1
|
Tang C, Jiang X, Liu C, Washburn BK, Sathe SK, Rao Q. Effect of temperature on structural configuration and immunoreactivity of pH-stressed soybean (Glycine max) agglutinin. Food Chem 2024; 442:138376. [PMID: 38219572 DOI: 10.1016/j.foodchem.2024.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Soybean agglutinin (SBA) was purified using ammonium sulfate precipitation and liquid chromatography. Purified SBA was used to produce monoclonal antibodies through hybridoma technology. SBA secondary structure was studied using circular dichroism. pH-stressed (pHs 3.0, 7.2, 8.5, and 9.6) SBA physical properties (particle size, ζ-potential, and aggregation temperature) were investigated. Gel electrophoresis (non-native and native) was used to study heat-induced structural configuration changes in SBA. The effect of pH and temperature on the immunoreactivity of SBA was analyzed using enzyme-linked immunosorbent assay and immunoblots probed with two anti-SBA monoclonal antibodies with either linear or conformational epitopes. The hemagglutinating activity of heated SBA was measured by hemagglutination assay. Our results indicated that SBA had the least thermostability at pH 3.0 and the highest at pH 8.5. Temperature-induced structural configuration change on pH-stressed SBA led to immunoreactivity change. Heat-induced (70 and 80 °C) soluble SBA aggregation was proportionally related to hemagglutinating activity reduction.
Collapse
Affiliation(s)
- Chunya Tang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| | - Xingyi Jiang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA.
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Shridhar K Sathe
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Micallef J, Baker AN, Richards SJ, Soutar DE, Georgiou PG, Walker M, Gibson MI. Polymer-tethered glyconanoparticle colourimetric biosensors for lectin binding: structural and experimental parameters to ensure a robust output. RSC Adv 2022; 12:33080-33090. [PMID: 36425181 PMCID: PMC9672907 DOI: 10.1039/d2ra06265h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Glycan-lectin interactions play essential roles in biology; as the site of attachment for pathogens, cell-cell communication, and as crucial players in the immune system. Identifying if a new glycan (natural or unnatural) binds a protein partner, or if a new protein (or mutant) binds a glycan remains a non-trivial problem, with few accessible or low-cost tools available. Micro-arrays allow for the interrogation of 100's of glycans but are not widely available in individual laboratories. Biophysical techniques such as isothermal titration calorimetry, surface plasmon resonance spectrometry, biolayer interferometry and nuclear magnetic resonance spectroscopy all provide detailed understanding of glycan binding but are relatively expensive. Glycosylated plasmonic nanoparticles based on gold cores with polymeric tethers have emerged as biosensors to detect glycan-protein binding, based on colourimetric (red to blue) outputs which can be easily interpreted by a simple UV-visible spectrometer or by eye. Despite the large number of reports there are no standard protocols for each system or recommended start points, to allow a new user to deploy this technology. Here we explore the key parameters of nanoparticle size, polymeric tether length and gold concentration to provide some guidelines for how polymer-tethered glycosylated gold nanoparticles can be used to probe a new glycan/protein interactions, with minimal optimisation barriers. This work aimed to remove the need to explore chemical and nanoparticle space and hence remove a barrier for other users when deploying this system. We show that the concentration of the gold core is crucial to balance strong responses versus false positives and recommend a gold core size and polymer tether length which balances sufficient colloidal stability and output. Whilst subtle differences between glycans/lectins will impact the outcomes, these parameters should enable a lab user to quickly evaluate binding using minimal quantities of the glycan and lectin, to select candidates for further study.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Walker
- Department of Physics, University of Warwick CV4 7AL UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| |
Collapse
|
3
|
Lundstrøm J, Korhonen E, Lisacek F, Bojar D. LectinOracle: A Generalizable Deep Learning Model for Lectin-Glycan Binding Prediction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103807. [PMID: 34862760 PMCID: PMC8728848 DOI: 10.1002/advs.202103807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Indexed: 05/07/2023]
Abstract
