ab.2010.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
Abstract
Chemical and enzymatic structural probes have been used for decades to obtain rapid and comprehensive information regarding the molecular architecture of various RNAs. Despite their widespread use, the sequence specificity of these RNA structural probing reagents has not yet been thoroughly characterized. In this study, we revisited the properties of commonly used structural probes such as Pb(II) ions, ribonuclease V1, ribonuclease T2, and the S1 and mung bean nucleases by testing them on highly regular triplet repeat sequences representing phosphodiester bonds with every possible combination of 3' and 5' adjacent nucleotides. We show that Pb(II) ions preferentially cleave after pyrimidines and that S1 nuclease possesses a previously overlooked specificity toward phosphodiester bonds following G residues. We also observed that mung bean nuclease shows a preference for cleaving ApN bonds and that RNase V1 mainly recognizes U residues in both single- and double-stranded RNAs. These data are important for accurate interpretation of the results of structure probing experiments and for assignment of the correct structure to individual RNA molecules. The triplet repeat transcript system described here may be considered as a reliable platform for determining the sequence specificity of other reagents used to probe RNA structure.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
15
|
Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, Haas D. Mechanism of
hcnA
mRNA recognition in the Gac/Rsm signal transduction pathway of
Pseudomonas fluorescens. Mol Microbiol 2007; 66:341-56. [PMID: 17850261 DOI: 10.1111/j.1365-2958.2007.05909.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the plant-beneficial bacterium Pseudomonas fluorescens CHA0, the expression of antifungal exoproducts is controlled by the GacS/GacA two-component system. Two RNA binding proteins (RsmA, RsmE) ensure effective translational repression of exoproduct mRNAs. At high cell population densities, GacA induces three small RNAs (RsmX, RsmY, RsmZ) which sequester both RsmA and RsmE, thereby relieving translational repression. Here we systematically analyse the features that allow the RNA binding proteins to interact strongly with the 5' untranslated leader mRNA of the P. fluorescens hcnA gene (encoding hydrogen cyanide synthase subunit A). We obtained evidence for three major RsmA/RsmE recognition elements in the hcnA leader, based on directed mutagenesis, RsmE footprints and toeprints, and in vivo expression data. Two recognition elements were found in two stem-loop structures whose existence in the 5' leader region was confirmed by lead(II) cleavage analysis. The third recognition element, which overlapped the hcnA Shine-Dalgarno sequence, was postulated to adopt either an open conformation, which would favour ribosome binding, or a stem-loop structure, which may form upon interaction with RsmA/RsmE and would inhibit access of ribosomes. Effective control of hcnA expression by the Gac/Rsm system appears to result from the combination of the three appropriately spaced recognition elements.
Collapse
Affiliation(s)
- Karine Lapouge
- Département de Microbiologie Fondamentale, Université de Lausanne, Bâtiment Biophore, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
New RNA interaction interfaces are reported for designing RNA modules for directional supramolecular self-assembly. The new interfaces are generated from existing ones by inserting C-loops between the interaction motifs that mediate supramolecular assembly. C-Loops are new modular motifs recently identified in crystal structures that increase the helical twist of RNA helices in which they are inserted and thus reduce the distance between pairs of loop or loop-receptor motifs from 11 to 9 base-stacking layers while maintaining correct orientation for binding to cognate interaction interfaces. Binding specificities of C-loop-containing molecules for cognate molecules that also have inserted C-loops were found to range up to 20-fold. Binding affinities for most C-loop-containing molecules were generally equal or higher than those for the parent molecules lacking C-loops.
Collapse
Affiliation(s)
- Kirill A Afonin
- Department of Chemistry and Center for Bimolecular Sciences, Bowling Green State University, Bowling Green, Ohio 43402, USA
| | | |
Collapse
|
17
|
Łęgiewicz M, Wichłacz A, Brzezicha B, Ciesiołka J. Antigenomic delta ribozyme variants with mutations in the catalytic core obtained by the in vitro selection method. Nucleic Acids Res 2006; 34:1270-80. [PMID: 16513845 PMCID: PMC1388270 DOI: 10.1093/nar/gkl018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used the in vitro selection method to search for catalytically active variants of the antigenomic delta ribozyme with mutations in the regions that constitute the ribozyme active site: L3, J1/4 and J4/2. In the initial combinatorial library 16 nt positions were randomized and the library contained a full representation of all possible sequences. Following ten cycles of selection-amplification several catalytically active ribozyme variants were identified. It turned out that one-third of the variants contained only single mutation G80U and their activity was similar to that of the wild-type ribozyme. Unexpectedly, in the next one-third of the variants the C76 residue, which was proposed to play a crucial role in the ribozyme cleavage mechanism, was mutated. In these variants, however, a cytosine residue was present in a neighboring position to the polynucleotide chain. It shows that the ribozyme catalytic core possesses substantial 'structural plasticity' and the capacity of functional adaptation. Four selected ribozyme variants were subjected to more detailed analysis. It turned out that the variants differed in their relative preferences towards Mg2+, Ca2+ and Mn2+ ions. Thus, the functional properties of the variants were dependent on both the structure of their catalytic sites and divalent metal ions performing catalysis.
