1
|
Britt HM, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39453623 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- LGC Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| |
Collapse
|
2
|
Stewart AM, Shanmugam M, Kutta RJ, Scrutton NS, Lovett JE, Hay S. Combined Pulsed Electron Double Resonance EPR and Molecular Dynamics Investigations of Calmodulin Suggest Effects of Crowding Agents on Protein Structures. Biochemistry 2022; 61:1735-1742. [PMID: 35979922 PMCID: PMC9454100 DOI: 10.1021/acs.biochem.2c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Calmodulin (CaM) is a highly dynamic Ca2+-binding
protein
that exhibits large conformational changes upon binding Ca2+ and target proteins. Although it is accepted that CaM exists in
an equilibrium of conformational states in the absence of target protein,
the physiological relevance of an elongated helical linker region
in the Ca2+-replete form has been highly debated. In this
study, we use PELDOR (pulsed electron–electron double resonance)
EPR measurements of a doubly spin-labeled CaM variant to assess the
conformational states of CaM in the apo-, Ca2+-bound, and
Ca2+ plus target peptide-bound states. Our findings are
consistent with a three-state conformational model of CaM, showing
a semi-open apo-state, a highly extended Ca2+-replete state,
and a compact target protein-bound state. Molecular dynamics simulations
suggest that the presence of glycerol, and potentially other molecular
crowding agents, has a profound effect on the relative stability of
the different conformational states. Differing experimental conditions
may explain the discrepancies in the literature regarding the observed
conformational state(s) of CaM, and our PELDOR measurements show good
evidence for an extended conformation of Ca2+-replete CaM
similar to the one observed in early X-ray crystal structures.
Collapse
Affiliation(s)
- Andrew M Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011, Iowa, United States.,Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Roger J Kutta
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.,Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, The University of St Andrews, St Andrews KY16 9SS, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
3
|
Nde J, Zhang P, Ezerski JC, Lu W, Knapp K, Wolynes PG, Cheung MS. Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca 2+-Calmodulin. Front Mol Biosci 2021; 8:661322. [PMID: 34504868 PMCID: PMC8421859 DOI: 10.3389/fmolb.2021.661322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream proteins through target binding upon calcium binding in a time-dependent manner. Understanding the target binding process that tunes CaM’s affinity for the calcium ions (Ca2+), or vice versa, may provide insight into how Ca2+-CaM selects its target binding proteins. However, modeling of Ca2+-CaM in molecular simulations is challenging because of the gross structural changes in its central linker regions while the two lobes are relatively rigid due to tight binding of the Ca2+ to the calcium-binding loops where the loop forms a pentagonal bipyramidal coordination geometry with Ca2+. This feature that underlies the reciprocal relation between Ca2+ binding and target binding of CaM, however, has yet to be considered in the structural modeling. Here, we presented a coarse-grained model based on the Associative memory, Water mediated, Structure, and Energy Model (AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we optimized the force field of CaM and that of Ca2+ ions by using its coordination chemistry in the calcium-binding loops to match with experimental observations. We presented a “community model” of CaM that is capable of sampling various conformations of CaM, incorporating various calcium-binding states, and carrying the memory of binding with various targets, which sets the foundation of the reciprocal relation of target binding and Ca2+ binding in future studies.
Collapse
Affiliation(s)
- Jules Nde
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Pengzhi Zhang
- Department of Physics, University of Houston, Houston, TX, United States
| | - Jacob C Ezerski
- Department of Physics, University of Houston, Houston, TX, United States
| | - Wei Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Kaitlin Knapp
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
4
|
González-Andrade M, Rodríguez-Sotres R, Madariaga-Mazón A, Rivera-Chávez J, Mata R, Sosa-Peinado A, Del Pozo-Yauner L, Arias-Olguín II. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data. J Biomol Struct Dyn 2015; 34:78-91. [PMID: 25702612 DOI: 10.1080/07391102.2015.1022225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.
Collapse
Affiliation(s)
- Martin González-Andrade
- a Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México.,c Unidad de Vinculación de la Facultad de Medicina , UNAM en el INMEGEN , Secretaría de Salud, México Distrito Federal , CP 14610 , México
| | - Rogelio Rodríguez-Sotres
- b Facultad de Química , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México
| | - Abraham Madariaga-Mazón
- b Facultad de Química , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México
| | - José Rivera-Chávez
- b Facultad de Química , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México
| | - Rachel Mata
- b Facultad de Química , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México
| | - Alejandro Sosa-Peinado
- a Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México
| | - Luis Del Pozo-Yauner
- c Unidad de Vinculación de la Facultad de Medicina , UNAM en el INMEGEN , Secretaría de Salud, México Distrito Federal , CP 14610 , México
| | - Imilla I Arias-Olguín
- d Unidad de Biología Molecular y Medicina Genómica del Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México (UNAM) , México Distrito Federal , CP 04510 , México.,e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México Distrito Federal , CP 14000 , México
| |
Collapse
|
5
|
Effect of Calcium Ion Removal, Ionic Strength, and Temperature on the Conformation Change in Calmodulin Protein at Physiological pH. JOURNAL OF BIOPHYSICS 2014; 2014:329703. [PMID: 25548559 PMCID: PMC4274857 DOI: 10.1155/2014/329703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
The response of the calmodulin (CaM) protein as a function of calcium ion removal, ionic strength, and temperature at physiological pH condition was investigated using classical molecular dynamics simulations. Changing the ionic strength and temperature came out to be two of the possible routes for observing a conformation change in the protein. This behavior is similar to the conformation change observed in our previous study where a change in the pH was observed to trigger a conformation change in this protein. In the present study, as the calcium ions are removed from the protein, the protein is observed to acquire more flexibility. This flexibility is observed to be more prominent at a higher ionic strength. At a lower ionic strength of 150 mM with all the four calcium ions intact, the N- and C-lobes are observed to come close to a distance of 30 Å starting from an initial separation distance of 48 Å. This conformation change is observed to take place around 50 ns in a simulation of 100 ns. As a second parameter, temperature is observed to play a key role in the conformation change of the protein. With an increase in the temperature, the protein is observed to acquire a more compact form with the formation of different salt bridges between the residues of the N- and the C-lobes. The salt bridge formation leads to an overall lowering of the energy of the protein thus favoring the bending of the two lobes towards each other. The improper and dihedral terms show a significant shift thus leading to a more compact form on increasing the temperature. Another set of simulations is also performed at an increased temperature of 500 K to verify the reproducibility of the results. Thus a set of three possible alterations in the environmental conditions of the protein CaM are studied, with two of them giving rise to a conformation change and one adding flexibility to the protein.