Ranging from bacterial cell adhesion over viral cell entry to human innate immunity, glycan-binding proteins or lectins are abound in nature. Widely used as staining and characterization reagents in cell biology and crucial for understanding the interactions in biological systems, lectins are a focal point of study in glycobiology. Yet the sheer breadth and depth of specificity for diverse oligosaccharide motifs has made studying lectins a largely piecemeal approach, with few options to generalize. Here, LectinOracle, a model combining transformer-based representations for proteins and graph convolutional neural networks for glycans to predict their interaction, is presented. Using a curated data set of 564,647 unique protein-glycan interactions, it is shown that LectinOracle predictions agree with literature-annotated specificities for a wide range of lectins. Using a range of specialized glycan arrays, it is shown that LectinOracle predictions generalize to new glycans and lectins, with qualitative and quantitative agreement with experimental data. It is further demonstrated that LectinOracle can be used to improve lectin classification, accelerate lectin directed evolution, predict epidemiological outcomes in the context of influenza virus, and analyze whole lectomes in host-microbe interactions. It is envisioned that the herein presented platform will advance both the study of lectins and their role in (glyco)biology.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburg41390Sweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburg41390Sweden
| | - Emma Korhonen
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburg41390Sweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburg41390Sweden
| | - Frédérique Lisacek
- Swiss Institute of BioinformaticsGeneva1227Switzerland
- Computer Science DepartmentUniGeGeneva1227Switzerland
- Section of BiologyUniGeGeneva1205Switzerland
| | - Daniel Bojar
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburg41390Sweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburg41390Sweden
| |
Collapse
|
4
|
Li T, Wolfert MA, Wei N, Huizinga R, Jacobs BC, Boons GJ. Chemoenzymatic Synthesis of Campylobacter jejuni Lipo-oligosaccharide Core Domains to Examine Guillain–Barré Syndrome Serum Antibody Specificities. J Am Chem Soc 2020; 142:19611-19621. [DOI: 10.1021/jacs.0c08583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
| | | | | | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Hall AR, Blakeman JT, Eissa AM, Chapman P, Morales-García AL, Stennett L, Martin O, Giraud E, Dockrell DH, Cameron NR, Wiese M, Yakob L, Rogers ME, Geoghegan M. Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chem Sci 2020. [DOI: 10.1039/d0sc03298k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Force spectroscopy was used to measure the adhesion of Leishmania to synthetic mimics of galectins on the sand fly midgut.
Collapse
|
6
|
ELLSA based profiling of surface glycosylation in microorganisms reveals that ß-glucan rich yeasts' surfaces are selectively recognized with recombinant banana lectin. Glycoconj J 2019; 37:95-105. [PMID: 31823247 DOI: 10.1007/s10719-019-09898-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 01/14/2023]
Abstract
The surface of microorganisms is covered with polysaccharide structures which are in immediate contact with receptor structures on host's cells and antibodies. The interaction between microorganisms and their host is dependent on surface glycosylation and in this study we have tested the interaction of plant lectins with different microorganisms. Enzyme-linked lectin sorbent assay - ELLSA was used to test the binding of recombinant Musa acuminata lectin - BL to 27 selected microorganisms and 7 other lectins were used for comparison: Soy bean agglutinin - SBA, Lens culinaris lectin - LCA, Wheat germ agglutinin - WGA, RCA120 - Ricinus communis agglutinin, Con A - from Canavalia ensiformis, Sambucus nigra agglutinin - SNA I and Maackia amurensis agglutinin - MAA. The goal was to define the microorganisms' surface glycosylation by means of interaction with the selected plant lectins and to make a comparison with BL. Among the tested lectins most selective binding was observed for RCA120 which preferentially bound Lactobacillus casei DG. Recombinant banana lectin showed specific binding to all of the tested fungal species. The binding of BL to Candida albicans was further tested with fluorescence microscopy and flow cytometry and it was concluded that this lectin can differentiate ß-glucan rich surfaces. The binding of BL to S. boulardii could be inhibited with ß-glucan from yeast with IC50 1.81 μg mL-1 and to P. roqueforti with 1.10 μg mL-1. This unique specificity of BL could be exploited for screening purposes and potentially for the detection of ß-glucan in solutions.