Collapse
Affiliation(s)
| | | | | | - Jerzy Ciesiołka
- To whom correspondence should be addressed. Tel: +48 61 8528503, Fax: +48 61 8520532;
| |
Collapse
|
18
|
Walker SC, Avis JM. Secondary structure probing of the human RNase MRP RNA reveals the potential for MRP RNA subsets. Biochem Biophys Res Commun 2005; 335:314-21. [PMID: 16083861 DOI: 10.1016/j.bbrc.2005.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/18/2005] [Indexed: 11/21/2022]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses an RNA subunit, structurally related to that of RNase P RNA, that is thought to be catalytic. RNase MRP RNA sequences from Saccharomycetaceae species are structurally well defined through detailed phylogenetic and structural analysis. In contrast, higher eukaryote MRP RNA structure models are based on comparative sequence analysis of only five sequences and limited probing data. Detailed structural analysis of the Homo sapiens MRP RNA, entailing enzymatic and chemical probing, is reported. The data are consistent with the phylogenetic secondary structure model and demonstrate unequivocally that higher eukaryote MRP RNA structure differs significantly from that reported for Saccharomycetaceae species. Neither model can account for all of the known MRP RNAs and we thus propose the evolution of at least two subsets of RNase MRP secondary structure, differing predominantly in the predicted specificity domain.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
19
|
Lindell M, Brännvall M, Wagner EGH, Kirsebom LA. Lead(II) cleavage analysis of RNase P RNA in vivo. RNA (NEW YORK, N.Y.) 2005; 11:1348-54. [PMID: 16043496 PMCID: PMC1370818 DOI: 10.1261/rna.2590605] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The overall conformation of M1 RNA, the catalytic RNA subunit of RNase P in Escherichia coli, was analyzed in vivo and, in the presence of the C5 protein subunit, in vitro by lead(II) acetate probing. The partial cleavage patterns obtained are congruent with previous structure mapping performed in vitro. Most of the known major and minor cleavages in M1 RNA were supported and could be mapped onto a secondary structure model. The data obtained indicate that C5 has only minor effects on the overall structure of the RNA subunit. The similar cleavage patterns obtained in vitro and in vivo furthermore suggest that the intracellular environment does not greatly alter the overall conformation of M1 RNA within the holoenzyme complex. Moreover, our data indicate that M1 RNA in vivo is present in at least two states-the major fraction is bound to tRNA substrates and a minor fraction is substrate free. Finally, both in this and previous work we found that lead(II) probing data from in vivo experiments conducted on longer RNAs (tmRNA and M1 RNA) generally gives superior resolution compared to parallel in vitro experiments. This may reflect the absence of alternative conformers present in vitro and the more natural state of these RNAs in the cell due to proper, co-transcriptional folding pathways and possibly the presence of RNA chaperones.
Collapse
Affiliation(s)
- Magnus Lindell
- Department of Cell and Molecular Biology, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|
20
|
Dutkiewicz M, Ciesiołka J. Structural characterization of the highly conserved 98-base sequence at the 3' end of HCV RNA genome and the complementary sequence located at the 5' end of the replicative viral strand. Nucleic Acids Res 2005; 33:693-703. [PMID: 15681619 PMCID: PMC548360 DOI: 10.1093/nar/gki218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oligoribonucleotides that corresponded to the X regions of the (+) and (−) polarity strands of HCV RNA, as well as several shorter oligomers comprising defined stem-loop motifs of their predicted secondary structure models, were analyzed by Pb2+-induced cleavage, partial digestion with specific nucleases and chemical modification. Patterns characteristic of the motifs were compared with those obtained for the full-length molecules and on the basis of such ‘structural fingerprinting’ conclusions concerning folding of regions X were formulated. It turned out that the secondary structure model of X(+) RNA proposed earlier, the three-stem-loop model composed of hairpins SL1, SL2 and SL3, was only partially consistent with our experimental data. We confirmed the presence of SL1 and SL3 motifs and showed that the single-stranded stretch adjacent to the earlier proposed hairpin SL2 contributed to the folding of that region. It seemed to be arranged into two hairpins, which might form a hypothetical pseudoknot by changing their base-pairing systems. These data were discussed in terms of their possible biological significance. On the other hand, analysis of the X(−) RNA and its sub-fragments supported a three-stem-loop secondary structure model for this RNA.
Collapse
Affiliation(s)
| | - Jerzy Ciesiołka
- To whom correspondence should be addressed. Tel: +48 61 8528503; Fax: +48 61 8520532;
| |
Collapse
|
21
|
Napierala M, Michalowski D, de Mezer M, Krzyzosiak WJ. Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res 2005; 33:451-63. [PMID: 15659577 PMCID: PMC548340 DOI: 10.1093/nar/gki186] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA metabolism is a major contributor to the pathogenesis of clinical disorders associated with premutation size alleles of the fragile X mental retardation (FMR1) gene. Herein, we determined the structural properties of numerous FMR1 transcripts harboring different numbers of both CGG repeats and AGG interruptions. The stability of hairpins formed by uninterrupted repeat-containing transcripts increased with the lengthening of the repeat tract. Even a single AGG interruption in the repeated sequence dramatically changed the folding of the 5'UTR fragments, typically resulting in branched hairpin structures. Transcripts containing different lengths of CGG repeats, but sharing a common AGG pattern, adopted similar types of secondary structures. We postulate that interruption-dependent structure variants of the FMR1 mRNA contribute to the phenotype diversity, observed in premutation carriers.
Collapse
|
22
|
Sobczak K, Krzyzosiak WJ. CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem 2004; 280:3898-910. [PMID: 15533937 DOI: 10.1074/jbc.m409984200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2), one of the hereditary human neurodegenerative disorders, is caused by the expansion of the CAG tandem repeats in the translated sequence of the SCA2 gene. In a normal population the CAG repeat is polymorphic not only in length but also in the number and localization of its CAA interruptions. The aim of this study was to determine the structure of the repeat region in the normal and mutant SCA2 transcripts and to reveal the structural basis of its normal function and dysfunction. We show here that the properties of the CAA interruptions are major determinants of the CAG repeat folding in the normal SCA2 transcripts. We also show that the uninterrupted repeats in mutant transcripts form slippery hairpins, whose length is further reduced by the base pairing of the repeat portion with a specific flanking sequence. The structural organization of the repeat interruption systems present in other human transcripts, such as SCA1, TBP, FOXP2, and MAML2, are also discussed.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | |
Collapse
|
23
|
Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ. Structural Features of MicroRNA (miRNA) Precursors and Their Relevance to miRNA Biogenesis and Small Interfering RNA/Short Hairpin RNA Design. J Biol Chem 2004; 279:42230-9. [PMID: 15292246 DOI: 10.1074/jbc.m404931200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).