Collapse
|
6
|
Kohagen M, Lepšík M, Jungwirth P. Calcium Binding to Calmodulin by Molecular Dynamics with Effective Polarization. J Phys Chem Lett 2014; 5:3964-3969. [PMID: 26276478 DOI: 10.1021/jz502099g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Calcium represents a key biological signaling ion with the EF-hand loops being its most prevalent binding motif in proteins. We show using molecular dynamics simulations with umbrella sampling that including electronic polarization effects via ionic charge rescaling dramatically improves agreements with experiment in terms of the strength of calcium binding and structures of the calmodulin binding sites. The present study thus opens way to accurate calculations of interactions of calcium and other computationally difficult high-charge-density ions in biological contexts.
Collapse
Affiliation(s)
- Miriam Kohagen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
7
|
Kursula P. The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 2014; 46:2295-304. [PMID: 25005783 DOI: 10.1007/s00726-014-1795-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 12/16/2022]
Abstract
Calmodulin (CaM) is a highly conserved protein and a crucial calcium sensor in eukaryotes. CaM is a regulator of hundreds of diverse target proteins. A wealth of studies has been carried out on the structure of CaM, both in the unliganded form and in complexes with target proteins and peptides. The outcome of these studies points toward a high propensity to attain various conformational states, depending on the binding partner. The purpose of this review is to provide examples of different conformations of CaM trapped in the crystal state. In addition, comparisons are made to corresponding studies in solution. The different CaM conformations in crystal structures are also compared based on the positions of the metal ions bound to their EF hands, in terms of distances, angles, and pseudo-torsion angles. Possible caveats and artifacts in CaM crystal structures are discussed, as well as the possibilities of trapping biologically relevant CaM conformations in the crystal state.
Collapse
Affiliation(s)
- Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland,
| |
Collapse
|
8
|
Kursula P. Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix. ACTA ACUST UNITED AC 2013; 70:24-30. [PMID: 24419375 DOI: 10.1107/s1399004713024437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
Calmodulin is one of the most well characterized proteins and a widely used model system for calcium binding and large-scale protein conformational changes. Its long central helix is usually cut in half when a target peptide is bound. Here, two new crystal structures of calmodulin are presented, in which conformations possibly representing the first steps of calmodulin conformational collapse have been trapped. The central helix in the two structures is bent in the middle, causing a significant movement of the N- and C-terminal lobes with respect to one another. In both of the bent structures, a nearby polar side chain is inserted into the helical groove, disrupting backbone hydrogen bonding. The structures give an insight into the details of the factors that may be involved in the distortion of the central helix upon ligand peptide binding.
Collapse
Affiliation(s)
- Petri Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Chen C, Huang Y, Jiang X, Xiao Y. Binding free-energy calculation of an ion-peptide complex by constrained dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062705. [PMID: 23848713 DOI: 10.1103/physreve.87.062705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/06/2013] [Indexed: 06/02/2023]
Abstract
Binding free energy is the most important physical parameter that describes the binding affinity of a receptor-ligand complex. Conventionally, it was obtained based on the thermodynamic cycle or alchemical reaction. These strategies have been widely used, but they would be problematic if the receptors and/or ligands have large conformational changes during the binding processes. In this paper, we present a way to calculate the binding free energy: constrained dynamics along a fragmental and high-dimensional transition path. This method directly considers unbound states in the simulation. The application to the calmodulin loop-calcium complexes shows that it is practical and the calculated relative binding affinities are in good agreement with experimental results.
Collapse
Affiliation(s)
- Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | | | |
Collapse
|
10
|
Negi S, Aykut AO, Atilgan AR, Atilgan C. Calmodulin readily switches conformation upon protonating high pKa acidic residues. J Phys Chem B 2012; 116:7145-53. [PMID: 22624501 DOI: 10.1021/jp3032995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigate protonation as a possible route for triggering conformational change in proteins by focusing on the calmodulin (CaM) example. Two hundred nanosecond molecular dynamics (MD) simulations are performed on both the extended and compact forms of calcium loaded CaM. The stability of both structures is confirmed under prevailing conditions. Protonation of nine acidic residues with upshifted pK(a) values leads to a large conformational change in less than 100 ns. The structure attained is consistent with fluorescence resonance energy transfer experimental results as well as structures from an ensemble compatible with NMR data. Analysis of the MD trajectories summing up to one microsecond implies that the key events leading to the completion of the conformational change begins with an initial formation of a salt bridge between the N-lobe and the linker, followed by the bending of the C-lobe and the organization of a stabilizing hydrophobic patch between the lobes. We find that CaM utilizes its Ca(2+) ions to harden/soften different regions so as to achieve various conformations. Thus, barrier crossing between extended and compact forms of CaM which is normally a rare event due to the repulsive electrostatic interactions between the two lobes is facilitated by protonation of high pK(a) residues. The results delineate how pH changes might be utilized in the cell to achieve different conformation-related functions.