Collapse
|
7
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
8
|
Georgiou PG, Baker AN, Richards SJ, Laezza A, Walker M, Gibson MI. "Tuning aggregative versus non-aggregative lectin binding with glycosylated nanoparticles by the nature of the polymer ligand". J Mater Chem B 2019; 8:136-145. [PMID: 31778137 DOI: 10.1039/c9tb02004g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycan-lectin interactions drive a diverse range of biological signaling and recognition processes. The display of glycans in multivalent format enables their intrinsically weak binding affinity to lectins to be overcome by the cluster glycoside effect, which results in a non-linear increase in binding affinity. As many lectins have multiple binding sites, upon interaction with glycosylated nanomaterials either aggregation or surface binding without aggregation can occur. Depending on the application area, either one of these responses are desirable (or undesirable) but methods to tune the aggregation state, independently from the overall extent/affinity of binding are currently missing. Herein, we use gold nanoparticles decorated with galactose-terminated polymer ligands, obtained by photo-initiated RAFT polymerization to ensure high end-group fidelity, to show the dramatic impact on agglutination behaviour due to the chemistry of the polymer linker. Poly(N-hydroxyethyl acrylamide) (PHEA)-coated gold nanoparticles, a polymer widely used as a non-ionic stabilizer, showed preference for aggregation with lectins compared to poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)-coated nanoparticles which retained colloidal stability, across a wide range of polymer lengths and particle core sizes. Using biolayer interferometry, it was observed that both coatings gave rise to similar binding affinity and hence provided conclusive evidence that aggregation rate alone cannot be used to measure affinity between nanoparticle systems with different stabilizing linkers. This is significant, as turbidimetry is widely used to demonstrate glycomaterial activity, although this work shows the most aggregating may not be the most avid, when comparing different polymer backbones/coating. Overall, our findings underline the potential of PHPMA as the coating of choice for applications where aggregation upon lectin binding would be problematic, such as in vivo imaging or drug delivery.
Collapse
Affiliation(s)
- Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Antonio Laezza
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
9
|
Baschung Y, Lupu L, Moise A, Glocker M, Rawer S, Lazarev A, Przybylski M. Epitope Ligand Binding Sites of Blood Group Oligosaccharides in Lectins Revealed by Pressure-Assisted Proteolytic Excision Affinity Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1881-1891. [PMID: 29943080 DOI: 10.1007/s13361-018-1998-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Affinity mass spectrometry using selective proteolytic excision and extraction combined with MALDI and ESI mass spectrometry has been applied to the identification of epitope binding sites of lactose, GalNac, and blood group oligosaccharides in two blood group-specific lectins, human galectin-3 and glycine max lectin. The epitope peptides identified comprise all essential amino acids involved in carbohydrate recognition, in complete agreement with available X-ray structures. Tryptic and chymotryptic digestion of lectins for proteolytic extraction/excision-MS was substantially improved by pressure-enhanced digestion using an automated Barocycler procedure (40 kpsi). Both previously established immobilization on affinity microcolumns using divinyl sulfone and coupling of a specific peptide glycoprobe to the gold surface of a biosensor chip were successfully employed for proteolytic excision and extraction of carbohydrate epitopes and affinity measurements. The identified epitope peptides could be differentiated according to the carbohydrate employed, thus demonstrating the specificity of the mass spectrometric approach. The specificities of the epitope ligands for individual carbohydrates were further ascertained by affinity studies using synthetic peptide ligands with immobilized carbohydrates. Binding affinities of the synthetic ligand peptides to lactose, in comparison to the intact full-length lectins, were determined by surface acoustic wave (SAW) biosensor analysis and provided micromolar KD values for the intact lectins, in agreement with results of previous ITC and SPR studies. Binding affinities of the epitope peptides were approximately two orders of magnitude lower, consistent with their smaller size and assembled arrangement in the carbohydrate recognition domains. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yannick Baschung
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße, 29, 65428, Rüsselsheim am Main, Germany
- Department of Immunology, University of Rostock, Rostock, Germany
| | - Loredana Lupu
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße, 29, 65428, Rüsselsheim am Main, Germany
| | - Adrian Moise
- Department of Chemistry and Steinbeis Center for Biopolymer Analysis and Biomedical Mass Spectrometry, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Glocker
- Department of Immunology, University of Rostock, Rostock, Germany
| | - Stephan Rawer
- Thermofisher Scientific, Frankfurter Straße 134, Darmstadt, Germany
| | | | - Michael Przybylski
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße, 29, 65428, Rüsselsheim am Main, Germany.