Collapse
Affiliation(s)
- Jacek Krol
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
24
|
Walker SC, Avis JM. A conserved element in the yeast RNase MRP RNA subunit can participate in a long-range base-pairing interaction. J Mol Biol 2004; 341:375-88. [PMID: 15276830 DOI: 10.1016/j.jmb.2004.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/26/2004] [Indexed: 11/24/2022]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses a putatively catalytic RNA subunit, structurally related to that of RNase P. A thorough structure analysis of Saccharomyces cerevisiae MRP RNA, entailing enzymatic and chemical probing, mutagenesis and thermal melting, identifies a previously unrecognised stem that occupies a position equivalent to the P7 stem of RNase P. Inclusion of this P7-like stem confers on yeast MRP RNA a greater degree of similarity to the core RNase P RNA structure than that described previously and better delimits domain 2, the proposed specificity domain. The additional stem is created by participation of a conserved sequence element (ymCR-II) in a long-range base-pairing interaction. There is potential for this base-pairing throughout the known yeast MRP RNA sequences. Formation of a P7-like stem is not required, however, for the pre-rRNA processing or essential function of RNase MRP. Mutants that can base-pair are nonetheless detrimental to RNase MRP function, indicating that the stem will form in vivo but that only the wild-type pairing is accommodated. Although the alternative MRP RNA structure described is clearly not part of the active RNase MRP enzyme, it would be the more stable structure in the absence of protein subunits and the probability that it represents a valid intermediate species in the process of yeast RNase MRP assembly is discussed.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biomolecular Sciences, UMIST, P.O. Box 88, Manchester, M60 1QD, UK
| | | |
Collapse
|
25
|
Sobczak K, Krzyzosiak WJ. Imperfect CAG repeats form diverse structures in SCA1 transcripts. J Biol Chem 2004; 279:41563-72. [PMID: 15292212 DOI: 10.1074/jbc.m405130200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expanded CAG repeat in the coding sequence of the spinocerebellar ataxia type 1 (SCA1) gene is responsible for SCA1, one of the hereditary human neurodegenerative diseases. In the normal SCA1 alleles usually 1-3 CAT triplets break the continuity of the CAG repeat tracts. Here we show what is the structural role of the CAU interruptions in the SCA1 transcripts. Depending on their number and localization within the repeat tract the interruptions either enlarge the terminal loop of the hairpin formed by the repeats, nucleate the internal loops in its stem structure, or force the repeats to fold into two smaller hairpins. Thus, the interruptions destabilize the CAG repeat hairpin, which is likely to decrease its ability to participate in the putative RNA pathogenesis mechanism driven by the long CAG repeat hairpins.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | |
Collapse
|
26
|
Serganov A, Ennifar E, Portier C, Ehresmann B, Ehresmann C. Do mRNA and rRNA binding sites of E.coli ribosomal protein S15 share common structural determinants? J Mol Biol 2002; 320:963-78. [PMID: 12126618 DOI: 10.1016/s0022-2836(02)00553-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Escherichia coli ribosomal protein S15 recognizes two RNA targets: a three-way junction in 16S rRNA and a pseudoknot structure on its own mRNA. Binding to mRNA occurs when S15 is expressed in excess over its rRNA target, resulting in an inhibition of translation start. The sole apparent similarity between the rRNA and mRNA targets is the presence of a G-U/G-C motif that contributes only modestly to rRNA binding but is essential for mRNA. To get more information on the structural determinants used by S15 to bind its mRNA target as compared to its rRNA site, we used site-directed mutagenesis, substitution by nucleotide analogs, footprinting experiments on both RNA and protein, and graphic modeling. The size of the mRNA-binding site could be reduced to 45 nucleotides, without loss of affinity. This short RNA preferentially folds into a pseudoknot, the formation of which depends on magnesium concentration and temperature. The size of the loop L2 that bridges the two stems of the pseudoknot through the minor groove could not be reduced below nine nucleotides. Then we showed that the pseudoknot recognizes the same side of S15 as 16S rRNA, although shielding a smaller surface area. It turned out that the G-U/G-C motif is recognized from the minor groove in both cases, and that the G-C pair is recognized in a very similar manner. However, the wobble G-U pair of the mRNA is not directly contacted by S15, as in rRNA, but is most likely involved in building a precise conformation of the RNA, essential for binding. Otherwise, unique specific features are utilized, such as the three-way junction in the case of 16S rRNA and the looped out A(-46) for the mRNA pseudoknot.
Collapse
Affiliation(s)
- Alexander Serganov
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 cedex, Strasbourg, France
| | | | | | | | | |
Collapse
|
27
|
Amarantos I, Zarkadis IK, Kalpaxis DL. The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions. Nucleic Acids Res 2002; 30:2832-43. [PMID: 12087167 PMCID: PMC117059 DOI: 10.1093/nar/gkf404] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A photoreactive analogue of spermine, N1-azidobenzamidino (ABA)-spermine, was covalently attached after irradiation to Escherichia coli 30S ribosomal subunits or naked 16S rRNA. By means of RNase H digestion and primer extension, the cross-linking sites of ABA-spermine in naked 16S rRNA were characterised and compared with those identified in 30S subunits. The 5' domain, the internal and terminal loops of helix H24, as well as the upper part of helix H44 in naked 16S rRNA, were found to be preferable binding sites for polyamines. Association of 16S rRNA with ribosomal proteins facilitated its interaction with photoprobe, except for 530 stem-loop nt, whose modification by ABA-spermine was abolished. Association of 30S with 50S subunits, poly(U) and AcPhe-tRNA (complex C) further altered the susceptibility of ABA-spermine cross-linking to 16S rRNA. Complex C, modified in its 30S subunit by ABA-spermine, reacted with puromycin similarly to non-photolabelled complex. On the contrary, poly(U)-programmed 70S ribosomes reconstituted from photolabelled 30S subunits and untreated 50S subunits bound AcPhe-tRNA more efficiently than untreated ribosomes, but were less able to recognise and reject near cognate aminoacyl-tRNA. The above can be interpreted in terms of conformational changes in 16S rRNA, induced by the incorporation of ABA-spermine.