Collapse
Affiliation(s)
- Sunita Negi
- Sabanci University, Faculty of Engineering & Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | | | | | | |
Collapse
|
11
|
Selwa E, Laine E, Malliavin TE. Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 2012; 80:1028-40. [DOI: 10.1002/prot.24005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
|
12
|
Price ES, DeVore MS, Johnson CK. Detecting intramolecular dynamics and multiple Förster resonance energy transfer states by fluorescence correlation spectroscopy. J Phys Chem B 2010; 114:5895-902. [PMID: 20392129 DOI: 10.1021/jp912125z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a robust method for the detection of intramolecular dynamics in proteins but is also susceptible to interference from other dynamic processes such as triplet kinetics and photobleaching. We describe an approach for the detection of intramolecular dynamics in proteins labeled with a FRET dye pair based on global fitting to the two autocorrelation functions (green-green and red-red) and the two cross-correlation functions (green-red and red-green). We applied the method to detect intramolecular dynamics in the Ca(2+) signaling protein calmodulin. Dynamics were detected on the 100 mus time scale in Ca(2+)-activated calmodulin, whereas in apocalmodulin dynamics were not detected on this time scale. Control measurements on a polyproline FRET construct (Gly-Pro(15)-Cys) demonstrate the reliability of the method for isolating intramolecular dynamics from other dynamic processes on the microsecond time scale and confirm the absence of intramolecular dynamics of polyproline. We further show the sensitivity of the initial amplitudes of the FCS auto- and cross-correlation functions to the presence of multiple FRET states, static or dynamic. The FCS measurements also show that the diffusion of Ca(2+)-calmodulin is slower than that of apocalmodulin, indicating either a larger average hydrodynamic radius or shape effects resulting in a slower translational diffusion.
Collapse
Affiliation(s)
- E Shane Price
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|
13
|
Homouz D, Sanabria H, Waxham MN, Cheung MS. Modulation of calmodulin plasticity by the effect of macromolecular crowding. J Mol Biol 2009; 391:933-43. [PMID: 19577574 DOI: 10.1016/j.jmb.2009.06.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/24/2009] [Accepted: 06/28/2009] [Indexed: 11/20/2022]
Abstract
In vitro biochemical reactions are most often studied in dilute solution, a poor mimic of the intracellular space of eukaryotic cells, which are crowded with mobile and immobile macromolecules. Such crowded conditions exert volume exclusion and other entropic forces that have the potential to impact chemical equilibria and reaction rates. In this article, we used the well-characterized and ubiquitous molecule calmodulin (CaM) and a combination of theoretical and experimental approaches to address how crowding impacts CaM's conformational plasticity. CaM is a dumbbell-shaped molecule that contains four EF hands (two in the N-lobe and two in the C-lobe) that each could bind Ca(2+), leading to stabilization of certain substates that favor interactions with other target proteins. Using coarse-grained molecular simulations, we explored the distribution of CaM conformations in the presence of crowding agents. These predictions, in which crowding effects enhance the population of compact structures, were then confirmed in experimental measurements using fluorescence resonance energy transfer techniques of donor- and acceptor-labeled CaM under normal and crowded conditions. Using protein reconstruction methods, we further explored the folding-energy landscape and examined the structural characteristics of CaM at free-energy basins. We discovered that crowding stabilizes several different compact conformations, which reflects the inherent plasticity in CaM's structure. From these results, we suggest that the EF hands in the C-lobe are flexible and can be thought of as a switch, while those in the N-lobe are stiff, analogous to a rheostat. New combinatorial signaling properties may arise from the product of the differential plasticity of the two distinct lobes of CaM in the presence of crowding. We discuss the implications of these results for modulating CaM's ability to bind Ca(2+) and target proteins.
Collapse
Affiliation(s)
- Dirar Homouz
- Department of Physics, University of Houston, TX 77204, USA
| | | | | | | |
Collapse
|
14
|
Houndonougbo Y, Kuczera K, Jas GS. Effects of CMAP and Electrostatic Cutoffs on the Dynamics of an Integral Membrane Protein: The Phospholamban Study. J Biomol Struct Dyn 2008; 26:17-34. [DOI: 10.1080/07391102.2008.10507220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Laine E, Yoneda JD, Blondel A, Malliavin TE. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Proteins 2008; 71:1813-29. [DOI: 10.1002/prot.21862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Biophys J 2007; 94:2737-51. [PMID: 18096633 DOI: 10.1529/biophysj.107.114942] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent functional studies reported on human adult hemoglobin (HbA) show that heterotropic effector-linked tertiary structural changes are primarily responsible for modulating the oxygen affinity of hemoglobin. We present the results of 6-ns molecular dynamics simulations performed to gain insights into the dynamical and structural details of these effector-linked tertiary changes. All-atom simulations were carried out on a series of models generated for T- and R-state HbA, and for 2,3-diphosphoglycerate-bound models. Cross-correlation analyses identify both intra- and intersubunit correlated motions that are perturbed by the presence of the effector. Principal components analysis was used to decompose the covariance matrix extracted from the simulations and reconstruct the trajectories along the principal coordinates representative of functionally important collective motions. It is found that HbA in both quaternary states exists as ensembles of tertiary conformations that introduce dynamic heterogeneity in the protein. 2,3-Diphosphoglycerate induces significant perturbations in the fluctuations of both HbA states that translate into the protein visiting different tertiary conformations within each quaternary state. The analysis reveals that the presence of the effector affects the most important components of HbA motions and that heterotropic effectors modify the overall dynamics of the quaternary equilibrium via tertiary changes occurring in regions where conserved functionally significant residues are located, namely in the loop regions between helices C and E, E and F, and F and G, and in concerted helix motions. The changes are not apparent when comparing the available x-ray crystal structures in the presence and absence of effector, but are striking when comparing the respective dynamic tertiary conformations of the R and T tetramers.
Collapse
|
17
|
Trzcińska-Daneluti AM, Górecki A, Czubaty A, Kowalska-Loth B, Girstun A, Murawska M, Lesyng B, Staroń K. RRM Proteins Interacting with the Cap Region of Topoisomerase I. J Mol Biol 2007; 369:1098-112. [PMID: 17481653 DOI: 10.1016/j.jmb.2007.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.