- Department of Chemistry and Steinbeis Center for Biopolymer Analysis and Biomedical Mass Spectrometry, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
10
|
Sugawara K, Kadoya T, Kuramitz H. Magnetic beads modified with an electron-transfer carbohydrate-mimetic peptide for sensing of a galactose-dependent protein. Anal Chim Acta 2018; 1001:158-167. [PMID: 29291799 DOI: 10.1016/j.aca.2017.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022]
Abstract
For use in the voltammetric sensing of galactose-dependent proteins, we modified magnetic beads with a peptide that had both electroactive- and molecular recognition properties. The peptide consisted of a YXY sequence and behaved as an electron-transfer carbohydrate-mimetic peptide that would combine with proteins. With this tool, the protein could be detected via a label-free system. We synthesized several penta- and hexa-peptides with a cysteine residue on the C-terminals to examine the properties of peptides. These peptides contained amino acid residues (X) of alanine, serine, or tyrosine. The peptides were immobilized on magnetic beads via N-(8-maleimidocapryloxy) succinimide. Soybean agglutinin(SBA), the in vivo function of which has been well established in animals, was selected as a model protein. The protein was detected via the changes in electrode response due to the oxidation of tyrosine residues from the phenol group to quinone. As a result, SBA was selectively accumulated on the beads modified with YYYYC. The calibration curve of SBA was linear and ranged from 2.5 × 10-12 to 1.0 × 10-10 M. With this system, SBA was recovered in human serum at values that ranged from 98 to 103%. Furthermore, the beads with peptides were regenerated five times using a protein denaturant. Accordingly, this electrochemical system was simple and could be rapidly applied to the detection of galactose-recognition proteins.
Collapse
Affiliation(s)
| | | | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
11
|
Pan L, Farouk MH, Qin G, Zhao Y, Bao N. The Influences of Soybean Agglutinin and Functional Oligosaccharides on the Intestinal Tract of Monogastric Animals. Int J Mol Sci 2018; 19:E554. [PMID: 29439523 PMCID: PMC5855776 DOI: 10.3390/ijms19020554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Soybean agglutinin (SBA) is a non-fiber carbohydrate-related protein and the main anti-nutritional factor that exists in soybean or soybean products. SBA possesses a specific binding affinity for N-glyphthalide-d-galactosamine or galactose and has a covalently linked oligosaccharide chain. SBA mediates negative effects on animal intestinal health by influencing the intestinal structure, barrier function, mucosal immune system, and the balance of the intestinal flora. Functional oligosaccharides are non-digestible dietary oligosaccharides that are commonly applied as prebiotics since the biological effects of the functional oligosaccharides are to increase the host health by improving mucosal structure and function, protecting the integrity of the intestinal structure, modulating immunity, and balancing the gastrointestinal microbiota. The purpose of this review is to describe the structure and anti-nutritional functions of SBA, summarize the influence of SBA and functional oligosaccharides on the intestinal tract of monogastric animals, and emphasize the relationship between SBA and oligosaccharides. This review provides perspectives on applying functional oligosaccharides for alleviating the anti-nutritional effects of SBA on the intestinal tract.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mohammed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
12
|
Legume Lectins: Proteins with Diverse Applications. Int J Mol Sci 2017; 18:ijms18061242. [PMID: 28604616 PMCID: PMC5486065 DOI: 10.3390/ijms18061242] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets.