Collapse
MESH Headings
- Azides/chemistry
- Azides/metabolism
- Azides/pharmacology
- Binding Sites/genetics
- Cross-Linking Reagents
- Kinetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/metabolism
- Ribonuclease H/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
- Spermine/analogs & derivatives
- Spermine/chemistry
- Spermine/metabolism
- Spermine/pharmacology
- Tritium
Collapse
Affiliation(s)
- Ioannis Amarantos
- Laboratory of Biochemistry and Laboratory of Biology, School of Medicine, University of Patras, GR-26500 Patras, Greece
| | | | | |
Collapse
|
28
|
Abstract
The BRCA1 gene is involved in sporadic breast and ovarian cancer mainly through reduced expression. BRCA1 mRNAs containing different leader sequences show different patterns of expression. In a normal mammary gland mRNA with a shorter leader sequence, 5'-UTRa is expressed only, whereas in breast cancer tissue mRNA with a longer leader, 5'-UTRb is expressed also. We show that the translation efficiency of transcripts containing 5'-UTRb is 10 times lower than those containing 5'-UTRa. The structures of 5'-UTRa and 5'-UTRb were determined by chemical and enzymatic probing aided by a new method developed for monitoring the number of co-existing stable conformers. Specific factors responsible for reduced translation of mRNA containing 5'-UTRb were determined using a variety of transcripts with mutations in the leader sequence. These factors include a stable secondary structure formed by truncated Alu element and upstream AUG codons. The novel mechanism by which BRCA1 may be involved in sporadic breast and ovarian cancer is proposed. It is based on the expression patterns of BRCA1 mRNAs and differences in their translatability. According to this mechanism the deregulation of the BRCA1 transcription in cancer, resulting in a higher proportion of translationally inhibited transcripts containing 5'-UTRb, contributes to the decrease in the BRCA1 protein observed in sporadic breast and ovarian cancers.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | |
Collapse
|
29
|
Trawick BN, Osiek TA, Bashkin JK. Enhancing sequence-specific cleavage of RNA within a duplex region: incorporation of 1,3-propanediol linkers into oligonucleotide conjugates of serinol-terpyridine. Bioconjug Chem 2001; 12:900-5. [PMID: 11716679 DOI: 10.1021/bc0100197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.
Collapse
Affiliation(s)
- B N Trawick
- Department of Chemistry, Washington University, Campus Box 1134, St. Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
30
|
Greenfield TJ, Franch T, Gerdes K, Weaver KE. Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol Microbiol 2001; 42:527-37. [PMID: 11703673 DOI: 10.1046/j.1365-2958.2001.02663.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The par stability determinant of the Enterococcus faecalis plasmid pAD1 is the first antisense RNA regulated post-segregational killing system (PSK) identified in a Gram-positive organism. Par encodes two small, convergently transcribed RNAs, designated RNAI and RNAII, which are the toxin and antitoxin of the par PSK system respectively. RNAI encodes an open reading frame for a 33 amino acid toxin called Fst. Expression of fst is regulated post-transcriptionally by RNAII. RNAII interacts with RNAI by a unique antisense RNA mechanism involving binding at the 5' and 3' ends of both RNAs. Par RNA interaction requires a complementary transcriptional terminator stem-loop and a set of direct repeat sequences, DRa and DRb, located at the 5' end of both RNAs. The secondary structures of RNAI, RNAII and the RNAI-RNAII complex were analysed by partial digestion with Pb(II) and ribonucleases. Probing data for RNAI and RNAII are consistent with previously reported computer generated models, and also confirm that complementary direct repeat and terminator sequences are involved in the formation of the RNAI-RNAII complex. Mutant par RNAs were used to show that the binding reaction occurs in at least two steps. The first step is the formation of an initial kissing interaction between the transcriptional terminator stem-loops of both RNAs. The subsequent step(s) involves an initial pairing of the complementary direct repeat sequences followed by complete hybridization of the 5' nucleotides to stabilize the RNAI-RNAII complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Binding, Competitive
- Enterococcus faecalis/genetics
- Gene Expression Regulation, Bacterial
- Molecular Sequence Data
- Mutation/genetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Open Reading Frames/genetics
- Plasmids/genetics
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Interfering
- Ribonucleases/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T J Greenfield
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
31
|
Hertweck M, Mueller MW. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4610-20. [PMID: 11531997 DOI: 10.1046/j.1432-1327.2001.02389.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The function of group II introns depends on positively charged divalent metal ions that stabilize the ribozyme structure and may be directly involved in catalysis. We investigated Mn2+- and Zn2+-induced site-specific RNA cleavage to identify metal ions that fit into binding pockets within the structurally conserved bI1 group II intron domains (DI-DVI), which might fulfill essential roles in intron function. Ten cleavage sites were identified in DI, two sites in DIII and two in DVI. All cleavage sites are located in the center or close to single-stranded and flexible RNA structures. Strand scissions mediated by Mn2+/Zn2+ are competed for by Mg2+, indicating the existence of Mg2+ binding pockets in physical proximity to the observed Mn2+-/Zn2+-induced cleavage positions. To distinguish between metal ions with a role in structure stabilization and those that play a more specific and critical role in the catalytic process of intron splicing, we combined structural and functional assays, comparing wild-type precursor and multiple splicing-deficient mutants. We identified six regions with binding pockets for Mg2+ ions presumably playing an important role in bI1 structure stabilization. Remarkably, assays with DI deletions and branch point mutants revealed the existence of one Mg2+ binding pocket near the branching A, which is involved in first-step catalysis. This pocket formation depends on precise interaction between the branching nucleotide and the 5' splice site, but does not require exon-binding site 1/intron binding site 1 interaction. This Mg2+ ion might support the correct placing of the branching A into the 'first-step active site'.