Collapse
|
18
|
Levantino M, Huang Q, Cupane A, Laberge M, Hagarman A, Schweitzer-Stenner R. The importance of vibronic perturbations in ferrocytochrome c spectra: a reevaluation of spectral properties based on low-temperature optical absorption, resonance Raman, and molecular-dynamics simulations. J Chem Phys 2007; 123:054508. [PMID: 16108670 DOI: 10.1063/1.1961556] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have measured and analyzed the low-temperature (T=10 K) absorption spectrum of reduced horse heart and yeast cytochrome c. Both spectra show split and asymmetric Q(0) and Q(upsilon) bands. The spectra were first decomposed into the individual split vibronic sidebands assignable to B(1g) (nu15) and A(2g) (nu19, nu21, and nu22) Herzberg-Teller active modes due to their strong intensity in resonance Raman spectra acquired with Q(0) and Q(upsilon) excitations. The measured band splittings and asymmetries cannot be rationalized solely in terms of electronic perturbations of the heme macrocycle. On the contrary, they clearly point to the importance of considering not only electronic perturbations but vibronic perturbations as well. The former are most likely due to the heterogeneity of the electric field produced by charged side chains in the protein environment, whereas the latter reflect a perturbation potential due to multiple heme-protein interactions, which deform the heme structure in the ground and excited states. Additional information about vibronic perturbations and the associated ground-state deformations are inferred from the depolarization ratios of resonance Raman bands. The results of our analysis indicate that the heme group in yeast cytochrome c is more nonplanar and more distorted along a B(2g) coordinate than in horse heart cytochrome c. This conclusion is supported by normal structural decomposition calculations performed on the heme extracted from molecular-dynamic simulations of the two investigated proteins. Interestingly, the latter are somewhat different from the respective deformations obtained from the x-ray structures.
Collapse
Affiliation(s)
- Matteo Levantino
- National Institute for the Physics of Matter and Department of Physical and Astronomical Sciences, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Balog E, Laberge M, Fidy J. The influence of interdomain interactions on the intradomain motions in yeast phosphoglycerate kinase: a molecular dynamics study. Biophys J 2007; 92:1709-16. [PMID: 17158564 PMCID: PMC1796818 DOI: 10.1529/biophysj.106.093195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 11/06/2006] [Indexed: 11/18/2022] Open
Abstract
A 3-ns molecular dynamics simulation in explicit solvent was performed to examine the inter- and intradomain motions of the two-domain enzyme yeast phosphoglycerate kinase without the presence of substrates. To elucidate contributions from individual domains, simulations were carried out on the complete enzyme as well as on each isolated domain. The enzyme is known to undergo a hinge-bending type of motion as it cycles from an open to a closed conformation to allow the phosphoryl transfer occur. Analysis of the correlation of atomic movements during the simulations confirms hinge bending in the nanosecond timescale: the two domains of the complete enzyme exhibit rigid body motions anticorrelated with respect to each other. The correlation of the intradomain motions of both domains converges, yielding a distinct correlation map in the enzyme. In the isolated domain simulations-in which interdomain interactions cannot occur-the correlation of domain motions no longer converges and shows a very small correlation during the same simulation time. This result points to the importance of interdomain contacts in the overall dynamics of the protein. The secondary structure elements responsible for interdomain contacts are also discussed.
Collapse
Affiliation(s)
- Erika Balog
- Department of Biophysics and Radiation Biology and Research Group for Membrane Biology of the Hungarian Academy of Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
20
|
Settimo L, Donnini S, Juffer AH, Woody RW, Marin O. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Biopolymers 2007; 88:373-85. [PMID: 17173306 DOI: 10.1002/bip.20657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have recently investigated by far-UV circular dichroism (CD) the effects of Ca(2+) binding and the phosphorylation of Ser 81 for the synthetic peptide CaM [54-106] encompassing the Ca(2+)-binding loops II and III and the central alpha helix of calmodulin (CaM) (Arrigoni et al., Biochemistry 2004, 43, 12788-12798). Using computational methods, we studied the changes in the secondary structure implied by these spectra with the aim to investigate the effect of Ca(2+) binding and the functional role of the phosphorylation of Ser 81 in the action of the full-length CaM. Ca(2+) binding induces the nucleation of helical structure by inducing side chain stacking of hydrophobic residues. We further investigated the effect of Ca(2+) binding by using near-UV CD spectroscopy. Molecular dynamics simulations of different fragments containing the central alpha-helix of CaM using various experimentally determined structures of CaM with bound Ca(2+) disclose the structural effects provided by the phosphorylation of Ser 81. This post-translational modification is predicted to alter the secondary structure in its surrounding and also to hinder the physiological bending of the central helix of CaM through an alteration of the hydrogen bond network established by the side chain of residue 81. Using quantum mechanical methods to predict the CD spectra for the frames obtained during the MD simulations, we are able to reproduce the relative experimental intensities in the far-UV CD spectra for our peptides. Similar conformational changes that take place in CaM [54-106] upon Ca(2+) binding and phosphorylation may occur in the full-length CaM.
Collapse
Affiliation(s)
- Luca Settimo
- CRIBI Biotechnology Centre, University of Padova, via U.Bassi, 58/b, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
21
|
Ganoth A, Nachliel E, Friedman R, Gutman M. Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide. Proteins 2006; 64:133-46. [PMID: 16568447 DOI: 10.1002/prot.20956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Calmodulin (CaM) is a small (16.7 kDa), highly acidic protein that is crucial to all eukaryotes by serving as a prototypical calcium sensor. In the present study, we investigated, through molecular dynamics simulations, the dynamics of a complex between the Mlc1p protein, which is a CaM-like protein, and the IQ4 peptide. This protein-peptide interaction is of high importance because IQ motifs are widely distributed among different kinds of CaM-binding proteins. The Mlc1p-IQ4 complex, which had been resolved by crystallography to 2.1 A, confers to a Ca(+2)-independent stable structure. During the simulations, the complex undergoes a complicated modulation process, which involves bending of the angles between the alpha-helices of the protein, breaking of the alpha-helical structure of the IQ4 peptide into two sections, and formation of new contact points between the protein and the peptide. The dynamics of the process consist of fast sub picosecond events and much slower ones that take a few nanoseconds to completion. Our study expands the information embedded in the crystal structure of the Mlc1p-IQ4 complex by describing its dynamic behavior as it evolves from the crystal structure to a form stable in solution. The article shows that careful application of molecular dynamics simulations can be used for extending the structural information presented by the crystal structure, thereby revealing the dynamic configuration of the protein in its physiological environment.