Collapse
|
13
|
Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, Gavino C, Baistrocchi SR, Ostapska H, Xiao T, Ralph B, Solis NV, Lehoux M, Baptista SD, Thammahong A, Cerone RP, Kaminskyj SGW, Guiot MC, Latgé JP, Fontaine T, Vinh DC, Filler SG, Sheppard DC. The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathog 2015; 11:e1005187. [PMID: 26492565 PMCID: PMC4619649 DOI: 10.1371/journal.ppat.1005187] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs. The ubiquitous mold A. fumigatus is isolated in over 80% of all patients with invasive aspergillosis (IA). A. nidulans is a relatively non-pathogenic species that rarely causes IA except in patients with chronic granulomatous disease (CGD), a hereditary disease characterized by impaired neutrophil function due to mutations in the NADPH oxidase complex. Here, we demonstrate that one factor underlying the differences in the intrinsic virulence between A. fumigatus and A. nidulans is the amount of the exopolysaccharide galactosaminogalactan that is associated with the cell wall of these species. A. fumigatus produces higher amounts of cell wall-associated galactosaminogalactan and is more resistant than A. nidulans to neutrophil killing by NADPH-oxidase dependent extracellular traps (NETs). Increasing cell wall-associated galactosaminogalactan in A. nidulans enhanced resistance to NETs and increased the virulence of this species to the same level as A. fumigatus in mice with intact NET formation. Collectively, these data suggest that A. nidulans is more sensitive than A. fumigatus to NADPH-oxidase dependent NETosis due to lower levels of cell wall-associated GAG.
Collapse
Affiliation(s)
- Mark J. Lee
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Hong Liu
- Division of Infectious Diseases, LA Biomedical Research Institute at Harbor—UCLA, Torrance, California, United States of America
| | - Bridget M. Barker
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Brendan D. Snarr
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Fabrice N. Gravelat
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Qusai Al Abdallah
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Shane R. Baistrocchi
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Hanna Ostapska
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Tianli Xiao
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Benjamin Ralph
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Norma V. Solis
- Division of Infectious Diseases, LA Biomedical Research Institute at Harbor—UCLA, Torrance, California, United States of America
| | - Mélanie Lehoux
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Stefanie D. Baptista
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Arsa Thammahong
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover
| | - Robert P. Cerone
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | - Donald C. Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Scott G. Filler
- Division of Infectious Diseases, LA Biomedical Research Institute at Harbor—UCLA, Torrance, California, United States of America
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Donald C. Sheppard
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, Coelho H, Valero-González J, Castro-López J, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem Biol 2015; 10:747-56. [PMID: 25457745 DOI: 10.1021/cb500855x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed.
Collapse
Affiliation(s)
- David Madariaga
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Nuria Martínez-Sáez
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Víctor J. Somovilla
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Helena Coelho
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jessika Valero-González
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jorge Castro-López
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Juan L. Asensio
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús H. Busto
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Alberto Avenoza
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Filipa Marcelo
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Ramón Hurtado-Guerrero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Francisco Corzana
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús M. Peregrina
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| |
Collapse
|
15
|
Silva HC, Pinto LDS, Teixeira EH, Nascimento KS, Cavada BS, Silva ALC. BUL: A novel lectin from Bauhinia ungulata L. seeds with fungistatic and antiproliferative activities. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Aydillo C, Compañón I, Avenoza A, Busto JH, Corzana F, Peregrina JM, Zurbano MM. S-Michael additions to chiral dehydroalanines as an entry to glycosylated cysteines and a sulfa-Tn antigen mimic. J Am Chem Soc 2014; 136:789-800. [PMID: 24372047 DOI: 10.1021/ja411522f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stereoselective sulfa-Michael addition of appropriately protected thiocarbohydrates to chiral dehydroalanines has been developed as a key step in the synthesis of biologically important cysteine derivatives, such as S-(β-D-glucopyranosyl)-D-cysteine, which has not been synthesized to date, and S-(2-acetamido-2-deoxy-α-D-galactopyranosyl)-L-cysteine, which could be considered as a mimic of Tn antigen. The corresponding diamide derivative was also synthesized and analyzed from a conformational viewpoint, and its bound state with a lectin was studied.