Collapse
Affiliation(s)
- M Hertweck
- Vienna BioCenter, Institute of Microbiology and Genetics, Austria
| | | |
Collapse
|
32
|
Sloma MS, Nygård O. Chemical accessibility of 18S rRNA in native ribosomal complexes: interaction sites of mRNA, tRNA and translation factors. Biol Chem 2001; 382:661-8. [PMID: 11405229 DOI: 10.1515/bc.2001.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During protein synthesis the ribosome interacts with ligands such as mRNA, tRNA and translation factors. We have studied the effect of ribosome-ligand interaction on the accessibility of 18S rRNA for single strand-specific modification in ribosomal complexes that have been assembled in vivo, i. e. native polysomes. A comparison of the modification patterns derived from programmed and non-programmed ribosomes showed that bases in the 630- and 1060-loops (530- and 790-loops in E. coli) together with two nucleotides in helices 33 and 34 were protected from chemical modification. The majority of the protected sites were homologous to sites previously suggested to be involved in mRNA and/or tRNA binding in prokaryotes and eukaryotes, implying that the interaction sites for these ligands are similar, if not identical, in naturally occurring programmed ribosomes and in in vitro assembled ribosomal complexes. Additional differences between programmed and non-programmed ribosomes were found in hairpin 8. The bases in helix 8 showed increased exposure to chemical modification in the programmed ribosomes. In addition, structural differences in helices 36 and 37 were observed between native 80S run-off ribosomes and 80S ribosomes assembled from isolated 40S and 60S subunits.
Collapse
Affiliation(s)
- M S Sloma
- Department of Zoological Cell Biology, Arrhenius Laboratories, University of Stockholm, Sweden
| | | |
Collapse
|
33
|
Agrawal S, Gupta D, Panda SK. The 3' end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 2001; 282:87-101. [PMID: 11259193 DOI: 10.1006/viro.2000.0819] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis E virus (HEV) is the major cause of acute epidemic and sporadic hepatitis in the developing world. It is a positive-strand RNA virus with a genome length of about 7.2 kb. The replication mechanism of this virus is virtually unexplored. Identification of the regulatory elements involved in initiation of replication may help in designing specific inhibitors for therapy. In the positive-stranded RNA viruses the initiation of replication requires interaction of the 3' end of genome with its RNA-dependent RNA polymerase (RdRp) and possibly host-derived cofactors for synthesis of the minus-strand replicative intermediate. Secondary structure prediction of the conserved 3' end of the infectious HEV genome was carried out to identify possible stem-loop structures necessary for RNA-protein interaction and the model was confirmed by structure probing experiments. Electrophoretic mobility-shift assays showed specific binding of purified and refolded recombinant HEV RdRp protein to the 3' end of its RNA genome containing the poly(A) stretch. Mutations at the 3' end, in which the stem-loop structures were partially or completely destroyed or recreated revealed that the two stem-loop structures SL1 and SL2 at the 3' end and the poly(A) stretch are necessary for this binding. The interacting nucleotides in such an interaction were further identified by generating footprints of the complex by Pb(II)-induced hydrolysis. This specific binding of viral RdRp to the 3' end of HEV RNA directs the synthesis of complementary-strand RNA and thus such a binding domain might assume the role of a possible cis-acting element as a potential site for the initiation of replication.
Collapse
Affiliation(s)
- S Agrawal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | |
Collapse
|
34
|
Larsson SL, Nygård O. Proposed secondary structure of eukaryote specific expansion segment 15 in 28S rRNA from mice, rats, and rabbits. Biochemistry 2001; 40:3222-31. [PMID: 11258939 DOI: 10.1021/bi002286q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expansion segments in eukaryotic ribosomal RNAs are additional RNA sequences not found in the RNA core common to both prokaryotes and eukaryotes. These regions show large species-dependent variations in sequence and size. This makes it difficult to create secondary structure models for the expansion segments exclusively based on phylogenetic sequence comparison. Here we have used a combination of experimental data and computational methods to generate secondary structure models for expansion segment 15 in 28S rRNA in mice, rats, and rabbits. The experimental data were collected using the structure sensitive reagents DMS, CMCT, kethoxal, micrococcal nuclease, RNase T(1), RNase CL3, RNase V(1), and lead(II) acetate. ES15 was folded with the computer program RNAStructure 3.5 using modification data and phylogenetic similarities between different ES15 sequences. This program uses energy minimization to find the most stable secondary structure of an RNA sequence. The presented secondary structure models include several common structural motifs, but they also have characteristics unique to each organism. Overall, the secondary structure models showed indications of an energetically stable but dynamic structure, easily accessible from the solution by the modification reagents, suggesting that the expansion segment is located on the ribosomal surface.
Collapse
Affiliation(s)
- S L Larsson
- Natural Science Section, Södertörn University College, S-141 04 Huddinge, Sweden, and Department of Zoological Cell Biology, Arrhenius Laboratories E5, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
35
|
Affiliation(s)
- C Brunel
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
36
|
Wallace ST, Schroeder R. In vitro selection and characterization of RNAs with high affinity to antibiotics. Methods Enzymol 2001; 318:214-29. [PMID: 10889990 DOI: 10.1016/s0076-6879(00)18054-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
37
|
Jaeger L, Westhof E, Leontis NB. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 2001; 29:455-63. [PMID: 11139616 PMCID: PMC29663 DOI: 10.1093/nar/29.2.455] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Structural information on complex biological RNA molecules can be exploited to design tectoRNAs or artificial modular RNA units that can self-assemble through tertiary interactions thereby forming nanoscale RNA objects. The selective interactions of hairpin tetraloops with their receptors can be used to mediate tectoRNA assembly. Here we report on the modulation of the specificity and the strength of tectoRNA assembly (in the nanomolar to micromolar range) by variation of the length of the RNA subunits, the nature of their interacting motifs and the degree of flexibility of linker regions incorporated into the molecules. The association is also dependent on the concentration of magnesium. Monitoring of tectoRNA assembly by lead(II) cleavage protection indicates that some degree of structural flexibility is required for optimal binding. With tectoRNAs one can compare the binding affinities of different tertiary motifs and quantify the strength of individual interactions. Furthermore, in analogy to the synthons used in organic chemistry to synthesize more complex organic compounds, tectoRNAs form the basic assembly units for constructing complex RNA structures on the nanometer scale. Thus, tectoRNA provides a means for constructing molecular scaffoldings that organize functional modules in three-dimensional space for a wide range of applications.