Collapse
Affiliation(s)
- Assaf Ganoth
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
22
|
Ganoth A, Friedman R, Nachliel E, Gutman M. A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides. Biophys J 2006; 91:2436-50. [PMID: 16844751 PMCID: PMC1562369 DOI: 10.1529/biophysj.106.085399] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mlc1p protein from the budding yeast Saccharomyces cerevisiae is a Calmodulin-like protein, which interacts with IQ-motif peptides located at the yeast's myosin neck. In this study, we report a molecular dynamics study of the Mlc1p-IQ2 protein-peptide complex, starting with its crystal structure, and investigate its dynamics in an aqueous solution. The results are compared with those obtained by a previous study, where we followed the solution structure of the Mlc1p-IQ4 protein-peptide complex by molecular dynamics simulations. After the simulations, we performed an interaction free-energy analysis using the molecular mechanics Poisson-Boltzmann surface area approach. Based on the dynamics of the Mlc1p-IQ protein-peptide complexes, the structure of the light-chain-binding domain of myosin V from the yeast S. cerevisiae is discussed.
Collapse
Affiliation(s)
- Assaf Ganoth
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Project E, Friedman R, Nachliel E, Gutman M. A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure. Biophys J 2006; 90:3842-50. [PMID: 16533845 PMCID: PMC1459500 DOI: 10.1529/biophysj.105.077792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calmodulin is a small (148 residues), ubiquitous, highly-conserved Ca(2+) binding protein serving as a modulator of many calcium-dependent processes. In this study, we followed, by means of molecular dynamics, the structural stability of the protein when one of its four bound Ca(2+) ions is removed, and compared it to a simulation of the fully Ca(2+) bound protein. We found that the removal of a single Ca(2+) ion from the N-lobe of the protein, which has a lower affinity for the ion, is sufficient to initiate a considerable structural rearrangement. Although the overall structure of the fully 4 Ca(2+) bound protein remained intact in the extended conformation, the Ca(2+)-removed protein changed its conformation into a compact state. The observation that the 3 Ca(2+) loaded protein assumes a compacted solution state is in accord with experimental observation that the NSCP protein, which binds only three Ca(2+) ions, is natively in a compact state. Examination of the folding dynamics reveals a cooperation between the C-lobe, N-lobe, and the interdomain helix that enable the conformation change. The forces driving this conformational change are discussed.
Collapse
Affiliation(s)
- Elad Project
- Laser Laboratory for Fast Reactions in Biology Biochemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | |
Collapse
|
24
|
Gargallo R, Cedano J, Mozo-Villarias A, Querol E, Oliva B. Study of the influence of temperature on the dynamics of the catalytic cleft in 1,3-1,4-β-glucanase by molecular dynamics simulations. J Mol Model 2006; 12:835-45. [PMID: 16525847 DOI: 10.1007/s00894-006-0110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
The dependence of some molecular motions in the enzyme 1,3-1,4-beta-glucanase from Bacillus licheniformis on temperature changes and the role of the calcium ion in them were explored. For this purpose, two molecular dynamics simulated trajectories along 4 ns at low (300 K) and high (325 K) temperatures were generated by the GROMOS96 package. Several structural and thermodynamic parameters were calculated, including entropy values, solvation energies, and essential dynamics (ED). In addition, thermoinactivation experiments to study the influence of the calcium ion and some residues on the activity were conducted. The results showed the release of the calcium ion, which, in turn, significantly affected the movements of loops 1, 2, and 3, as shown by essential dynamics. These movements differ at low and high temperatures and affect dramatically the activity of the enzyme, as observed by thermoinactivation studies.
Collapse
Affiliation(s)
- Raimundo Gargallo
- Department of Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain
| | | | | | | | | |
Collapse
|
25
|
Likic VA, Gooley PR, Speed TP, Strehler EE. A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics. Protein Sci 2006; 14:2955-63. [PMID: 16322577 PMCID: PMC2253239 DOI: 10.1110/ps.051681605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A sample of 35 independent molecular dynamics (MD) simulations of calmodulin (CaM) equilibrium dynamics was prepared from different but equally plausible initial conditions (20 simulations of the wild-type protein and 15 simulations of the D129N mutant). CaM's radius of gyration and backbone mean-square fluctuations were analyzed for the effect of the D129N mutation, and simulations were compared with experiments. Statistical tests were employed for quantitative comparisons at the desired error level. The computational model predicted statistically significant compaction of CaM relative to the crystal structure, consistent with the results of small-angle X-ray scattering (SAXS) experiments. This effect was not observed in several previously reported studies of (Ca2+)(4)-CaM, which relied on a single MD run. In contrast to radius of gyration, backbone mean-square fluctuations showed a distinctly non-normal and positively skewed distribution for nearly all residues. Furthermore, the D129N mutation affected the backbone dynamics in a complex manner and reduced the mobility of Glu123, Met124, Ile125, Arg126, and Glu127 located in the adjacent alpha-helix G. The implications of these observations for the comparisons of MD simulations with experiments are discussed. The proposed approach may be useful in studies of protein equilibrium dynamics where MD simulations fall short of properly sampling the conformational space, and when the comparison with experiments is affected by the reproducibility of the computational model.