Collapse
Affiliation(s)
- Carlos Aydillo
- Departamento de Química, Universidad de La Rioja , Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Aydillo C, Navo CD, Busto JH, Corzana F, Zurbano MM, Avenoza A, Peregrina JM. A Double Diastereoselective Michael-Type Addition as an Entry to Conformationally Restricted Tn Antigen Mimics. J Org Chem 2013; 78:10968-77. [DOI: 10.1021/jo4019396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos Aydillo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Claudio D. Navo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús H. Busto
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - María M. Zurbano
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús M. Peregrina
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
18
|
Yura H, Kanatani Y, Ishihara M, Takase B, Nambu M, Kishimoto S, Kitagawa M, Tatsuzawa O, Hoshi Y, Suzuki S, Kawakami M, Matsui T. Selection of hematopoietic stem cells with a combination of galactose-bound vinyl polymer and soybean agglutinin, a galactose-specific lectin. Transfusion 2008; 48:561-6. [DOI: 10.1111/j.1537-2995.2007.01571.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kearns-Jonker M, Barteneva N, Mencel R, Hussain N, Shulkin I, Xu A, Yew M, Cramer DV. Use of molecular modeling and site-directed mutagenesis to define the structural basis for the immune response to carbohydrate xenoantigens. BMC Immunol 2007; 8:3. [PMID: 17352819 PMCID: PMC1851715 DOI: 10.1186/1471-2172-8-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Accepted: 03/12/2007] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Natural antibodies directed at carbohydrates reject porcine xenografts. They are initially expressed in germline configuration and are encoded by a small number of structurally-related germline progenitors. The transplantation of genetically-modified pig organs prevents hyperacute rejection, but delayed graft rejection still occurs, partly due to humoral responses. IgVH genes encoding induced xenoantibodies are predominantly, not exclusively, derived from germline progenitors in the VH3 family. We have previously identified the immunoglobulin heavy chain genes encoding VH3 xenoantibodies in patients and primates. In this manuscript, we complete the structural analysis of induced xenoantibodies by identifying the IgVH genes encoding the small proportion of VH4 xenoantibodies and the germline progenitors encoding xenoantibody light chains. This information has been used to define the xenoantibody/carbohydrate binding site using computer-simulated modeling. RESULTS The VH4-59 gene encodes antibodies in the VH4 family that are induced in human patients mounting active xenoantibody responses. The light chain of xenoantibodies is encoded by DPK5 and HSIGKV134. The structural information obtained by sequencing analysis was used to create computer-simulated models. Key contact sites for xenoantibody/carbohydrate interaction for VH3 family xenoantibodies include amino acids in sites 31, 33, 50, 57, 58 and the CDR3 region of the IgVH gene. Site-directed mutagenesis indicates that mutations in predicted contact sites alter binding to carbohydrate xenoantigens. Computer-simulated modeling suggests that the CDR3 region directly influences binding. CONCLUSION Xenoantibodies induced during early and delayed xenograft responses are predominantly encoded by genes in the VH3 family, with a small proportion encoded by VH4 germline progenitors. This restricted group can be identified by the unique canonical structure of the light chain, heavy chain and CDR3. Computer-simulated models depict this structure with accuracy, as confirmed by site-directed mutagenesis. Computer-simulated drug design using computer-simulated models may now be applied to develop new drugs that may enhance the survival of xenografted organs.
Collapse
Affiliation(s)
- Mary Kearns-Jonker
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Natasha Barteneva
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Robert Mencel
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Namath Hussain
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Irina Shulkin
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Alan Xu
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Margaret Yew
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| | - Donald V Cramer
- Department of Cardiothoracic Surgery, Saban Research Institute of the Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Mailstop #137, Los Angeles, CA 90027 USA
| |
Collapse
|
20
|
Rao VS, Lam K, Qasba PK. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study. Int J Biol Macromol 1998; 23:295-307. [PMID: 9849627 DOI: 10.1016/s0141-8130(98)00056-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity.
Collapse
Affiliation(s)
- V S Rao
- Structural Glycobiology Section, Laboratory of Experimental and Computational Biology, National Cancer Institute, NCI-FCRDC, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|