Collapse
Affiliation(s)
- L Jaeger
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | | | | |
Collapse
|
38
|
|
39
|
Polacek N, Patzke S, Nierhaus KH, Barta A. Periodic Conformational Changes in rRNA. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Matysiak M, Wrzesinski J, Ciesiołka J. Sequential folding of the genomic ribozyme of the hepatitis delta virus: structural analysis of RNA transcription intermediates. J Mol Biol 1999; 291:283-94. [PMID: 10438621 DOI: 10.1006/jmbi.1999.2955] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The structures of the model oligoribonucleotides that mimic the consecutive stages in the transcription of genomic HDV ribozyme have been analyzed by the Pb(2+)-induced cleavage method, partial digestion with specific nucleases and chemical probing. In the transcription intermediates, the P1 and P4 helical segments are found to be present in the final folded forms in which they exist in the full-length transcript. However, the region corresponding to the central hairpin forms another thermodynamically stable hairpin structure. Its correct folding requires the presence of a ribozyme 3'-terminal sequence and the formation of helix P2. This confirms the ribozyme structure of the pseudoknot type and points to the crucial role of helix P2 in its overall folding. Moreover, we show that the J4/2 region can be specifically cleaved in the presence of selected divalent metal ions in the full-length transcript, but not in a shorter one lacking six 3'-terminal nucleotides, which cannot form the pseudoknotted structure. Thus, a particular RNA conformation around that cleavage site is required for specific hydrolysis, and the J4/2 region seems to be involved in the formation of a general metal ion binding site. Recently, it has been proposed that, in the antigenomic ribozyme, a four nucleotide sequence within the J1/2 region may contribute to the folding pathway, being part of a mechanism responsible for controlling ribozyme cleavage activity. Our study shows that in the genomic ribozyme the central hairpin region may contribute to a similar mechanism, providing a barrier to the formation of an active structure in the ribozyme folding pathway.
Collapse
Affiliation(s)
- M Matysiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań, 61-704, Poland
| | | | | |
Collapse
|
41
|
Beck J, Nassal M. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in the RNA template. Mol Cell Biol 1998; 18:6265-72. [PMID: 9774643 PMCID: PMC109213 DOI: 10.1128/mcb.18.11.6265] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DNA genome of a hepatitis B virus is generated by reverse transcription of the RNA pregenome. Replication initiation does not involve a nucleic acid primer; instead, the hepadnavirus P protein binds to the structured RNA encapsidation signal epsilon, from which it copies a short DNA primer that becomes covalently linked to the enzyme. Using in vitro-translated duck hepatitis B virus (DHBV) P protein, we probed the secondary structure of the protein-bound DHBV epsilon RNA (Depsilon) and observed a marked conformational change compared to free Depsilon RNA. Several initiation-competent mutant RNAs with a different free-state structure were similarly altered, whereas a binding-competent but initiation-deficient variant was not, indicating the importance of the rearrangement for replication initiation and suggesting a mechanistic coupling to encapsidation.
Collapse
Affiliation(s)
- J Beck
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | |
Collapse
|
42
|
Abstract
BACKGROUND Ribosomal RNAs contain many modified nucleotides. The functions of these nucleotides are poorly understood and few of them are strongly conserved. The final stem loop in 16S-like rRNAs is an exception in both regards. In both prokaryotes and eukaryotes, the tetranucleotide loop that caps the 3'-terminal stem contains two N6, N6-dimethyladenosine residues. The sequence and pattern of methylation are conserved within the loop, and there is evidence that these methylated nucleotides play an important role in subunit association and the initiation of protein synthesis. Because of the integral role that helix 45 plays in ribosome function, it is important to know what consequences these methylated nucleotides have on its structure. RESULTS We have solved the solution structure of a 14-nucleotide analog of the terminal stem loop of bacterial 16S rRNA, which contains N2-methylguanosine as well as two N6,N6-dimethyladenosines. CONCLUSIONS The methylation of the 16S rRNA stem loop completely alters its conformation, which would otherwise be a GNRA tetraloop. It is likely that the conformation of this loop is crucial for its function, having implications for its interaction with ribosomal subunits and its role in the initiation of protein synthesis.
Collapse
Affiliation(s)
- J P Rife
- Department of Chemistry, Yale University New Haven, CT 06520, USA
| | | |
Collapse
|
43
|
Fossé P, Mougel M, Keith G, Westhof E, Ehresmann B, Ehresmann C. Modified nucleotides of tRNAPro restrict interactions in the binary primer/template complex of M-MuLV. J Mol Biol 1998; 275:731-46. [PMID: 9480765 DOI: 10.1006/jmbi.1997.1487] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In all retroviruses, reverse transcription is primed by a cellular tRNA, which is base-paired through its 3'-terminal 18 nucleotides to a complementary sequence on the viral RNA genome termed the primer binding site (PBS). Evidence for specific primer-template interactions in addition to this standard interaction has recently been demonstrated for several retroviruses. Here, we used chemical and enzymatic probing to investigate the interactions between Moloney murine leukemia virus (M-MuLV) RNA and its natural primer tRNAPro. The existence of extended interactions was further tested by comparing the viral RNA/tRNAPro complex with simplified complexes in which viral RNA or tRNA were reduced to the 18 nt of the PBS or to the complementary tRNA sequence. These data, combined with computer modeling provide important clues on the secondary structure and three-dimensional folding of the M-MuLV RNA/tRNAPro complex. In contrast with other retroviruses, we found that the interaction between tRNAPro and the M-MuLV RNA template is restricted to the standard PBS interaction. In this binary complex, the viral RNA is highly constrained and the rest of tRNAPro is rearranged, with the exception of the anticodon arm, leading to a very compact structure. Unexpectedly, when a synthetic tRNAPro lacking the post-transcriptional modifications is substituted for the natural tRNAPro primer, the interactions between the primer and the viral RNA are extended. Hence, our data suggest that the post-transcriptional modifications of natural tRNAPro prevent additional contacts between tRNAPro and the U5 region of M-MuLV RNA.