Collapse
Affiliation(s)
- Vladimir A Likic
- Reprints requests to: Dr Vladimir A. Likić, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia.
| | | | | | | |
Collapse
|
26
|
Naoki H, Sakumura Y, Ishii S. Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Mol Syst Biol 2005; 1:2005.0027. [PMID: 16729062 PMCID: PMC1681445 DOI: 10.1038/msb4100035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 10/25/2005] [Indexed: 11/24/2022] Open
Abstract
Synaptic plasticity is induced by the influx of calcium ions (Ca2+) through N-methyl-D-aspartate receptors (NMDARs), and the direction and strength of the response depend on the frequency of the synaptic inputs. Recent studies have shown that the direction of synaptic plasticity is also governed by two distinct NMDAR subtypes (NR1/NR2A, NR1/NR2B). How are the different types of regulation (frequency-dependent and receptor-specific) processed simultaneously? To clarify the molecular basis of this dual dependence of synaptic plasticity, we have developed a mathematical model of spatial Ca2+ signaling in a dendritic spine. Our simulations revealed that calmodulin (CaM) activation in the vicinity of NMDARs is strongly affected by the diffusion coefficient of CaM itself, and that this ‘local CaM diffusion system' works as a dual decoder of both the frequency of Ca2+ influxes and their postsynaptic current shapes, generated by two NMDAR subtypes, implying that spatial factors may underlie the complicated regulation scheme of synaptic plasticity.
Collapse
Affiliation(s)
- Honda Naoki
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Yuichi Sakumura
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Shin Ishii
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan. Tel.: +81 743 72 5984; Fax: +81 743 72 5989; E-mail:
| |
Collapse
|
27
|
Fiorin G, Biekofsky RR, Pastore A, Carloni P. Unwinding the helical linker of calcium-loaded calmodulin: A molecular dynamics study. Proteins 2005; 61:829-39. [PMID: 16193483 DOI: 10.1002/prot.20597] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fold of calmodulin (CaM) consists of two globular domains connected by a helical segment (the linker), whose conformational properties play a crucial role for the protein's molecular recognition processes. Here we investigate the structural properties of the linker by performing a 11.5 ns molecular dynamics (MD) simulation of calcium-loaded human CaM in aqueous solution. The calculations are based on the AMBER force field. The calculated S2 order parameters are in good accord with NMR data: The structure of the linker in our simulations is much more flexible than that emerging from the Homo sapiens X-ray structure, consistently with the helix unwinding observed experimentally in solution. This process occurs spontaneously in a nanosecond timescale, as observed also in a very recent simulation based on the GROMOS force field. A detailed description of the mechanism that determines the linker unwinding is provided, in which electrostatic contacts between the two globular domains play a critical role. The orientation of the domains emerging from our MD calculations is consistent both with former X-ray scattering data and a recent NMR work. Based on our findings, a rationale for the experimentally measured entropy cost associated to binding to the protein's cellular partners is also given.
Collapse
Affiliation(s)
- G Fiorin
- SISSA-International School for Advanced Studies, INFM-Democritos Modeling Center for Research in Atomistic Simulation, Trieste, Italy
| | | | | | | |
Collapse
|
28
|
Wingard JN, Chan J, Bosanac I, Haeseleer F, Palczewski K, Ikura M, Ames JB. Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels. J Biol Chem 2005; 280:37461-70. [PMID: 16147998 PMCID: PMC1470661 DOI: 10.1074/jbc.m508541200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.
Collapse
Affiliation(s)
- Jennifer N Wingard
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, 20850, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Slaughter BD, Unruh JR, Allen MW, Bieber Urbauer RJ, Johnson CK. Conformational Substates of Calmodulin Revealed by Single-Pair Fluorescence Resonance Energy Transfer: Influence of Solution Conditions and Oxidative Modification. Biochemistry 2005; 44:3694-707. [PMID: 15751946 DOI: 10.1021/bi048595o] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A calmodulin (CaM) mutant (T34,110C-CaM) doubly labeled with fluorescence probes AlexaFluor 488 and Texas Red in opposing domains (CaM-DA) has been used to examine conformational heterogeneity in CaM by single-pair fluorescence resonance energy transfer (spFRET). Burst-integrated FRET efficiencies of freely diffusing CaM-DA single molecules yielded distributions of distance between domains of CaM-DA. We recently reported distinct conformational substates of Ca(2+)-CaM-DA and apoCaM-DA, with peaks in the distance distributions centered at approximately 28 A, 34-38 A, and 55 A [Slaughter et al. (2004) J. Phys. Chem. B 108, 10388-10397]. In the present study, shifts in the amplitudes and center distances of the conformational substates were detected with variation in solution conditions. The amplitude of an extended conformation was observed to change as a function of Ca(2+) over a free Ca(2+) range that is consistent with binding to the high affinity, C-terminal Ca(2+) binding sites, suggesting the existence of communication between lobes of CaM. Lowering pH shifted the relative amplitudes of the conformations, with a marked increase in the presence of the compact conformations and an almost complete absence of the extended conformation. In addition, the single-molecule distance distribution of apoCaM-DA at reduced ionic strength was shifted to longer distance and showed evidence of an increase in conformational heterogeneity relative to apoCaM-DA at physiological ionic strength. Oxidation of methionine residues in CaM-DA produced a substantial increase in the amplitude of the extended conformation relative to the more compact conformation. The results are considered in light of a hypothesis that suggests that electrostatic interactions between charged amino acid side chains play an important role in determining the most stable CaM conformation under varying solution conditions.
Collapse
Affiliation(s)
- Brian D Slaughter
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582, USA
| | | | | | | | | |
Collapse
|
30
|
Houndonougbo Y, Kuczera K, Jas GS. Structure and Dynamics of Phospholamban in Solution and in Membrane Bilayer: Computer Simulations. Biochemistry 2005; 44:1780-92. [PMID: 15697203 DOI: 10.1021/bi0488404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have performed molecular dynamics simulations of phospholamban (PLB), a 52-residue integral membrane protein that inhibits calcium ATPase in the cardiac sarcoplasmic reticulum. We present a microscopic description of the structure and dynamics of PLB in solution and membrane environments, based on 10 ns molecular dynamics simulations of PLB in lipid bilayer and 5 ns simulations in methanol and water, and a water-soluble model of PLB in water. Throughout the simulations, PLB retains its "L"shape, with two well-defined helical domains at the N- and C-termini. In the simulations of PLB in methanol and water, the helices were almost perpendicular, with average interhelix angles of 54 +/- 13 degrees and 63 +/-15 degrees , respectively. In the lipid bilayer trajectory, both the interhelix angle and its fluctuations were larger, with an average of 130 +/- 19 degrees and with the transmembrane C-terminal approximately perpendicular to the bilayer plane. The internal dynamics of phospholamban is characterized by large amplitude collective motions of the two helical domains: hinge bending, twisting of both N- and C-terminal helices, and flexing of the C-terminal helix. The central linker of PLB is highly flexible, due mostly to elastic deformations of this region. The simulation results are in good agreement with NMR data on PLB secondary structure and helix orientations in solution, micelles, and lipid bilayers, as well as fluorescence measurements of interdomain distances. Our most interesting findings involve the details of the PLB dynamics, which are difficult to obtain by experimental approaches. Two kinds of motions of the helical domains found in the simulations can clearly have functional roles. The population of conformations with relatively open interdomain angles, as well as large fluctuations of this coordinate in the bilayer, allows the N-terminal helix to come into contact with the PLB binding site on the calcium ATPase, while the presence of twisting motions around its axis enables the helix to orient the correct face to the binding site.