Collapse
Affiliation(s)
- P Fossé
- Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, Strasbourg cedex, 67084, France
| | | | | | | | | | | |
Collapse
|
44
|
Ciesiołka J, Michałowski D, Wrzesinski J, Krajewski J, Krzyzosiak WJ. Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J Mol Biol 1998; 275:211-20. [PMID: 9466904 DOI: 10.1006/jmbi.1997.1462] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have characterized the susceptibility of various RNA bulges, loops and other single-stranded sequences to hydrolysis promoted by Pb2+. The reactivity of bulges depends primarily on the structural context of the flanking base-pairs and the effect of nucleotide present at the 5' side of the bulge is particularly strong. The efficiency of stacking interactions between the bulged residue and its neighbors seems to determine cleavage specificity and efficiency. Hydrolysis of two- and three-nucleotide bulges depends only slightly on their nucleotide composition. In the case of terminal loops, the efficiency of their hydrolysis usually increases with the loop size and strongly depends on its nucleotide composition. Stable tetraloops UUCG, CUUG and GCAA are resistant to hydrolysis, while in some other loops of the GNRA family a single, weak cleavage occurs, suggesting the existence of structural subclasses within the family. A very efficient, specific hydrolysis of a phosphodiester bond in the single-stranded region adjacent to the stem in oligomer 12 resembles highly specific cleavages of some tRNA molecules. The reaction occurs in the presence of Pb2+, but not in the presence of several other metal ions. The Pb(2+)-cleavable RNA domain may be considered another example of leadzyme. The results of Pb(2+)-induced hydrolysis in model RNA oligomers should be useful in interpretation of cleavage patterns of much larger, naturally occurring RNA molecules.
Collapse
Affiliation(s)
- J Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | |
Collapse
|
45
|
Napierała M, Krzyzosiak WJ. CUG repeats present in myotonin kinase RNA form metastable "slippery" hairpins. J Biol Chem 1997; 272:31079-85. [PMID: 9388259 DOI: 10.1074/jbc.272.49.31079] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We show that CUG repeats form "slippery" hairpins in their natural sequence context of the myotonin kinase gene transcript. This novel type of RNA structure is characterized by strong S1 and T1 nuclease and lead cleavages in the terminal loop and by mild lead cleavages in the hairpin stem. The latter effect indicates a relaxed metastable structure of the stem. (CUG)5 repeats do not form any detectable secondary structure, whereas hairpins of increasing stability are formed by (CUG)11, (CUG)21, and (CUG)49. The potential role of the RNA hairpin structure in the pathogenesis of myotonic dystrophy is discussed.
Collapse
Affiliation(s)
- M Napierała
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | |
Collapse
|
46
|
Spickler C, Brunelle MN, Brakier-Gingras L. Streptomycin binds to the decoding center of 16 S ribosomal RNA. J Mol Biol 1997; 273:586-99. [PMID: 9356248 DOI: 10.1006/jmbi.1997.1323] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptomycin, an error-inducing aminoglycoside antibiotic, binds to a single site on the small ribosomal subunit of bacteria, but this site has not yet been defined precisely. Here, we demonstrate that streptomycin binds to E. coli 16 S rRNA in the absence of ribosomal proteins, and protects a set of bases in the decoding region against dimethyl sulfate attack. The binding studies were performed in a high ionic strength buffer containing 20 mM Mg2+. The pattern of protection in the decoding region was similar to that observed when streptomycin binds to the 30 S subunit. However, streptomycin also protects the 915 region of 16 S rRNA within the 30 S subunit, whereas it did not protect the 915 region of the naked 16 S rRNA. The interaction of streptomycin with 16 S rRNA was further defined by using two fragments that correspond to the 3' minor domain of 16 S rRNA and to the decoding analog, a portion of this domain encompassing the decoding center. In the presence of streptomycin, the pattern of protection against dimethyl sulfate attack for the two fragments was similar to that seen with the full-length 16 S rRNA. This indicates that the 3' minor domain as well as the decoding analog contain the recognition signals for the binding of streptomycin. However, streptomycin could not bind to the decoding analog in the absence of Mg2+. This contrasts with neomycin, another error-inducing aminoglycoside antibiotic, that binds to the decoding analog in the absence of Mg2+, but not at 20 mM Mg2+. Our results suggest that both neomycin and streptomycin interact with the decoding center, but recognize alternative conformations of this region.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Binding Sites
- Dose-Response Relationship, Drug
- Escherichia coli/metabolism
- Magnesium/pharmacology
- Molecular Sequence Data
- Mutagens/pharmacology
- Neomycin/metabolism
- Neomycin/pharmacology
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/drug effects
- RNA, Ribosomal, 16S/metabolism
- Streptomycin/metabolism
- Streptomycin/pharmacology
- Sulfuric Acid Esters/pharmacology
Collapse
Affiliation(s)
- C Spickler
- Département de Biochimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | | | | |
Collapse
|
47
|
Eckardt S, Romby P, Sczakiel G. Implications of RNA structure on the annealing of a potent antisense RNA directed against the human immunodeficiency virus type 1. Biochemistry 1997; 36:12711-21. [PMID: 9335527 DOI: 10.1021/bi9707234] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antisense RNA-mediated regulation in bacterial systems is related to the kinetics of RNA-RNA annealing in vitro. Here, we investigated the secondary structure of alphaY69, an effective HIV-directed antisense RNA in human cells. Purified RNA preparations contain a single conformer. The global structure was identified by a cleavage experiment under native conditions using a short complementary oligonucleotide and RNase H. Structural analyses indicate a three-domain structure of alphaY69 consisting of two stem-loop elements connected by a seven-nucleotide single-stranded hinge region. Kinetic data suggest that the formation of base pairs between a CGC triplet of alphaY69 and its target RNA is essential for fast annealing. The complementary sequence stretch of the target folds into a high-energy secondary structure. The relationship between modifications in structural elements of alphaY69 and the annealing kinetics suggested that rate-limiting steps of the annealing involve a single site of alphaY69 and do not involve its 5' or 3'-end. Further, the data indicate that both initial base-specific interactions and duplex formation are dependent on the CGC triplet of the central region of alphaY69. This mechanism represents a specific and efficient way of RNA-RNA annealing that is initiated by the interaction of unstructured RNA regions.