Collapse
Affiliation(s)
- Yao Houndonougbo
- Higuchi Biosciences Center, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
31
|
Laberge M, Kövesi I, Yonetani T, Fidy J. R-state hemoglobin bound to heterotropic effectors: models of the DPG, IHP and RSR13 binding sites. FEBS Lett 2004; 579:627-32. [PMID: 15670819 DOI: 10.1016/j.febslet.2004.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/29/2004] [Accepted: 12/07/2004] [Indexed: 11/16/2022]
Abstract
We performed a docking study followed by a 500-ps molecular dynamics simulation of R-state human adult hemoglobin (HbA) complexed to different heterotropic effectors [2,3-diphosphoglycerate (DPG), inositol hexaphosphate (IHP), and 2-[4-[(3,5-dichlorophenylcarbamoyl)-]methyl]-phenoxy]-2-methylpropionic acid (RSR13)) to propose a molecular basis for recently reported interactions of effectors with oxygenated hemoglobin. The simulations were carried out with counterions and explicit solvation. As reported for T-state HbA, the effector binding sites are also located in the central cavity of the R-state and differ depending on effector anionic character. DPG and IHP bind between the alpha-subunits and the RSR13 site spans the alpha1-, alpha2- and beta2-subunits. The generated models provide the first report of the molecular details of R-state HbA bound to heterotropic effectors.
Collapse
Affiliation(s)
- Monique Laberge
- Department of Biophysics and Radiation Biology and MTA-SE Research Group for Biophysics, Faculty of Medicine, Semmelweis University, P.O. Box 263, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
32
|
Shepherd CM, Vogel HJ. A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale. Biophys J 2004; 87:780-91. [PMID: 15298887 PMCID: PMC1304488 DOI: 10.1529/biophysj.103.033266] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 04/20/2004] [Indexed: 11/18/2022] Open
Abstract
A 20-ns molecular dynamics simulation of Ca(2+)-calmodulin (CaM) in explicit solvent is described. Within 5 ns, the extended crystal structure adopts a compact shape similar in dimension to complexes of CaM and target peptides but with a substantially different orientation between the N- and C-terminal domains. Significant interactions are observed between the terminal domains in this compact state, which are mediated through the same regions of CaM that bind to target peptides derived from protein kinases and most other target proteins. The process of compaction is driven by the loss of helical structure in two separate regions between residues 75-79 and 82-86, the latter being driven by unfavorable electrostatic interactions between acidic residues. In the first 5 ns of the simulation, a substantial number of contacts are observed between the first helix of the N-terminal domain and residues 74-77 of the central linker. These contacts are correlated with the closing of the second EF-hand, indicating a mechanism by which they can lower calcium affinity in the N-terminal domain.
Collapse
Affiliation(s)
- Craig M Shepherd
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
33
|
Slaughter BD, Allen MW, Unruh JR, Bieber Urbauer RJ, Johnson CK. Single-Molecule Resonance Energy Transfer and Fluorescence Correlation Spectroscopy of Calmodulin in Solution. J Phys Chem B 2004. [DOI: 10.1021/jp040098u] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian D. Slaughter
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582
| | - Michael W. Allen
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582
| | - Jay R. Unruh
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582
| | - Ramona J. Bieber Urbauer
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582
| | - Carey K. Johnson
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045-7582
| |
Collapse
|
34
|
Likić VA, Strehler EE, Gooley PR. Dynamics of Ca2+-saturated calmodulin D129N mutant studied by multiple molecular dynamics simulations. Protein Sci 2004; 12:2215-29. [PMID: 14500879 PMCID: PMC2366934 DOI: 10.1110/ps.0377803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fifteen independent 1-nsec MD simulations of fully solvated Ca(2+) saturated calmodulin (CaM) mutant D129N were performed from different initial conditions to provide a sufficient statistical basis to gauge the significance of observed dynamical properties. In all MD simulations the four Ca(2+) ions remained in their binding sites, and retained a single water ligand as observed in the crystal structure. The coordination of Ca(2+) ions in EF-hands I, II, and III was sevenfold. In EF-hand IV, which was perturbed by the mutation of a highly conserved Asp129, an anomalous eightfold Ca(2+) coordination was observed. The Ca(2+) binding loop in EF-hand II was observed to dynamically sample conformations related to the Ca(2+)-free form. Repeated MD simulations implicate two well-defined conformations of Ca(2+) binding loop II, whereas similar effect was not observed for loops I, III, and IV. In 8 out of 15 MD simulations Ca(2+) binding loop II adopted an alternative conformation in which the Thr62 >C=O group was displaced from the Ca(2+) coordination by a water molecule, resulting in the Ca(2+) ion ligated by two water molecules. The alternative conformation of the Ca(2+) binding loop II appears related to the "closed" state involved in conformational exchange previously detected by NMR in the N-terminal domain fragment of CaM and the C-terminal domain fragment of the mutant E140Q. MD simulations suggest that conformations involved in microsecond exchange exist partially preformed on the nanosecond time scale.
Collapse
Affiliation(s)
- Vladimir A Likić
- Department of Biochemistry and Molecular Biology, Russell Grimwade School of Biochemistry, The University of Melbourne, Parkville, VIC 3052, Australia.
| | | | | |
Collapse
|
35
|
Yang C, Jas GS, Kuczera K. Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:289-300. [PMID: 15023369 DOI: 10.1016/j.bbapap.2003.11.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/12/2003] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) is a small protein involved in calcium signaling; among the targets of CaM are a number of kinases, including myosin light chain kinases (MLCK), various CaM-dependent kinases and phosphorylase kinase. We present results of molecular dynamics (MD) simulations of 4-ns length for calmodulin in its three functional forms: calcium-free, calcium-loaded, and in complex with both calcium and a target peptide, a fragment of the smooth muscle MLCK. The simulations included explicit water under realistic conditions of constant temperature and pressure, the presence of counterions and Ewald summation of electrostatic forces. Our simulation results present a more complete description of calmodulin structure, dynamics and interactions in solution than previously available. The results agree with a wide range of experimental data, including X-ray, nuclear magnetic resonance (NMR), fluorescence, cross-linking, mutagenesis and thermodynamics. Additionally, we are able to draw interesting conclusions about microscopic properties related to the protein's biological activity. First, in accord with fluorescence data, we find that calcium-free and calcium-loaded calmodulin exhibit significant structural flexibility. Our simulations indicate that these motions may be described as rigid-body translations and rotations of the N- and C-terminal domains occurring on a nanosecond time scale. Our second conclusion deals with the standard model of calmodulin action, which is that calcium binding leads to solvent exposure of hydrophobic patches in the two globular domains, which thus become ready to interact with the target. Surprisingly, the simulation results are inconsistent with the activation model when the standard definitions of the hydrophobic patches are used, based on hydrophobic clefts found in the X-ray structure of calcium-loaded calmodulin. We find that both experimental and simulation results are consistent with the activation model after a redefinition of the hydrophobic patches as those residues which are actually involved in peptide binding in the experimental structure of the calmodulin-peptide complex. The third conclusion is that the calmodulin-peptide interactions in the complex are very strong and are dominated by hydrophobic effects. Using quasi-harmonic entropy calculations, we find that these strong interactions induce a significant conformational strain in the protein and peptide. This destabilizing entropic contribution leads to a moderate overall binding free energy in the complex. Our results provide interesting insights into calmodulin binding to its kinase targets. The flexibility of the protein may explain the fact that CaM is able to bind many different targets. The large loss of conformational entropy upon CaM:peptide binding cancels the entropy gain due to hydrophobic interactions. This explains why the observed entropic contribution to the binding free energy is small and positive, and not large and negative as expected for a complex with such extensive hydrophobic contacts.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry and Department of Molecular Biosciences, University of Kansas, 2010 Malott Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
36
|
Zuckerman DM. Simulation of an Ensemble of Conformational Transitions in a United-Residue Model of Calmodulin. J Phys Chem B 2004. [DOI: 10.1021/jp0370730] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel M. Zuckerman
- Center for Computational Biology & Bioinformatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and Department of Environmental & Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
37
|
Goto K, Toyama A, Takeuchi H, Takayama K, Saito T, Iwamoto M, Yeh JZ, Narahashi T. Ca2+binding sites in calmodulin and troponin C alter interhelical angle movements. FEBS Lett 2004; 561:51-7. [PMID: 15013750 DOI: 10.1016/s0014-5793(04)00114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/21/2004] [Accepted: 01/26/2004] [Indexed: 11/22/2022]
Abstract
Molecular dynamics analyses were performed to examine conformational changes in the C-domain of calmodulin and the N-domain of troponin C induced by binding of Ca(2+) ions. Analyses of conformational changes in calmodulin and troponin C indicated that the shortening of the distance between Ca(2+) ions and Ca(2+) binding sites of helices caused widening of the distance between Ca(2+) binding sites of helices on opposite sides, while the hydrophobic side chains in the center of helices hardly moved due to their steric hindrance. This conformational change acts as the clothespin mechanism.
Collapse
Affiliation(s)
- Kunihiko Goto
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 A(2) approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 A(2), comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to peptide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, 2010 Malott Hall, Lawrence, KS 66045, USA
| | | |
Collapse
|
39
|
Elezgaray J, Marcou G, Sanejouand YH. Exploring the natural conformational changes of the C-terminal domain of calmodulin. PHYSICAL REVIEW E 2002; 66:031908. [PMID: 12366153 DOI: 10.1103/physreve.66.031908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Indexed: 11/07/2022]
Abstract
Several experimental results suggest that the Ca2+-loaded C-terminal domain of calmodulin (or some of its mutants) exhibits conformational changes triggered solely by thermal fluctuations. The time scales involved are in the 10(-6)-10(-3) s range. Here we develop a theoretical method to explore this type of motions based on a modified version of molecular dynamics algorithm where the secondary structure motifs are held fixed. In this version, increasing the temperature enhances the sampling of conformations with locally fixed secondary structures. From the temperature dependence of the transition rate between various conformational states, we obtain characteristic times that are consistent with those observed experimentally.
Collapse
Affiliation(s)
- J Elezgaray
- Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France.
| | | | | |
Collapse
|
40
|
Komeiji Y, Ueno Y, Uebayasi M. Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin. FEBS Lett 2002; 521:133-9. [PMID: 12067741 DOI: 10.1016/s0014-5793(02)02853-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations were performed to simulate Ca(2+)-dependent conformational change of calmodulin (CaM). Simulations of the fully Ca(2+)-bound form of CaM (Holo-CaM) and the Ca(2+)-free form (Apo-CaM) were performed in solution for 4 ns starting from the X-ray crystal structure of Holo-CaM. A striking difference was observed between the trajectories of Holo-CaM and Apo-CaM: the central helix remained straight in the former but became largely bent in the latter. Also, the flexibility of Apo-CaM was higher than that of Holo-CaM. The results indicated that the bound Ca(2+) ions harden the structure of CaM.
Collapse
Affiliation(s)
- Yuto Komeiji
- IMCB/RICS, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Japan.
| | | | | |
Collapse
|