Collapse
Affiliation(s)
- S Eckardt
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
48
|
Mueller F, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J Mol Biol 1997; 271:524-44. [PMID: 9281424 DOI: 10.1006/jmbi.1997.1210] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently published models of the Escherichia coli 70 S ribosome at 20 A resolution, obtained by cryo-electron microscopy (cryo-EM) combined with computerized image processing techniques, exhibit two features that are directly relevant to the in situ three-dimensional folding of the rRNA molecules. First, at this level of resolution many fine structural details are visible, a number of them having dimensions comparable to those of nucleic acid helices. Second, in reconstructions of ribosomes in the pre- and post-translocational states, density can be seen that corresponds directly to the A and P site tRNAs, and to the P and E site tRNAs, respectively, thus enabling the decoding region on the 30 S subunit to be located rather precisely. Accordingly, we have refined our previous model for the 16 S rRNA, based on biochemical evidence, by fitting it to the cryo-EM contour of ribosomes carrying A and P site tRNAs. For this purpose, the most immediately relevant evidence consists of new site-directed cross-linking data in the decoding region, which define sets of contacts between the 16 S rRNA and mRNA, or between 16 S rRNA and tRNA at the A, P and E sites; these contact sites can be correlated directly with the tRNA positions in the EM structure. The model is extended to other parts of the 16 S molecule by fitting individual elements of the well-established secondary structure of the 16 S rRNA into the appropriate fine structural elements of the EM contour, at the same time taking into account other data used in the previous model, such as intra-RNA cross-links within the 16 S rRNA itself. The large body of available RNA-protein cross-linking and foot-printing data is also considered in the model, in order to correlate the rRNA folding with the known distribution of the 30 S ribosomal proteins as determined by neutron scattering and immuno-electron microscopy. The great majority of the biochemical data points involve single-stranded regions of the rRNA, and therefore, in contrast to most previous models, the single-stranded regions are included in our structure, with the help of a specially developed modelling programme, ERNA-3D. This allows the various biochemical data sets to be displayed directly, in this and in the accompanying papers, on diagrams of appropriate parts of the rRNA structure within the cryo-EM contour.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | |
Collapse
|
49
|
Larsen B, Gesteland RF, Atkins JF. Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%. J Mol Biol 1997; 271:47-60. [PMID: 9300054 PMCID: PMC7126992 DOI: 10.1006/jmbi.1997.1162] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three elements are crucial for the programmed frameshifting in translation of dnaX mRNA: a Shine-Dalgarno (SD)-like sequence, a double-shift site, and a 3' structure. The conformation of the mRNA containing these three elements was investigated using chemical and enzymatic probes. The probing data show that the structure is a specific stem-loop. The bottom half of the stem is more stable than the top half of the stem. The function of the stem-loop was further investigated by mutagenic analysis. Reducing the stability of the bottom half of the stem strongly effects frameshifting levels, whereas similar changes in the top half are not as effective. Stabilizing the top half of the stem gives increased frameshifting beyond the WT efficiency. The identity of the primary RNA sequence in the stem-loop is unimportant, provided that the overall structure is maintained. The calculated stabilities of the variant stem-loop structures correlate with frameshifting efficiency. The SD-interaction and the stem-loop element act independently to increase frameshifting in dnaX.
Collapse
Key Words
- dnax
- frameshifting
- recoding
- probing
- stem-loop structure
- sd, shine-dalgarno
- dms, dimethylsulfate
- cmct, 1-cyclohexyl-3-(morpholino-ethyl) carbodiimide metho-p-toluenesulfonate
- wt, wild-type
- ibv, infectious bronchitis virus
- mmtv, mouse mammary tumor virus
- hiv, human immunodeficiency virus
- pcr, polymerase chain reaction
- 2d, two-dimensional
- fiv, feline immunodeficiency virus
- htlv-ii, human t-cell leukemia virus type ii
- srv-1, simian retrovirus type 1
Collapse
Affiliation(s)
- B Larsen
- Department of Human Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
50
|
Paillart JC, Westhof E, Ehresmann C, Ehresmann B, Marquet R. Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. J Mol Biol 1997; 270:36-49. [PMID: 9231899 DOI: 10.1006/jmbi.1997.1096] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Retroviruses encapsidate two molecules of genomic RNA that are noncovalently linked close to their 5' ends in a region called the dimer linkage structure (DLS). The dimerization initiation site (DIS) of human immunodeficiency virus type 1 (HIV-1) constitutes the essential part of the DLS in vitro and is crucial for efficient HIV-1 replication in cell culture. We previously identified the DIS as a hairpin structure, located upstream of the major splice donor site, that contains in the loop a six-nucleotide self-complementary sequence preceded and followed by two and one purines, respectively. Two RNA monomers form a kissing loop complex via intermolecular interactions of the six nucleotide self-complementary sequence. Here, we introduced compensatory mutations in the self-complementary sequence and/or a mutation in the flanking purines. We determined the kinetics of dimerization, the thermal stabilities and the apparent equilibrium dissociation constants of wild-type and mutant dimers and used chemical probing to obtain structural information. Our results demonstrate the importance of the 5'-flanking purine and of the two central bases of the self-complementary sequence in the dimerization process. The experimental data are rationalized by triple interactions between these residues in the deep groove of the kissing helix and are incorporated into a three-dimensional model of the kissing loop dimer. In addition, chemical probing and molecular modeling favor the existence of a non-canonical interaction between the conserved adenine residues at the first and last positions in the DIS loop. Furthermore, we show that destabilization of the kissing loop complex at the DIS can be compensated by interactions involving sequences located downstream of the splice donor site of the HIV-1 genomic RNA.
Collapse
Affiliation(s)
- J C Paillart
- Unité Propre de Recherche du CNRS no 9002, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|